

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	54
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1526-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F1526/7 are described within this data sheet. They are available in 64-pin packages. Figure 1-1 shows a block diagram of the PIC16(L)F1526/7 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1:	DEVICE PERIPHERAL
	SUMMARY

Peripheral		PIC16F1526 PIC16LF1526	PIC16F1527 PIC16LF1527
ADC		•	•
EUSART		٠	•
Fixed Voltage Reference	e (FVR)	•	•
Temperature Indicator		•	•
Capture/Compare/PWM	Modules		
	CCP1	•	•
	CCP2	•	•
	CCP3	٠	•
	CCP4	•	•
	CCP5	•	•
	CCP6	•	•
	CCP7	•	•
	CCP8	•	•
	CCP9	•	•
	CCP10	•	•
EUSARTs			
	EUSART1	٠	•
	EUSART2	٠	•
Master Synchronous Ser	rial Ports		
	MSSP1	•	•
	MSSP2	٠	•
Timers			
	Timer0	•	•
	Timer1/3/5	٠	•
	Timer2/4/6 /8/10	•	•

3.5.4 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 0-31										
x00h or x80h	INDF0	Addressing (not a phys	this location ical register)	uses conte	nts of FSR0H	/FSR0L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu
x01h or x81h	INDF1	Addressing (not a phys	this location ical register)	uses conte	nts of FSR1H	/FSR1L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	—	—	_	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Da	ta Memory A	ddress 0 Lo	w Pointer					0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	—	_		BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Register								0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	_	Write Buffer for the upper 7 bits of the Program Counter								-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-4: CORE FUNCTION REGISTERS SUMMARY

6.4 Low-Power Brown-Out Reset (LPBOR)

The Low-Power Brown-Out Reset (LPBOR) is an essential part of the Reset subsystem. Refer to Figure 6-1 to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit ($\overline{\text{BOR}}$) is changed to indicate that a BOR Reset has occurred. The same bit is set for both the BOR and the LPBOR. Refer to Register 6-2.

6.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

6.4.1.1 LPBOR Module Output

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR'd together with the Reset signal of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block.

6.5 MCLR

The $\overline{\text{MCLR}}$ is an <u>optional</u> external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2).

 TABLE 6-2:
 MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

6.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

6.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section Register 12-19: "PORTE: PORTE Register"** for more information.

6.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 10.0** "**Watchdog Timer (WDT)**" for more information.

6.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 6-4 for default conditions after a RESET instruction has occurred.

6.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.7.2** "**Overflow/Underflow Reset**" for more information.

6.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

6.10 Power-up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the PWRTE bit of Configuration Words.

6.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 5.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

4: For minimum width of INT pulse, refer to AC specifications in Section 25.0 "Electrical Specifications".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CCP6IE	CCP5IE	CCP4IE	CCP3IE	TMR6IE	TMR5IE	TMR4IE	TMR3IE
bit 7			I	1		I	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	CCP6IE: CCF 1 = Enables	P6 Interrupt En the CCP6 inter	able bit rupt				
bit 6	CCP5IE: CCF 1 = Enables 0 = Disables	P5 Interrupt En the CCP5 inter the CCP5 inter	able bit rupt rrupt				
bit 5	CCP4IE: CCF 1 = Enables 0 = Disables	P4 Interrupt En the CCP4 inter the CCP4 inter	able bit rupt rrupt				
bit 4	CCP3IE: CCF 1 = Enables 0 = Disables	P3 Interrupt En the CCP3 inter the CCP3 inter	able bit rupt rrupt				
bit 3	TMR6IE: TMI 1 = Enables 0 = Disables	R6 to PR6 Mate the TMR6 to P the TMR6 to P	ch Interrupt Er R6 Match inte R6 Match inte	nable bit errupt errupt			
bit 2	TMR5IE: Tim 1 = Enables 0 = Disables	er5 Overflow Ir the Timer5 ove the Timer5 ove	nterrupt Enabler flow interrupt erflow interrup	e bit t t			
bit 1	TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt						
bit 0	TMR3IE: Tim 1 = Enables 0 = Disables	er3 Overflow Ir the Timer3 ove the Timer3 ove	nterrupt Enabl rflow interrupt erflow interrup	e bit t t			
Note: Bit set	PEIE of the IN to enable any	TCON register peripheral inter	must be rupt.				

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

12.4 Register Definitions: PORTA

REGISTER 12-2: PORTA: PORTA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	
bit 7		·			•	•	bit 0	
Legend:								
R = Readable bi	t	W = Writable bi	t	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	ed					

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISA<7:0>: PORTA Tri-State Control bits

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 12-30: LATG: PORTG DATA LATCH REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_	—	LATG4	LATG3	LATG2	LATG1	LATG0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				

bit 7-5	Unimplemented: Read as '0'

u = Bit is unchanged

'1' = Bit is set

bit 4-0 LATG<4:0>: PORTG Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTG are actually written to corresponding LATG register. Reads from PORTG register is return of actual I/O pin values.

