

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

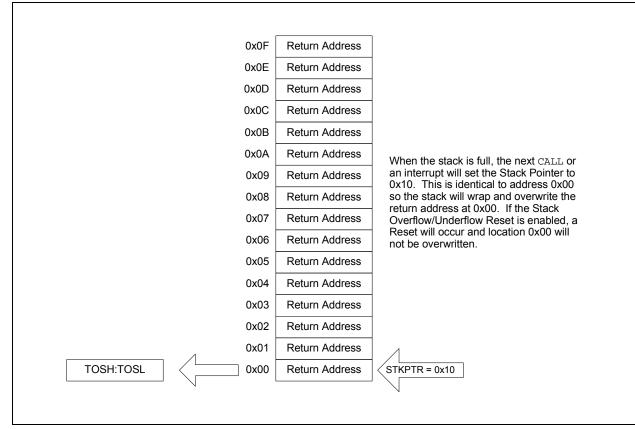
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	54
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1526-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	LE 3-2: S	SPECIAL I		JN REG	191 EK 9			NUED)			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	2										
10Ch	LATA	PORTA Dat	a Latch							xxxx xxxx	uuuu uuuu
10Dh	LATB	PORTB Da	ta Latch							xxxx xxxx	uuuu uuuu
10Eh	LATC	PORTC Da	ta Latch							xxxx xxxx	uuuu uuuu
10Fh	LATD	PORTD Da	ta Latch							xxxx xxxx	uuuu uuuu
110h	LATE	PORTE Da	ta Latch							xxxx xxxx	uuuu uuuu
111h to 115h	_	Unimpleme	nted							_	_
116h	BORCON	SBOREN	BORFS	_	—	_	_	_	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG		_	ADFV	R<1:0>	0q00 0000	0q00 0000
118h to 11Ch	_	Unimpleme	nted							_	_
11Dh	APFCON		_	—	—			T3CKISEL	CCP2SEL	00	00
11Eh	—	Unimpleme	nted							—	—
11Fh	—	Unimpleme	nted							_	_
Ban	k 3										
18Ch	ANSELA	_	_	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	1- 1111	1- 1111
18Dh	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
18Eh	ANSELC	Unimpleme	nted	•						_	_
18Fh	ANSELD	_	_	—	_	ANSD3	ANSD2	ANSD1	ANSD0	1111	1111
190h	ANSELE	_	_	_	_		ANSE2	ANSE1	ANSE0	111	111
191h	PMADRL	Program M	emory Addre	ess Register	Low Byte			•		0000 0000	0000 0000
192h	PMADRH	(2)	Program Me	emory Addre	ess Register	High Byte				1000 0000	1000 0000
193h	PMDATL	Program M	emory Data I	Register Lov	v Byte					xxxx xxxx	uuuu uuuu
194h	PMDATH	_	—	Program M	emory Data I	Register High	Byte			xx xxxx	uu uuuu
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Program M	emory contro	ol register 2				•		0000 0000	0000 0000
197h	VREGCON ⁽¹⁾	_	—	—	—	—	_	VREGPM	Reserved	01	01
198h	_	Unimpleme	nted							_	—
199h	RC1REG	USART Re	USART Receive Data Register							0000 0000	0000 0000
19Ah	TX1REG	USART Tra	nsmit Data F	Register						0000 0000	0000 0000
19Bh	SP1BRG				BRO	G<7:0>				0000 0000	0000 0000
19Ch	SP1BRGH				BRG	<15:8>				0000 0000	0000 0000
19Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Eh	-										


