

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	54
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1527-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17.101								1020/			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	ik 6										
30Ch	TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	1111 1111	1111 1111
30Dh	TRISG	_		(2)	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	11 1111	11 1111
30Eh	—	Unimpleme	nimplemented							—	_
30Fh	—	Unimpleme	Inimplemented								_
310h	—	Unimpleme	nimplemented							_	_
311h	CCPR3L	Capture/Co	apture/Compare/PWM Register 3 (LSB)								uuuu uuuu
312h	CCPR3H	Capture/Co	mpare/PWM		xxxx xxxx	uuuu uuuu					
313h	CCP3CON	_	DC3B<1:0> CCP3M<3:0>							00 0000	00 0000
314h	—	Unimpleme	nted							_	_
315h	—	Unimpleme	nted		_	_					
316h	—	Unimpleme	nted		_	_					
317h	—	Unimpleme	nted		_	_					
318h	CCPR4L	Capture/Co	mpare/PWM		xxxx xxxx	uuuu uuuu					
319h	CCPR4H	Capture/Co	mpare/PWM		xxxx xxxx	uuuu uuuu					
31Ah	CCP4CON	_		DC4B	l<1:0>		CCP4M	<3:0>		00 0000	00 0000
31Bh	—	Unimpleme	nted							—	_
31Ch	CCPR5L	Capture/Co	mpare/PWM	Register 5	(LSB)					xxxx xxxx	uuuu uuuu
31Dh	CCPR5H	Capture/Co	mpare/PWM	Register 5	(MSB)					xxxx xxxx	uuuu uuuu
31Eh	CCP5CON	_		DC5B	l<1:0>		CCP5M	<3:0>		00 0000	00 0000
31Fh	—	Unimpleme	nted							—	_
Ban	ik 7										
38Ch	LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx xxxx	uuuu uuuu
38Dh	LATG	_			LATG4	LATG3	LATG2	LATG1	LATG0	x xxxx	u uuuu
38Eh to 393h	_	Unimpleme	Unimplemented								_
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
397h to 39Fh	_	Unimpleme	nted							_	_

TABLE 3-2: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: PIC16F1526/7 only.

2: Unimplemented, read as '1'.

[Deviator
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	on Page
BORCON	SBOREN	BORFS						BORRDY	65
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	69
STATUS	_	—	_	TO	PD	Z	DC	С	21
WDTCON	_	_		V	SWDTEN	93			

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented bit, read as '0'. Shaded cells are not used by Resets.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

11.5 Write Verify

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 11-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								

REGISTER 12-9: ANSELB: PORTB ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSB<5:0>**: Analog Select between Analog or Digital Function on pins RB<5:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.

REGISTER 12-10: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **WPUB<7:0>**: Weak Pull-up Register bits

1 = Pull-up enabled

0 = Pull-up disabled

- Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - 2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	_	—		—	—	T3CKISEL	CCP2SEL	118
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	118
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	117
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	117
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	117
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	118

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

-n/n = Value at POR and BOR/Value at all other Resets

REGISTER 12-30: LATG: PORTG DATA LATCH REGISTER

U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	_	—	LATG4	LATG3	LATG2	LATG1	LATG0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

bit 7-5	Unimplemented: Read as '0'

u = Bit is unchanged

'1' = Bit is set

bit 4-0 LATG<4:0>: PORTG Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTG are actually written to corresponding LATG register. Reads from PORTG register is return of actual I/O pin values.

REGISTER 12-31: ANSELG: PORTG ANALOG SELECT REGISTER

x = Bit is unknown

'0' = Bit is cleared

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	U-0
—	_	_	ANSG4	ANSG3	ANSG2	ANSG1	_
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-1 **ANSG<4:1>**: Analog Select between Analog or Digital Function on Pins RG<4:1>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