REGISTER 12-31: ANSELG: PORTG ANALOG SELECT REGISTER

x = Bit is unknown

'0' = Bit is cleared

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1 R/W-1	
—			ANSG4	ANSG3	ANSG2	ANSG1	_
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-1 **ANSG<4:1>**: Analog Select between Analog or Digital Function on Pins RG<4:1>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

16.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

16.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

16.1.2 CHANNEL SELECTION

There are 32 channel selections available:

- AN<29:0> pins
- Temperature Indicator
- FVR (Fixed Voltage Reference) Output

Refer to Section 14.0 "Fixed Voltage Reference (FVR)" and Section 15.0 "Temperature Indicator Module" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 16.2 "ADC Operation"** for more information.

16.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- VDD
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

See Section 14.0 "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

16.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal FRC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 16-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 25.0 "Electrical Specifications"** for more information. Table 16-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

18.6.2 TIMER1/3/5 GATE SOURCE SELECTION

The Timer1/3/5 gate source can be selected from one of four different sources. Source selection is controlled by the TxGSS bits of the TxGCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the TxGPOL bit of the TxGCON register.

|--|

T1GSS	Timer1 Gate Source	Timer3 Gate Source	Timer5 Gate Source								
00	T1G Pin	T3G Pin	T5G Pin								
01	Overflow of Timer0										
	(
10	Timer2 match PR2	Timer4 match PR4	Timer6 match PR6								
	(TMR2 increments to match PR2)										
11		Timer10 match PR10									

18.6.2.1 TxG Pin Gate Operation

The TxG pin is one source for Timer1/3/5 gate control. It can be used to supply an external source to the Timer1/3/5 gate circuitry.

18.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1/3/5 gate circuitry.

18.6.3 TIMER1/3/5 GATE TOGGLE MODE

When Timer1/3/5 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1/3/5 gate signal, as opposed to the duration of a single level pulse.

The Timer1/3/5 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 18-5 for timing details.

Timer1/3/5 Gate Toggle mode is enabled by setting the TxGTM bit of the TxGCON register. When the TxGTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note:	Enabling Toggle mode at the same time									
	as changing the gate polarity may result ir									
	indeterminate operation.									

18.6.4 TIMER1/3/5 GATE SINGLE-PULSE MODE

When Timer1/3/5 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1/3/5 Gate Single-Pulse mode is first enabled by setting the TxGSPM bit in the TxGCON register. Next, the TxGGO/DONE bit in the TxGCON register must be set. The Timer1/3/5 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the TxGGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1/3/5 until the TxGGO/DONE bit is once again set in software. See Figure 18-6 for timing details.

If the Single-Pulse Gate mode is disabled by clearing the TxGSPM bit in the TxGCON register, the TxGGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1/3/5 gate source to be measured. See Figure 18-7 for timing details.

18.6.5 TIMER1/3/5 GATE VALUE STATUS

When Timer1/3/5 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the TxGVAL bit in the TxGCON register. The TxGVAL bit is valid even when the Timer1/3/5 gate is not enabled (TMRxGE bit is cleared).

20.4 Register Definitions: ECCP Control

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	_	DCxB	<1:0>		CCPx	VI<3:0>				
bit 7				•			bit 0			
Legend:										
R = Readable bi	t	W = Writable bit	t	U = Unimpleme	ented bit, read as	; 'O'				
u = Bit is unchar	nged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/\	/alue at all other	Reset			
'1' = Bit is set		'0' = Bit is cleare	ed							
bit 7-6	Unimplemen	ted: Read as '0'								
bit 5-4	DCxB<1:0>:	PWM Duty Cycle L	east Significan	t bits						
	Capture mode	<u>e:</u>								
	Unused									
	Compare mo	<u>de:</u>								
	Unused									
	PWM mode:									
	I nese bits ar			ycie. The eight ivi	Sps are found in	CCPRXL.				
bit 3-0		CCPX Mode Select bits								
	1011 = Con	npare mode: Special Event Trigger (sets CCP10IF bit (CCP10), starts ADC conversion if ADC module								
	is er	nabled) ⁽¹⁾								
	1010 = Con	mpare mode: generate software interrupt only								
	1001 = Con	mpare mode: clear output on compare match (set CCPxIF)								
	1000 = Con	npare mode: set ou	itput on compar	e match (set CCF	PxIF)					
	0111 = Can	ture mode: every 1	6th rising edge							
	0110 = Cap	ture mode: every 1	th rising edge							
	0101 = Cap	ture mode: every r	ising edge							
	0100 = Cap	ture mode: every fa	alling edge							
	0011 = Res	erved								
	0010 = Con	npare mode: toggle	e output on mate	ch						
	0001 = Res	erved								
	0000 = Cap	ture/Compare/PWI	vi off (resets CC	Px module)						

REGISTER 20-1: CCPxCON: CCPx CONTROL REGISTER

21.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDAx or SCLx are sampled low at the beginning of the Start condition (Figure 21-33).
- b) SCLx is sampled low before SDAx is asserted low (Figure 21-34).