TABLE 3-2: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

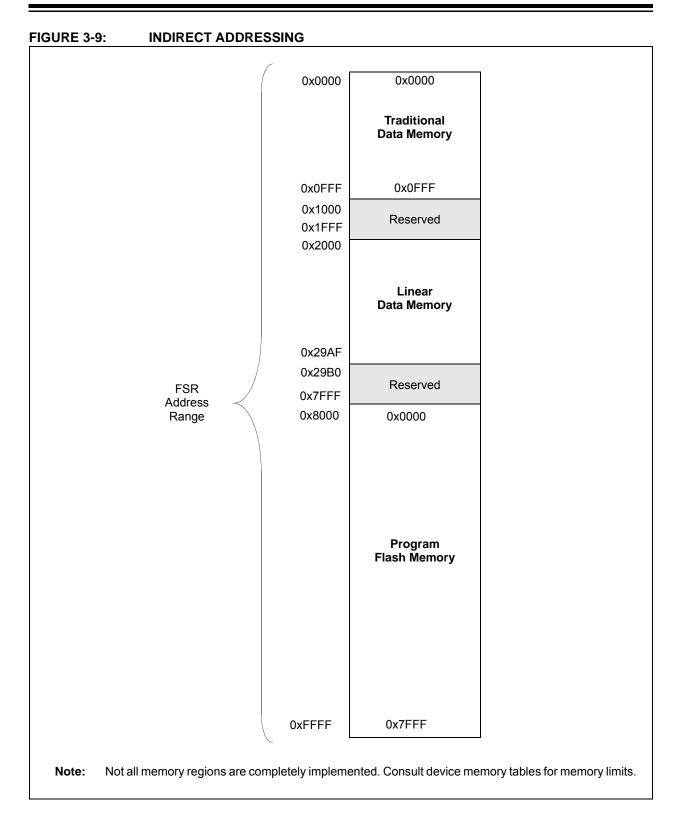
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1526/7 only.

2: Unimplemented, read as '1'.

FIGURE 3-8: ACCESSING THE STACK EXAMPLE 4

3.7.2 OVERFLOW/UNDERFLOW RESET


If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.8 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- · Linear Data Memory
- Program Flash Memory

			GUNATION				
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		LVP	DEBUG	LPBOR	BORV	STVREN	—
		bit 13					bit 8
U-1	U-1	U-1	R/P-1	U-1	U-1	R/P-1	R/P-1
0-1	0-1	0-1	VCAPEN ⁽¹⁾	0-1	0-1	WRT<	
 bit 7	_		VCAFEN	_	_		bit 0
							DILU
Legend:							
R = Readab	le bit	P = Programr	nable bit	U = Unimplen	nented bit, read	d as '1'	
'0' = Bit is cl	eared	'1' = Bit is set		•	en blank or aft		
0 21010 01							
bit 13	LVP: Low-Vol	ltage Programr	ning Enable bit				
	1 = Low-volta	ge programmir	ng enabled				
		-	nust be used fo	or programming	9		
bit 12		ircuit Debugge			F ara gaparal p	urness I/O nins	
						urpose I/O pins to the debugge	r
bit 11		-Power BOR b					
1 = Low-Power BOR is disabled							
	0 = Low-Power BOR is enabled						
bit 10			tage Selection				
			e (Vbor), low tri e (Vbor), high tr				
bit 9		-	nderflow Reset		eu.		
DIL 9			flow will cause				
			flow will not ca				
bit 8-5	Unimplemen	ted: Read as '	1'				
bit 4	VCAPEN: Vol	Itage Regulato	r Capacitor Ena	able bits ⁽¹⁾			
		26/7 (regulator					
		ts are ignored. 6/7 (regulator e	All VCAP pin fu	nctions are dis	abled.		
			s enabled on R	E0			
		•	ons are disabled				
bit 3-2	Unimplemen	ted: Read as '	1'				
bit 1-0	WRT<1:0>: F	lash Memory S	Self-Write Prote	ection bits			
			(<u>L)F1526 only)</u> :				
		ite protection o		NOb to 1EEEb m	aav ha modifia		ntrol
 10 = 000h to 1FFh write-protected, 200h to 1FFFh may be modified by PMCON control 01 = 000h to FFFh write-protected, 1000h to 1FFFh may be modified by PMCON control 							
	00 = 000h to 1FFFh write-protected, no addresses may be modified by PMCON contro						
			6(L)F1527 only	<u>)</u> :			
		ite protection o		0h to 3EEEh m	nav he modifier	d by PMCON co	ntrol
						fied by PMCON	
						d by PMCON co	
Note 1: P	PIC16F1526/7 on	nly.					
2: S	See Vbor parame	eter for specific	trip point voltag	ges.			

