E·XFL

NXP USA Inc. - KMSC7118VM1200 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Betans	
Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, I ² C, UART
Clock Rate	300MHz
Non-Volatile Memory	ROM (8kB)
On-Chip RAM	464kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	400-LFBGA
Supplier Device Package	400-LFBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmsc7118vm1200

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

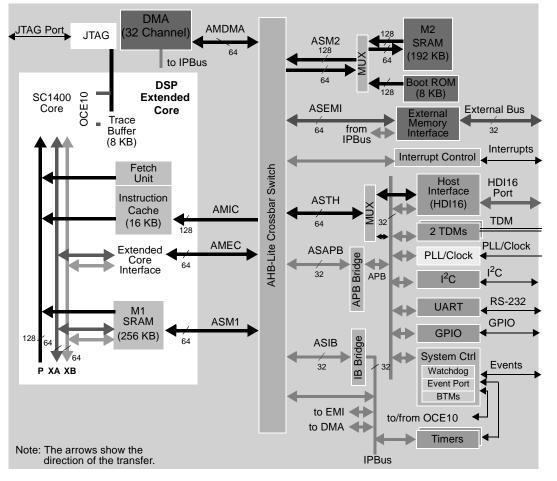
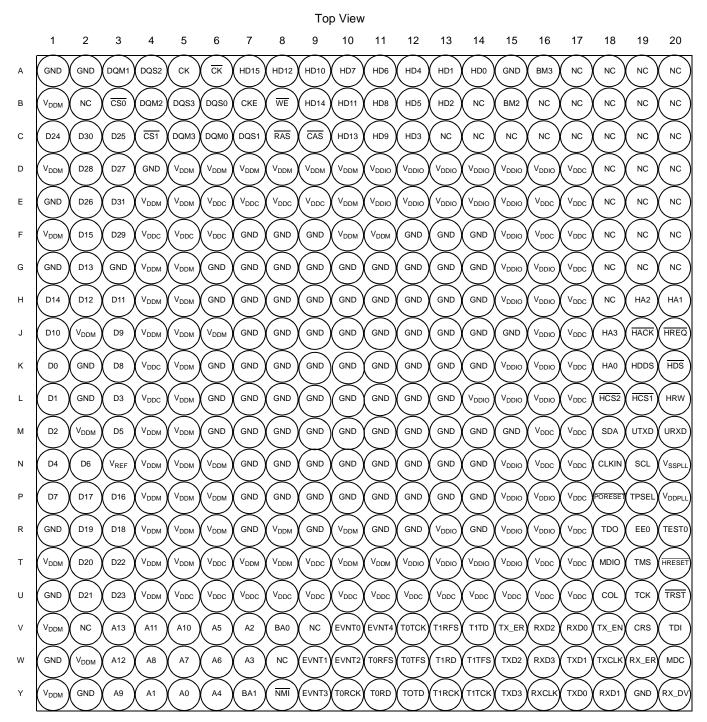


Figure 1. MSC7118 Block Diagram

NP


ssignments

1 Pin Assignments

This section includes diagrams of the MSC7118 package ball grid array layouts and pinout allocation tables.

1.1 MAP-BGA Ball Layout Diagrams

Top and bottom views of the MAP-BGA package are shown in Figure 2 and Figure 3 with their ball location index numbers.