During a Start condition, both the SDAx and the SCLx pins are monitored.

If the SDAx pin is already low, or the SCLx pin is already low, then all of the following occur:

- · the Start condition is aborted,
- · the BCLxIF flag is set and
- the MSSPx module is reset to its Idle state (Figure 21-33).

The Start condition begins with the SDAx and SCLx pins deasserted. When the SDAx pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCLx pin is sampled low while SDAx is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDAx pin is sampled low during this count, the BRG is reset and the SDAx line is asserted early (Figure 21-35). If, however, a '1' is sampled on the

SDAx pin, the SDAx pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCLx pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCLx pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDAx before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion. Repeated Start or Stop conditions.

21.7 BAUD RATE GENERATOR

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 21-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 21-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 21-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 21-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 21-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 21-4: MSSPX CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FCLOCK (2 Rollovers of BRG)
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: Refer to I/O port electrical and timing specifications in Table 25-3 and Figure 25-7 to ensure the system is designed to support the I/O timing requirements.

		SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc = 8.000 MHz			Fos	Fosc = 4.000 MHz			: = 3.686	4 MHz	Fos	c = 1.00) MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	_	_		_			_	_	_	300	0.16	207		
1200		_	_	1202	0.16	207	1200	0.00	191	1202	0.16	51		
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25		
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	_		
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5		
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_		
57.6k	55556	-3.55	8	—	—	—	57.60k	0.00	3	—	—	_		
115.2k	—	_		—	_	—	115.2k	0.00	1	—	—			

TABLE 22-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

BAUD RATE	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc	= 16.00	0 MHz	Fosc	= 11.059	92 MHz
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	-0.01	4166	300.0	0.00	3839	300.03	0.01	3332	300.0	0.00	2303
1200	1200	-0.03	1041	1200	0.00	959	1200.5	0.04	832	1200	0.00	575
2400	2399	-0.03	520	2400	0.00	479	2398	-0.08	416	2400	0.00	287
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35
57.6k	56.818	-1.36	21	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11
115.2k	113.636	-1.36	10	115.2k	0.00	9	111.11k	-3.55	8	115.2k	0.00	5

		SYNC = 0, BRGH = 0, BRG16 = 1													
BAUD	Fosc = 8.000 MHz			Fos	c = 4.00	0 MHz	Foso	; = 3.686	4 MHz	Fos	c = 1.00) MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)			
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207			
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51			
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25			
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_			
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5			
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_			
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	—	_	_			
115.2k		_	_	_	_	_	115.2k	0.00	1	_	_	_			

25.8 AC Characteristics: PIC16(L)F1526/7-I/E

FIGURE 25-6: CLOCK TIMING

TABLE 25-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	0.5	MHz	External Clock (ECL)
			DC	—	4	MHz	External Clock (ECM)
			DC	—	20	MHz	External Clock (ECH)
		Oscillator Frequency ⁽¹⁾	—	32.768	—	kHz	LP Oscillator
			0.1	—	4	MHz	XT Oscillator
			1	—	4	MHz	HS Oscillator
			1	—	20	MHz	HS Oscillator, VDD > 2.7V
			DC	_	4	MHz	RC Oscillator, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	×	μS	LP Oscillator
			250	—	×	ns	XT Oscillator
			50	—	×	ns	HS Oscillator
			50	_	×	ns	External Clock (EC)
		Oscillator Period ⁽¹⁾	—	30.5	—	μs	LP Oscillator
			250	—	10,000	ns	XT Oscillator
			50	—	1,000	ns	HS Oscillator
			250	—	—	ns	RC Oscillator
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	—	—	μs	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	—	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	—	ns	XT oscillator
			0	—	—	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 25-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 25-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCP Input Low Time	No Prescaler	0.5Tcy + 20			ns	
			With Prescaler	20			ns	
CC02*	ТссН	CCP Input High Time	No Prescaler	0.5Tcy + 20	_	_	ns	
			With Prescaler	20	I		ns	
CC03*	TccP	CCP Input Period		<u>3Tcy + 40</u> N	_	_	ns	N = prescale value

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	64				
Pitch	е	0.50 BSC				
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.05			
Contact Thickness	A3	0.20 REF				
Overall Width	E	9.00 BSC				
Exposed Pad Width	E2	5.30	5.40	5.50		
Overall Length	D	9.00 BSC				
Exposed Pad Length	D2	5.30	5.40	5.50		
Contact Width	b	0.20	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2