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2

12.5 PORTB Registers

12.5.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-7). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 12-6) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

12.5.2 DIRECTION CONTROL

The TRISB register (Register 12-7) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.5.3 ANALOG CONTROL

The ANSELB register (Register 12-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.5.4 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-5.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 12-5.

Pin Name	Function Priority ⁽¹⁾
RB0	RB0
RB1	RB1
RB2	RB2
RB3	CCP2 RB3
RB4	RB4
RB5	RB5
RB6	ICDCLK RB6
RB7	ICDDAT RB7

TABLE 12-5: PORTB OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

12.15 PORTG Registers

12.15.1 DATA REGISTER

PORTG is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISG (Register 12-29). Setting a TRISG bit (= 1) will make the corresponding PORTG pin an input (i.e., disable the output driver). Clearing a TRISG bit (= 0) will make the corresponding PORTG pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RG5, which is input only and its TRIS bit will always read as '1'. Example 12-1 shows how to initialize an I/O port.

Reading the PORTG register (Register 12-28) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATG).

12.15.2 DIRECTION CONTROL

The TRISG register (Register 12-29) controls the PORTG pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISG register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.15.3 ANALOG CONTROL

The ANSELG register (Register 12-31) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELG bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELG bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELG bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.15.4 PORTG FUNCTIONS AND OUTPUT PRIORITIES

Each PORTG pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-16.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority list.

Pin Name	Function Priority ⁽¹⁾
RG0	CCP3 RG0
RG1	CK2 TX2 RG1
RG2	DT2 RG2
RG3	CCP4 RG3
RG4	CCP5 RG4
RG5	Input only pin

TABLE 12-16: PORTG OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

12.16 Register Definitions: PORTG

REGISTER 12-28: PORTG: PORTG REGISTER

U-0	U-0	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—	RG5	RG4	RG3	RG2	RG1	RG0
bit 7	•	•				•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all ot			ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 RG<5:0>: PORTG I/O Pin bits⁽¹⁾

1 = Port pin is > VIH

0 = Port pin is < VIL

Note 1: Writes to PORTG are actually written to corresponding LATG register. Reads from PORTG register is return of actual I/O pin values.

REGISTER 12-29: TRISG: PORTG TRI-STATE REGISTER

U-0	U-0	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	(1)	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '	0'
----------------------------------	----

bit 5 Unimplemented: Read as '1'

bit 4-0 **TRISG<4:0>:** RG<4:0> Tri-State Control bits⁽¹⁾ 1 = PORTG pin configured as an input (tri-stated) 0 = PORTG pin configured as an output

Note 1: Unimplemented, read as '1'.

17.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are 8 prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

17.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

17.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 25.0** "**Electrical Specifications**".

17.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

TABLE 20-5:	SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE
-------------	--