Pin Assignments

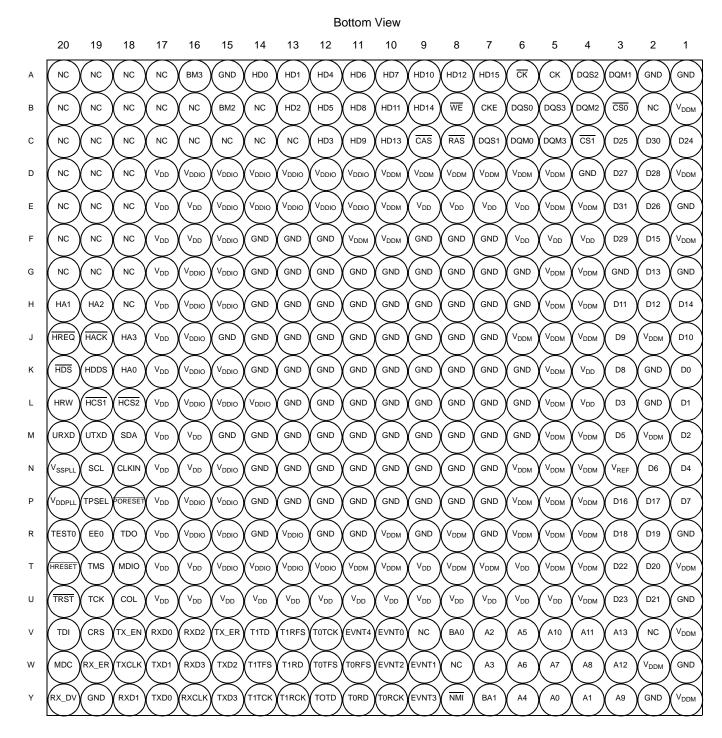


Figure 3. MSC7118 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

		Signal Names				
Number		S	oftware Controlle	ed	Hardware	Controlled
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
B14			Ν	IC		
B15	BM2	GP	ID7	GPOD7	rese	erved
B16			Ν	IC		
B17			Ν	IC		
B18			Ν	IC		
B19			Ν	IC		
B20			Ν	IC		
C1			D	24		
C2			D	30		
C3			D	25		
C4			C	<u>S1</u>		
C5			DG	2M3		
C6			DG	2M0		
C7			DC	QS1		
C8			R	AS		
C9		CAS				
C10		GPIC5 GPOC5 HD13				
C11		GPIC1 GPOC1 HD9				
C12		reserved HD3				
C13		NC				
C14		NC				
C15	NC					
C16		NC				
C17			Ν	IC		
C18				IC		
C19		NC				
C20		NC				
D1		V _{DDM}				
D2		D28				
D3		D27				
D4	GND					
D5		V _{DDM}				
D6		V _{DDM}				
D7		V _{DDM}				
D8				DM		
D9				DM		

Table 1. MSC7118 Signals by Ball Designator (continued)

		Signal Names					
Number		S	oftware Controlle	d	Hardware	Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
F6			V _C	DC			
F7			GI	ND			
F8			GI	ND			
F9			GI	ND			
F10			VD	DM			
F11			V _D	DM			
F12			GI	ND			
F13			GI	ND			
F14			GI	ND			
F15			V _D	DIO			
F16			V _D	DC			
F17				DC			
F18				С			
F19			N	С			
F20		NC					
G1		GND					
G2		D13					
G3		GND					
G4		V _{DDM}					
G5		V _{DDM}					
G6		GND					
G7		GND					
G8		GND					
G9		GND					
G10		GND					
G11		GND					
G12			GI	ND			
G13	1	GND					
G14	1	GND					
G15		V _{DDIO}					
G16		V _{DDIO}					
G17	1	V _{DDC}					
G18	NC						
G19	1	NC					
G20	1			С			
H1	1			14			

Table 1. MSC7118 Signals by Ball Designator (continued)

		Signal Names					
Number		S	oftware Controlle	d	Hardware	Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
N10			GI	ND			
N11			GI	ND			
N12			GI	ND			
N13			GI	ND			
N14			GI	ND			
N15			V _D	DIO			
N16			V _D	DC			
N17			V _D	DC			
N18				KIN			
N19	GPI	A15	IRQ14	GPOA15	S	SCL	
N20			V _{SS}	SPLL			
P1				7			
P2			D	17			
P3			D	16			
P4			VD	DM			
P5		V _{DDM}					
P6		V _{DDM}					
P7		GND					
P8		GND					
P9		GND					
P10		GND					
P11		GND					
P12		GND					
P13		GND					
P14				ND			
P15				DIO			
P16		V _{DDIO}					
P17	V _{DDC}						
P18	PORESET						
P19	TPSEL						
P20	V _{DDPLL}						
R1	GND						
R2	D19						
R3		D18					
R4				DM			
R5				DM			

Table 1. MSC7118 Signals by Ball Designator (continued)

ssignments

		_	Signa	l Names		
Number		Software Controlled			Hardware	Controlled
End of R	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate
V18	GPI	A24	IRQ24	GPOA24	TX_	EN
V19		rese	rved		CF	RS
V20				ГDI		
W1			C	SND		
W2			V	DDM		
W3			,	A12		
W4				A8		
W5				A7		
W6				A6		
W7				A3		
W8				NC		
W9	GPI	A17	IRQ13	GPOA17	EVNT1	CLKO
W10	BM0	GPI	C14	GPOC14	EVI	NT2
W11	GPI	GPIA10 IRQ5 GPOA10 TORFS				
W12	GP	IA7	IRQ7	GPOA7	тот	TFS
W13	GP	IA3	IRQ8	GPOA3	T1I	RD
W14	GP	IA1	IRQ10	GPOA1	T17	TFS
W15		GPID4		GPOD4	TXD2	reserved
W16	GPI	A27	IRQ18	GPOA27	RXD3	reserved
W17	GPI	A19	IRQ19	GPOA19	ТХ	D1
W18	GPI	A23	IRQ23	GPOA23	TXCLK or	REFCLK
W19	GPI	A26	IRQ26	GPOA26	RX_	_ER
W20	H8BIT		reserved		M	C
Y1			V	DDM		
Y2			C	SND		
Y3				A9		
Y4				A1		
Y5				A0		
Y6	A4					
Y7			E	3A1		
Y8	rese	rved	NMI		reserved	
Y9	BM1	GPI	C15	GPOC15	EVM	NT3
Y10	GPI	A11	IRQ4	GPOA11	TOR	СK
Y11		GPIA9		GPOA9	TO	RD
Y12		GPIA6		GPOA6	T0 ⁻	TD
Y13	GP	IA5	IRQ0	GPOA5	T1R	RCK

Table 1. MSC7118 Signals by Ball Designator (continued)

Table 2 describes the maximum electrical ratings for the MSC7118.

Table 2	Absolute	Maximum	Ratings
---------	----------	---------	---------

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.5	V
Memory supply voltage	V _{DDM}	4.0	V
PLL supply voltage	V _{DDPLL}	1.5	V
I/O supply voltage	V _{DDIO}	-0.2 to 4.0	V
Input voltage	V _{IN}	(GND – 0.2) to 4.0	V
Reference voltage	V _{REF}	4.0	V
Maximum operating temperature	TJ	105	°C
Minimum operating temperature	T _A	-40	°C
Storage temperature range	T _{STG}	-55 to +150	°C

Notes: 1. Functional operating conditions are given in Table 3.

2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage.

3. Section 3.1, Thermal Design Considerations includes a formula for computing the chip junction temperature (T_J).

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 3. Recommended Operating Conditions

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.14 to 1.26	V
Memory supply voltage	V _{DDM}	2.38 to 2.63	V
PLL supply voltage	V _{DDPLL}	1.14 to 1.26	V
I/O supply voltage	V _{DDIO}	3.14 to 3.47	V
Reference voltage	V _{REF}	1.19 to 1.31	V
Operating temperature range	T _J T _A	maximum: 105 minimum: –40	0° 0°

2.5 AC Timings

This section presents timing diagrams and specifications for individual signals and parallel I/O outputs and inputs. All AC timings are based on a 30 pF load, except where noted otherwise, and a 50 Ω transmission line. For any additional pF, use the following equations to compute the delay:

- Standard interface: $2.45 + (0.054 \times C_{load})$ ns
- DDR interface: $1.6 + (0.002 \times C_{load})$ ns

2.5.1 Clock and Timing Signals

The following tables describe clock signal characteristics. **Table 6** shows the maximum frequency values for internal (core, reference, and peripherals) and external (CLKO) clocks. You must ensure that maximum frequency values are not exceeded (see **Section 2.5.2** for the allowable ranges when using the PLL).

Table 6. Maximum Frequencies

Characteristic	Maximum in MHz
Core clock frequency (CLOCK)	300
External output clock frequency (CLKO)	75
Memory clock frequency (CK, CK)	150
TDM clock frequency (TxRCK, TxTCK)	50

Table 7. Clock Frequencies in MHz

Characteristic	Symbol	Min	Max	
CLKIN frequency	F _{CLKIN}	10	100	
CLOCK frequency	F _{CORE}	—	300	
CK, CK frequency	F _{CK}	—	150	
TDMxRCK, TDMxTCK frequency	F _{TDMCK}	—	50	
CLKO frequency	F _{СКО}	—	75	
AHB/IPBus/APB clock frequency	F _{BCK}	—	150	
Note: The rise and fall time of external clocks should be 5 ns maximum				

Table 8. System Clock Parameters

Characteristic	Min	Мах	Unit
CLKIN frequency	10	100	MHz
CLKIN slope	—	5	ns
CLKIN frequency jitter (peak-to-peak)	—	1000	ps
CLKO frequency jitter (peak-to-peak)	—	150	ps

2.5.2 Configuring Clock Frequencies

This section describes important requirements for configuring clock frequencies in the MSC7118 device when using the PLL block. To configure the device clocking, you must program four fields in the Clock Control Register (CLKCTL):

- *PLLDVF field*. Specifies the PLL division factor (PLLDVF + 1) to divide the input clock frequency F_{CLKIN}. The output of the divider block is the input to the multiplier block.
- PLLMLTF field. Specifies the PLL multiplication factor (PLLMLTF + 1). The output from the multiplier block is the loop frequency F_{LOOP}.
- *RNG field.* Selects the available PLL frequency range for F_{VCO} , either F_{LOOP} when the RNG bit is set (1) or $F_{LOOP}/2$ when the RNG bit is cleared (0).
- *CKSEL field*. Selects F_{CLKIN} , F_{VCO} , or $F_{VCO}/2$ as the source for the core clock.