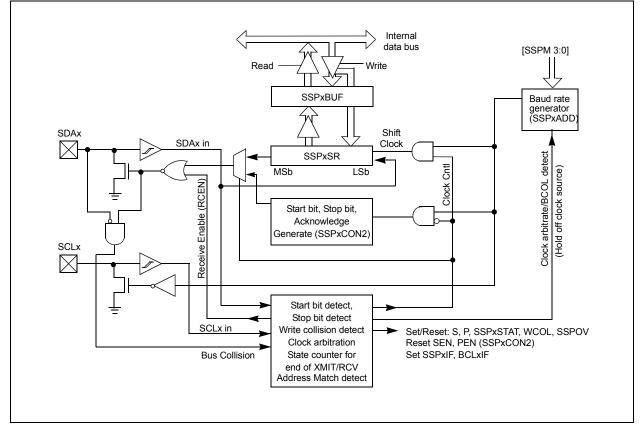
Bit 4		Bit 0	Register on Page		
_	CP2SEL 11	CCP2SEL	112		
DC1B<1:0> CCP1M<3:0>			189		
— — DC2B<1:0>			189		
B<1:0>	18		189		
B<1:0>	18		189		
B<1:0>	18		189		
B<1:0>	18		189		
B<1:0>	18		189		
B<1:0>	18		189		
B<1:0>	18		189		
B<1:0>	18		189		
yte (LSB)	17		176*		
yte (LSB)	17		176*		
yte (LSB)	17		176*		
yte (LSB)	17		176*		
syte (LSB)	17		176*		
syte (LSB)	17		176*		
yte (LSB)	17		176*		
syte (LSB)	17		176*		
syte (LSB)	17		176*		
Byte (LSB)	17		176*		
Capture/Compare/PWM Register 1 High Byte (MSB)					
Capture/Compare/PWM Register 2 High Byte (MSB)					
Capture/Compare/PWM Register 3 High Byte (MSB)					
Capture/Compare/PWM Register 4 High Byte (MSB)					
Capture/Compare/PWM Register 5 High Byte (MSB)					
Capture/Compare/PWM Register 6 High Byte (MSB)					
Capture/Compare/PWM Register 7 High Byte (MSB)					
Capture/Compare/PWM Register 8 High Byte (MSB)					
Capture/Compare/PWM Register 9 High Byte (MSB)					
Byte (MSB)			176*		
INTE		IOCIF	176*		
TX1IE		TMR1IE	76		
TAIL		CCP2IE	77		
CCP3IE		TMR3IE	78 79		
TX2IE		SSP2IE	-		
TX1IF		TMR1IF	80		
		CCP2IF	81		
CCP3IF		TMR3IF	82		
TX2IF		SSP2IF	83		
		TMR10N	84		
TMR1CS<1:0> T1CKPS<1:0> TMR3CS<1:0> T3CKPS<1:0>			168		
PS<1:0>		TMR3ON TMR5ON	168		
1			168		
			169 169		
	TIGSPM TIGGO/DONE TIGVAL TIGSS<1:(T1GSPMT1GGO/DONET1GVALT1GSST3GSPMT3GGO/DONET3GVALT3GSS	T1GSPMT1GGO/DONET1GVALT1GSS<1:0>T3GSPMT3GGO/DONET3GVALT3GSS<1:0>		