There are restrictions on the frequency range permitted at the beginning of the multiplication portion of the PLL that affect the allowable values for the PLLDVF and PLLMLTF fields. The following sections define these restrictions and provide guidelines to configure the device clocking when using the PLL. Refer to the Clock and Power Management chapter in the *MSC711x Reference Manual* for details on the clock programming model.

2.5.2.1 PLL Multiplier Restrictions

There are two restrictions for correct usage of the PLL block:

- The input frequency to the PLL multiplier block (that is, the output of the divider) must be in the range 10–25 MHz.
- The output frequency of the PLL multiplier must be in the range 266–532 MHz.

When programming the PLL for a desired output frequency using the PLLDVF, PLLMLTF, and RNG fields, you must meet these constraints.

2.5.2.2 Input Division Factors and Corresponding CLKIN Frequency Range

The value of the PLLDVF field determines the allowable CLKIN frequency range, as shown in Table 9.

PLLDVF Field Value	Input Divide Factor	CLKIN Frequency Range	Comments
0x00	1	10 to 25 MHz	Input Division by 1
0x01	2	20 to 50 MHz	Input Division by 2
0x02	3	30 to 75 MHz	Input Division by 3
0x03	4	40 to 100 MHz	Input Division by 4
0x04	5	50 to 100 MHz	Input Division by 5
0x05	6	60 to 100 MHz	Input Division by 6
0x06	7	70 to 100 MHz	Input Division by 7
0x07	8	80 to 100 MHz	Input Division by 8
0x08	9	90 to 100 MHz	Input Division by 9
0x09	10	100 MHz	Input Division by 10
Note: The ma	aximum CLKIN freq	uency is 100 MHz. Therefore, the Pl	LLDVF value must be in the range from 1–10.

Table 9. CLKIN Frequency Ranges by Divide Factor Value

2.5.2.3 Multiplication Factor Range

The multiplier block output frequency ranges depend on the divided input clock frequency as shown in Table 10.

Multiplier Block (Loop) Output Range		Minimum PLLMLTF Value	Maximum PLLMLTF Value
	$266 \leq$ [Divided Input Clock × (PLLMLTF + 1)] \leq 532 MHz	266/Divided Input Clock	532/Divided Input Clock
Note:	This table results from the allowed range for F _{Loop} . The minim frequency of the Divided Input Clock.	um and maximum multiplication fa	ctors are dependent on the

Table 10. PLLMLTF Ranges

2.5.2.4 Allowed Core Clock Frequency Range

The frequency delivered to the core, extended core, and peripherals depends on the value of the CLKCTRL[RNG] bit as shown in **Table 11**.

Table 11. F _{vcc}	Frequency	Ranges
----------------------------	-----------	--------

CLKCTRL[RNG] Value		Allowed Range of F _{vco}	
	1	$266 \le F_{vco} \le 532 \text{ MHz}$	
	0	$133 \le F_{vco} \le 266 \text{ MHz}$	
Note:	This table results from the allowed range for F _{vco} , which is F _{Loop} modified by CLKCTRL[RNG].		

This bit along with the CKSEL determines the frequency range of the core clock.

CLKCT	RL[CKSEL]	CLKCTRL[RNG]	Resulting Division Factor	Allowed Range of Core Clock	Comments	
	11	1	1	$266 \le core \ clock \le 300 \ MHz$	Limited by maximum core frequency	
	11	0	2	$133 \le core \ clock \le 266 \ MHz$	Limited by range of PLL	
	01	1	2	$133 \le core \ clock \le 266 \ MHz$	Limited by range of PLL	
	01	0	4	$66.5 \le core \ clock \le 133 \ MHz$	Limited by range of PLL	
Note:	This table results from the allowed range for F _{OUT} , which depends on clock selected via CLKCTRL[CKSEL].					

2.5.2.5 Core Clock Frequency Range When Using DDR Memory

The core clock can also be limited by the frequency range of the DDR devices in the system. **Table 13** summarizes this restriction.

DDR Type	Allowed Frequency Range for DDR CK	Corresponding Range for the Core Clock	Comments
DDR 200 (PC-1600)	83–100 MHz	$166 \le core \ clock \le 200 \ MHz$	Core limited to 2 × maximum DDR frequency
DDR 266 (PC-2100)	83–133 MHz	$166 \le core \ clock \le 266 \ MHz$	Core limited to $2 \times \text{maximum DDR}$ frequency
DDR 333 (PC-2600)	83–150 MHz	$166 \le core \ clock \le 300 \ MHz$	Core limited to $2 \times \text{maximum DDR}$ frequency

Table 13. Core Clock Ranges When Using DDR

2.5.3 Reset Timing

The MSC7118 device has several inputs to the reset logic. All MSC7118 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 14** describes the reset sources.

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC7118 and configures various attributes of the MSC7118. On PORESET, the entire MSC7118 device is reset. SPLL and DLL states are reset, HRESET is driven, the SC1400 extended core is reset, and system configuration is sampled. The system is configured only when PORESET is asserted.
External Hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC7118. While HRESET is asserted, HRESET is an open-drain output. Upon hard reset, HRESET is driven and the SC1400 extended core is reset.
Software watchdog reset	Internal	When the MSC7118 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC7118 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
JTAG EXTEST, CLAMP, or HIGHZ command	Internal	When a Test Access Port (TAP) executes an EXTEST, CLAMP, or HIGHZ command, the TAP logic asserts an internal reset signal that generates an internal soft reset sequence.

Table 14. Reset Sources

Table 15 summarizes the reset actions that occur as a result of the different reset sources.

Table 15. Reset Actions for Each Reset Source

	Po <u>wer-On Re</u> set (PORESET)	H <u>ard Rese</u> t (HRESET)	S <u>oft Rese</u> t (SRESET)
Reset Action/Reset Source	External only	External or Internal (Software Watchdog or Bus Monitor)	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration pins sampled (refer to Section 2.5.3.1 for details).	Yes	No	No
PLL and clock synthesis states Reset	Yes	No	No
HRESET Driven	Yes	Yes	No
Software watchdog and bus time-out monitor registers	Yes	Yes	Yes
Clock synthesis modules (STOPCTRL, HLTREQ, and HLTACK) reset	Yes	Yes	Yes
Extended core reset	Yes	Yes	Yes
Peripheral modules reset	Yes	Yes	Yes

2.5.3.1 Power-On Reset (PORESET) Pin

Asserting $\overrightarrow{\text{PORESET}}$ initiates the power-on reset flow. $\overrightarrow{\text{PORESET}}$ must be asserted externally for at least 16 CLKIN cycles after external power to the MSC7118 reaches at least 2/3 V_{DD}.

2.5.4 DDR DRAM Controller Timing

This section provides the AC electrical characteristics for the DDR DRAM interface.

2.5.4.1 DDR DRAM Input AC Timing Specifications

Table 17 provides the input AC timing specifications for the DDR DRAM interface.

Table 17. DDR DRAM Input AC Timing

No.	Parameter	Symbol	Min	Мах	Unit
—	AC input low voltage	V _{IL}		V _{REF} – 0.31	V
_	AC input high voltage	V _{IH}	V _{REF} + 0.31	V _{DDM} + 0.3	V
201	Maximum Dn input setup skew relative to DQSn input	_	_	900	ps
202	Maximum Dn input hold skew relative to DQSn input	_	_	900	ps
Notes:	 Maximum possible skew between a data strobe (DQSn) and any corresponding bit of data (D[8n + {07}] if 0 ≤ n ≤ 7). See Table 18 for t_{CK} value. Dn should be driven at the same time as DQSn. This is necessary because the DQSn centering on the DQn data tenure is done internally. 				

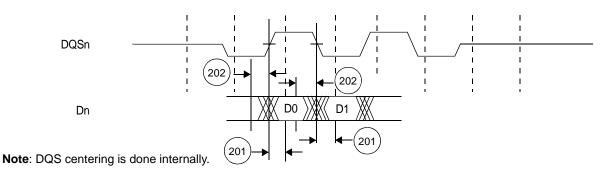


Figure 5. DDR DRAM Input Timing Diagram

2.5.4.2 DDR DRAM Output AC Timing Specifications

 Table 18 and Table 19 list the output AC timing specifications and measurement conditions for the DDR DRAM interface.