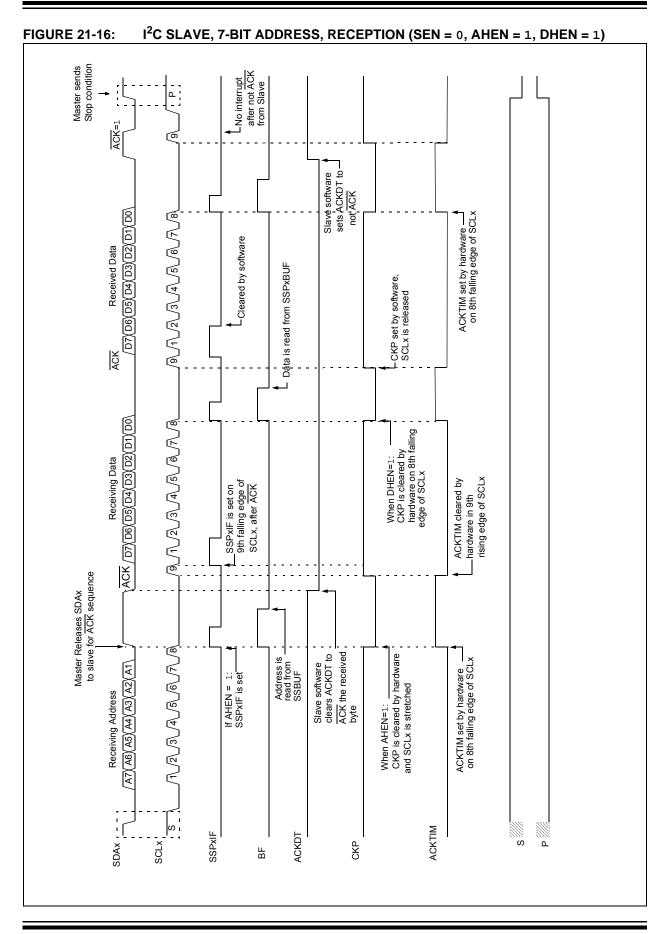
Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Compare mode. * Page provides register information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
C4TSEL<1:0>		C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	
bit 7							bit	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7-6	C4TSEL<1:0	D>: CCP4 Time	Selection bits	i				
	-	oture/Compare						
		s based off Tim						
		s based off Time	er1 in Capture	Compare mode	9			
	When in PW							
	11 = Reserve	eu s based off Tim	er6 in PWM m	ode				
		s based off Time						
	00 = CCP4 i	s based off Time	er2 in PWM m	ode				
bit 5-4		D>: CCP3 Time		i				
	When in Capture/Compare mode:							
	x1 = CCP3 is based off Timer3 in Capture/Compare mode							
	x0 = CCP3 is based off Timer1 in Capture/Compare mode When in PWM mode:							
	11 = Reserv							
		s based off Tim	er6 in PWM m	ode				
		s based off Time						
	00 = CCP3 is	s based off Time	er2 in PWM m	ode				
bit 3-2		D>: CCP2 Time		i				
When in		oture/Compare						
	 x1 = CCP2 is based off Timer3 in Capture/Compare mode x0 = CCP2 is based off Timer1 in Capture/Compare mode 							
	$x_0 = CCP2$ is When in PW		er'i in Capture	Compare mode	9			
	11 = Reserv							
		eu s based off Tim	er6 in PWM m	ode				
	01 = CCP2 is	s based off Time	er4 in PWM m	ode				
	00 = CCP2 i	s based off Time	er2 in PWM m	ode				
bit 1-0		D>: CCP1 Time		;				
	<u>When in Capture/Compare mode</u> : x1 = CCP1 is based off Timer3 in Capture/Compare mode							
	$x_0 = CCPT$	s based off Time M mode:	er i in Capture	Compare mode	5			
	11 = Reserve							
		s based off Tim	er6 in PWM m	ode				
		s based off Time						
	00 = CCP1 i							

REGISTER 20-2: CCPTMRS0: CCP TIMER SELECTION CONTROL REGISTER 0

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:


- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- Address masking
- Address Hold and Data Hold modes
- Selectable SDAx hold times


Figure 21-2 is a block diagram of the I^2C Interface module in Master mode. Figure 21-3 is a diagram of the I^2C interface module in Slave mode.

The PIC16F1527 has two MSSP modules, MSSP1 and MSSP2, each module operating independently from the other.

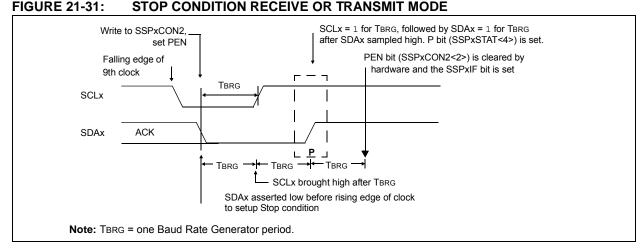

- Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSP1CON1 and SSP1CON2 registers control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.
 - 2: Throughout this section, generic references to an MSSP module in any of its operating modes may be interpreted as being equally applicable to MSSP1 or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

FIGURE 21-2: MSSPX BLOCK DIAGRAM (I²C MASTER MODE)

© 2011-2015 Microchip Technology Inc.

21.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSPx interrupt is enabled).

21.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

21.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- Address Transfer
- · Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