Table 18. DDR DRAM Output A	C Timing
-----------------------------	----------

No.	Parameter	Symbol	Min	Max	Unit
200	CK cycle time, (CK/ CK crossing) ¹ • 100 MHz (DDR200) • 150 MHz (DDR300)	tск	10 6.67		ns ns
204	An/RAS/CAS/WE/CKE output setup with respect to CK	t _{DDKHAS}	$0.5 imes t_{CK} - 1000$	_	ps
205	An/RAS/CAS/WE/CKE output hold with respect to CK	t _{DDKHAX}	$0.5 imes t_{CK} - 1000$	_	ps
206	CSn output setup with respect to CK	t _{DDKHCS}	$0.5 imes t_{CK} - 1000$	_	ps
207	CSn output hold with respect to CK	t _{DDKHCX}	$0.5 imes t_{CK} - 1000$	_	ps
208	CK to DQSn ²	t _{DDKHMH}	-600	600	ps

Figure 10 and Figure 11 show HDI16 read signal timing. Figure 12 and Figure 13 show HDI16 write signal timing.

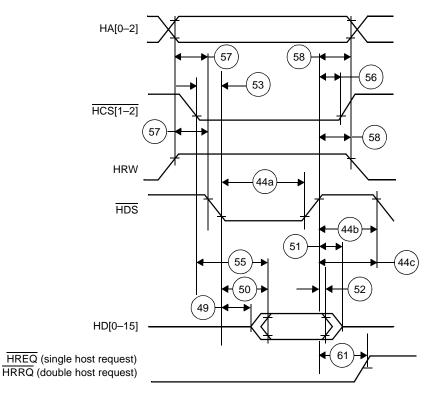


Figure 10. Read Timing Diagram, Single Data Strobe

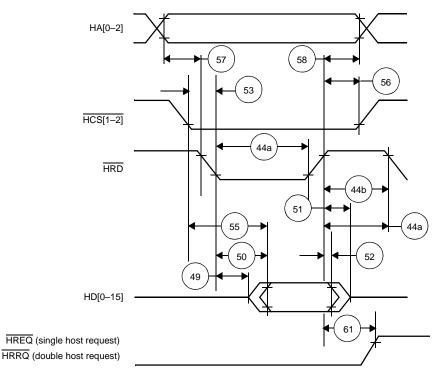


Figure 11. Read Timing Diagram, Double Data Strobe

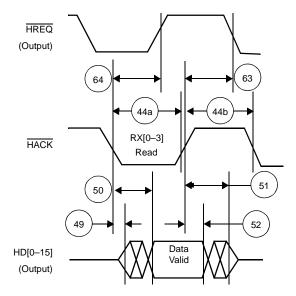


Figure 14. Host DMA Read Timing Diagram, HPCR[OAD] = 0

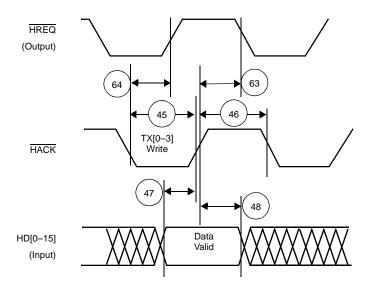


Figure 15. Host DMA Write Timing Diagram, HPCR[OAD] = 0

2.5.8 UART Timing

No.	Characteristics	Expression	Min	Max	Unit
—	Internal bus clock (APBCLK)	F _{CORE} /2	_	150	MHz
_	Internal bus clock period (1/APBCLK)	T _{APBCLK}	6.67	_	ns
400	URXD and UTXD inputs high/low duration	16 × T _{APBCLK}	106.67	_	ns
401	URXD and UTXD inputs rise/fall time		—	5	ns
402	UTXD output rise/fall time			5	ns

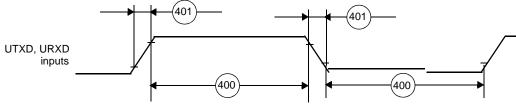
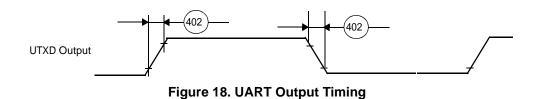
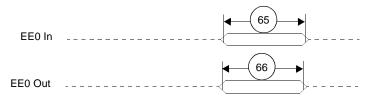



Figure 17. UART Input Timing

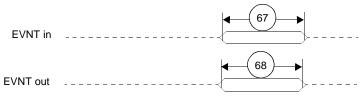


2.5.9 EE Timing

Table 24. EE0 Timing

Number		Characteristics	Туре	Min
65		EE0 input to the core	Asynchronous	4 core clock periods
66		EE0 output from the core	Synchronous to core clock	1 core clock period
Notes: 1. 2. 3.	 The core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset. Configure the direction of the EE pin in the EE_CTRL register (see the SC140/SC1400 Core Reference Manual for details. Refer to Table 1-11 on page 1-16 for details on EE pin functionality. 			

Figure 20 shows the signal behavior of the EE pin.

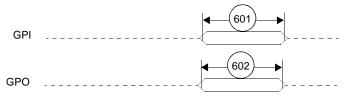


2.5.10 Event Timing

Table	25.	EVNT	Signal	Timing
-------	-----	------	--------	--------

Number	Characteristics	Туре	Min
67	EVNT as input	Asynchronous	$1.5 \times APBCLK$ periods
68	EVNT as output	Synchronous to core clock	1 APBCLK period
 Notes: 1. Refer to Table 23 for a definition of the APBCLK period. 2. Direction of the EVNT signal is configured through the GPIO and Event port registers. 3. Refer to the signal chapter in the <i>MSC711x Reference Manual</i> for details on EVNT pin functionality. 			

Figure 20 shows the signal behavior of the EVNT pins.


Figure 20. EVNT Pin Timing

2.5.11 GPIO Timing

Table 26. GPIO Signal Timing^{1,2,3}

Number	Characteristics	Туре	Min
601	GPI ^{4.5}	Asynchronous	$1.5 \times APBCLK$ periods
602	GPO ⁵	Synchronous to core clock	1 APBCLK period
603	Port A edge-sensitive interrupt	Asynchronous	$1.5 \times APBCLK$ periods
604	Port A level-sensitive interrupt	Asynchronous	3 × APBCLK periods ⁶
 Notes: 1. Refer to Table 23 for a definition of the APBCLK period. Direction of the GPIO signal is configured through the GPIO port registers. 3. Refer to Section 1.5 for details on GPIO pin functionality. 4. GPI data is synchronized to the APBCLK internally and the minimum listed is the capability of the hardware to capture data into a register when the GPADR is read. The specification is not tested due to the asynchronous nature of the input and dependence on the state of the DSP core. It is guaranteed by design. 5. The output signals cannot toggle faster than 75 MHz. 6. Level-sensitive interrupts should be held low until the system determines (via the service routine) that the interrupt is acknowledged. 			

Figure 21 shows the signal behavior of the GPI/GPO pins.

NP .

ware Design Considerations

3.2 **Power Supply Design Considerations**

This section outlines the MSC7118 power considerations: power supply, power sequencing, power planes, decoupling, power supply filtering, and power consumption. It also presents a recommended power supply design and options for low-power consumption. For information on AC/DC electrical specifications and thermal characteristics, refer to **Section 2**.

3.2.1 Power Supply

The MSC7118 requires four input voltages, as shown in Table 28.

Voltage	Symbol	Value
Core	V _{DDC}	1.2 V
Memory	V _{DDM}	2.5 V
Reference	V _{REF}	1.25 V
I/O	V _{DDIO}	3.3 V

Table 28. MSC7118 Voltages

You should supply the MSC7118 core voltage via a variable switching supply or regulator to allow for compatibility with possible core voltage changes on future silicon revisions. The core voltage is supplied with 1.2 V (+5% and -10%) across V_{DDC} and GND and the I/O section is supplied with 3.3 V (\pm 10%) across V_{DDIO} and GND. The memory and reference voltages supply the DDR memory controller block. The memory voltage is supplied with 2.5 V across V_{DDM} and GND. The reference voltage is supplied across V_{REF} and GND and must be between 0.49 × V_{DDM} and 0.51 × V_{DDM}. Refer to the JEDEC standard JESD8 (*Stub Series Terminated Logic for 2.5 Volts* (STTL_2)) for memory voltage supply requirements.

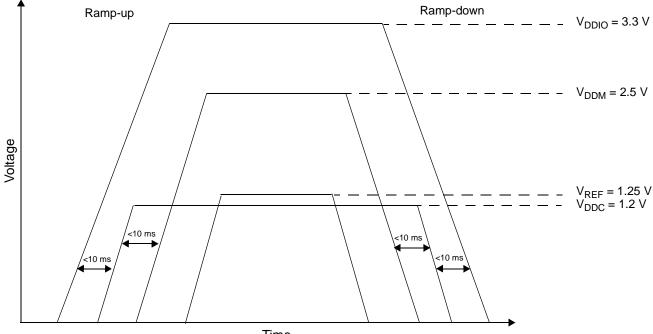
3.2.2 Power Sequencing

One consequence of multiple power supplies is that the voltage rails ramp up at different rates when power is initially applied. The rates depend on the power supply, the type of load on each power supply, and the way different voltages are derived. It is extremely important to observe the power up and power down sequences at the board level to avoid latch-up, forward biasing of ESD devices, and excessive currents, which all lead to severe device damage.