21.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 21-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 24-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations 13 8 7 6	0
OPCODE d f(FILE	-
d = 0 for destination W d = 1 for destination f f = 7-bit file register address	
Bit-oriented file register operations 13 10 9 7 6	0
OPCODE b (BIT #) f (FIL	
b = 3-bit bit address f = 7-bit file register address	
Literal and control operations	
General	
13 8 7	0
OPCODE k (liter	al)
k = 8-bit immediate value	
CALL and GOTO instructions only	
	0
OPCODE k (literal)	
k = 11-bit immediate value MOVLP instruction only	
13 7 6	0
OPCODE k (liter	al)
k = 7-bit immediate value	
13 5 4	0
OPCODE k (lit	teral)
k = 5-bit immediate value	
BRA instruction only 13 9 8	0
OPCODE k (liter	al)
k = 9-bit immediate value	
FSR Offset instructions 13 7 6 5	0
OPCODE n k (lit	teral)
n = appropriate FSR k = 6-bit immediate value	
FSR Increment instructions 13 3 2	1 0
OPCODE n I	m (mode)
n = appropriate FSR m = 2-bit mode value	
OPCODE only 13	0
OPCODE	

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Notes
		Description	Cycles	MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
INHERENT OPERATIONS			TIONS					•	
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
C-COMPILER OPTIMIZED									
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 24-3: INSTRUCTION SET (CONTINUED)

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.

Increment f, Skip if 0
[<i>label</i>] INCFSZ f,d
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
(f) + 1 \rightarrow (destination), skip if result = 0
None
The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.

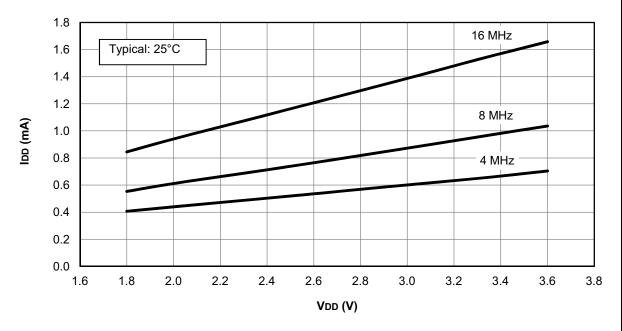
INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

IORWF	Inclusive OR W with f	
Syntax:	[label] IORWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(W) .OR. (f) \rightarrow (destination)	
Status Affected:	Z	
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	

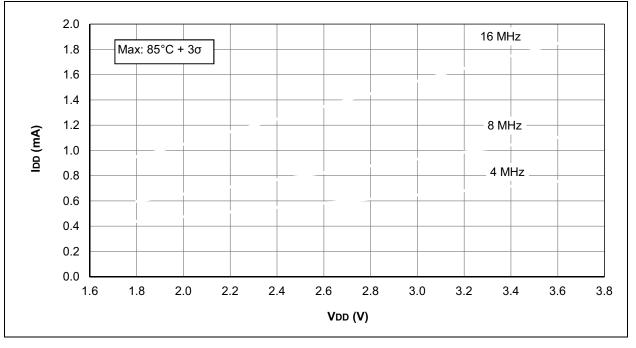
RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

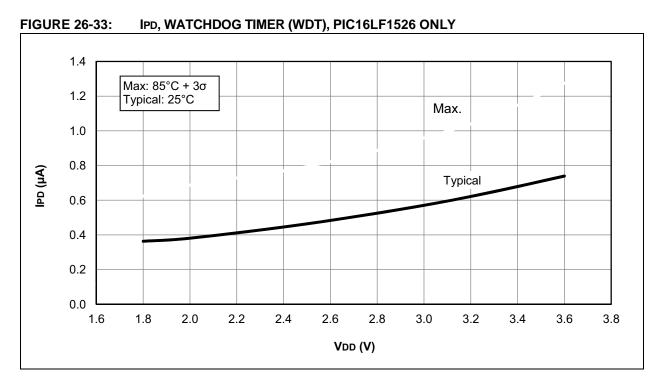
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS\toPC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.

RETLW	Return with literal in W	RLF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	$d \in [0,1]$ See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1		C Register f
Cycles: <u>Example:</u>	2 CALL TABLE;W contains table	Words:	1
	;offset value • ;W now has table value	Cycles: Example:	1 RLF REG1,0
TABLE	<pre> ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>	<u>Entimple</u>	REI REG1 = 1110 0110 C = 0 After Instruction REG1 = 1110 0110 W = 1100 1100 C = 1 1100
	Before Instruction W = 0x07 After Instruction W = value of k8		


SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.


TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.


XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