Note: There are five possible power-up/power-down sequence cases. The first four cases listed in the following sections are recommended for new designs. The fifth case is not recommended for new designs and must be carefully evaluated for current spike risks based on actual information for the specific application.

3.2.2.1 Case 1

The power-up sequence is as follows:


- 1. Turn on the V_{DDIO} (3.3 V) supply first.
- 2. Turn on the V_{DDC} (1.2 V) supply second.
- 3. Turn on the V_{DDM} (2.5 V) supply third.
- 4. Turn on the V_{REF} (1.25 V) supply fourth (last).

The power-down sequence is as follows:

- 1. Turn off the V_{REF} (1.25 V) supply first.
- 2. Turn off the V_{DDM} (2.5 V) supply second.
- 3. Turn off the V_{DDC} (1.2 V) supply third.
- 4. Turn of the V_{DDIO} (3.3 V) supply fourth (last).

Use the following guidelines:

- Make sure that the time interval between the ramp-down of V_{DDIO} and V_{DDC} is less than 10 ms.
- Make sure that the time interval between the ramp-up or ramp-down for V_{DDC} and V_{DDM} is less than 10 ms for power-up and power-down.
- Refer to **Figure 26** for relative timing for power sequencing case 1.

Time Figure 26. Voltage Sequencing Case 1

NP

ware Design Considerations

3.3.2 Peripheral Power

Peripherals include the DDR memory controller, DMA controller, HDI16, TDM, UART, timers, GPIOs, and the I²C module. Basic power consumption by each module is assumed to be the same and is computed by using the following equation which assumes an effective load of 20 pF, core voltage swing of 1.2 V, and a switching frequency of 100 MHz. This yields:

$$P_{PERIPHERAL} = 20 \ pF \times (1.2 \ V)^2 \times 150 \ MHz \times 10^{-3} = 4.32 \ mW \ per \ peripheral$$
 Eqn. 6

Multiply this value by the number of peripherals used in the application to compute the total peripheral power consumption.

3.3.3 External Memory Power

Estimation of power consumption by the DDR memory system is complex. It varies based on overall system signal line usage, termination and load levels, and switching rates. Because the DDR memory includes terminations external to the MSC7118 device, the 2.5 V power source provides the power for the termination, which is a static value of 16 mA per signal driven high. The dynamic power is computed, however, using a differential voltage swing of ± 0.200 V, yielding a peak-to-peak swing of 0.4 V. The equations for computing the DDR power are:

$$P_{DDRIO} = P_{STATIC} + P_{DYNAMIC} \qquad Eqn. 7$$

$$P_{STATIC} = (unused pins \times \% driven high) \times 16 mA \times 2.5 V$$
 Eqn. 8

$$P_{DYNAMIC} = (pin \ activity \ value) \times 20 \ pF \times (0.4 \ V)^2 \times 300 \ MHz \times 10^{-3} \ mW$$
 Eqn. 9

pin activity value = (active data lines \times % activity \times % data switching) + (active address lines \times % activity) Eqn. 10

As an example, assume the following:

unused pins = 16 (DDR uses 16-pin mode) % driven high = 50% active data lines = 16 % activity = 60% % data switching = 50% active address lines = 3

In this example, the DDR memory power consumption is:

$$P_{DDRIO} = ((16 \times 0.5) \times 16 \times 2.5) + (((16 \times 0.6 \times 0.5) + (3 \times 0.6)) \times 20 \times (0.4)^2 \times 300 \times 10^{-3}) = 326.3 \text{ mW}$$
 Eqn. 11

3.3.4 External I/O Power

The estimation of the I/O power is similar to the computation of the peripheral power estimates. The power consumption per signal line is computed assuming a maximum load of 20 pF, a voltage swing of 3.3 V, and a switching frequency of 25 MHz, which yields:

$$P_{IO} = 20 \ pF \times (3.3 \ V)^2 \times 25 \ MHz \times 10^{-3} = 5.44 \ mW \ per I/O \ line$$
 Eqn. 12

Multiply this number by the number of I/O signal lines used in the application design to compute the total I/O power.

Note: The signal loading depends on the board routing. For systems using a single DDR device, the load could be as low as 7 pF.

3.3.5 Leakage Power

The leakage power is for all power supplies combined at a specific temperature. The value is temperature dependent. The observed leakage value at room temperature is 64 mW.