15.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG			ADFVR<1:0>		140

Legend: Shaded cells are unused by the temperature indicator module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page				
APFCON	_	_	_	_	_	_	T3CKISEL	CCP2SEL	112				
CCP1CON	—	—	DC1B	<1:0>		CCP1M<	:3:0>		189				
CCP2CON	—	—	DC2B	<1:0>		CCP2M<	:3:0>		189				
CCP3CON	—	_	DC3B	<1:0>		CCP3M<	:3:0>		189				
CCP4CON	—	—	DC4B	<1:0>		CCP4M<	:3:0>		189				
CCP5CON	—	—	DC5B	<1:0>		CCP5M<3:0>							
CCP6CON	—	—	DC6B	<1:0>		CCP6M<3:0>							
CCP7CON	—	—	DC7B	<1:0>		CCP7M<	<3:0>		189				
CCP8CON	—	—	DC8B	<1:0>		CCP8M<	<3:0>		189				
CCP9CON	_	_	DC9B	<1:0>		CCP9M<	:3:0>		189				
CCP10CON	—	—	DC10E	3<1:0>		CCP10M	<3:0>		189				
CCPR1L	Capture/Com	pare/PWM Reg	gister 1 Low By	/te (LSB)									
CCPR2L	Capture/Com	pare/PWM Reg	gister 2 Low By	/te (LSB)									
CCPR3L	Capture/Com	pare/PWM Reg	gister 3 Low By	/te (LSB)					176*				
CCPR4L	Capture/Com	pare/PWM Reg	gister 4 Low By	/te (LSB)					176*				
CCPR5L	Capture/Com	pare/PWM Reg	gister 5 Low By	/te (LSB)					176*				
CCPR6L	Capture/Com	pare/PWM Reg	gister 6 Low By	/te (LSB)					176*				
CCPR7L	Capture/Com	pare/PWM Reg	gister 7 Low By	/te (LSB)					176*				
CCPR8L	Capture/Com	pare/PWM Reg	gister 8 Low By	/te (LSB)					176*				
CCPR9L	Capture/Com	pare/PWM Reg	gister 9 Low By	/te (LSB)					176*				
CCPR10L	Capture/Com	pare/PWM Reg	gister 10 Low E	Byte (LSB)					176*				
CCPR1H	Capture/Compare/PWM Register 1 High Byte (MSB)												
CCPR2H	Capture/Compare/PWM Register 2 High Byte (MSB)												
CCPR3H	Capture/Compare/PWM Register 3 High Byte (MSB)												
CCPR4H	Capture/Com	pare/PWM Reg	gister 4 High B	yte (MSB)					176*				
CCPR5H	Capture/Com	pare/PWM Reg	gister 5 High B	yte (MSB)									
CCPR6H	Capture/Com	pare/PWM Reg	gister 6 High B	yte (MSB)		176*							
CCPR7H	Capture/Com	pare/PWM Reg	gister 7 High B	yte (MSB)		176*							
CCPR8H	Capture/Com	pare/PWM Reg	gister 8 High B	yte (MSB)					176*				
CCPR9H	Capture/Com	pare/PWM Reg	gister 9 High B	yte (MSB)					176*				
CCPR10H	Capture/Com	pare/PWM Reg	gister 10 High I	Byte (MSB)					176*				
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	76				
PIE1	TMR1GIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	77				
PIE2	OSFIE	TMR5GIE	TMR3GIE	—	BCL1IE	TMR10IE	TMR8IE	CCP2IE	78				
PIE3	CCP6IE	CCP5IE	CCP4IE	CCP3IE	TMR6IE	TMR5IE	TMR4IE	TMR3IE	79				
PIE4	CCP10IE	CCP9IE	RC2IE	TX2IE	CCP8IE	CCP7IE	BCL2IE	SSP2IE	80				
PIR1	TMR1GIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	81				
PIR2	OSFIF	TMR5GIF	TMR3GIF	-	BCL1IF	TMR10IF	TMR8IF	CCP2IF	82				
PIR3	CCP6IF	CCP5IF	CCP4IF	CCP3IF	TMR6IF	TMR5IF	TMR4IF	TMR3IF	83				
PIR4	CCP10IF	CCP9IF	RC2IF	TX2IF	CCP8IF	CCP7IF	BCL2IF	SSP2IF	84				
T1CON	TMR1C	CS<1:0>	T1CKP	S<1:0>	SOSCEN	T1SYNC	—	TMR10N	168				
T3CON	TMR3C	CS<1:0>	T3CKP	S<1:0>	SOSCEN	T3SYNC	—	TMR3ON	168				
T5CON	TMR5C	CS<1:0>	T5CKP	S<1:0>	SOSCEN	T5SYNC	_	TMR5ON	168				
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	169				
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/DONE	T3GVAL	T3GS	S<1:0>	169				

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Capture mode. * Page provides register information.

TABLE 20-10: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM (CONTINUED)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T8CON	—		T8OUTI	⊃S<3:0>		TMR8ON	T8CKP	S<:0>1	168
T10CON	—		T10OUT	PS<3:0>		TMR10ON T10CKPS<:0>1		168	
TMR2	Timer2 Module Register								171*
TMR4	Timer4 Module Register								
TMR6	Timer6 Module Register								171*
TMR8	Timer8 Module Register							171*	
TMR10	Timer10 Module Register							171*	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	114

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.
* Page provides register information.

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- Address masking
- · Address Hold and Data Hold modes
- Selectable SDAx hold times

Figure 21-2 is a block diagram of the I^2C Interface module in Master mode. Figure 21-3 is a diagram of the I^2C interface module in Slave mode.

The PIC16F1527 has two MSSP modules, MSSP1 and MSSP2, each module operating independently from the other.

- Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSP1CON1 and SSP1CON2 registers control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.
 - 2: Throughout this section, generic references to an MSSP module in any of its operating modes may be interpreted as being equally applicable to MSSP1 or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

FIGURE 21-2: MSSPX BLOCK DIAGRAM (I²C MASTER MODE)

21.7 BAUD RATE GENERATOR

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 21-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 21-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 21-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 21-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 21-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 21-4: MSSPX CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FCLOCK (2 Rollovers of BRG)
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: Refer to I/O port electrical and timing specifications in Table 25-3 and Figure 25-7 to ensure the system is designed to support the I/O timing requirements.

22.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 22.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RCxIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 22.5.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- 3. If using interrupts, ensure that the GIE and PEIE bits of the INTCON register are set and set the RCxIE bit.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCxIF bit will be set when reception is complete. An interrupt will be generated if the RCxIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the 8 Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	260	
BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	260	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	76	
PIE1	TMR1GIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	77	
PIE4	CCP10IE	CCP9IE	RC2IE	TX2IE	CCP8IE	CCP7IE	BCL2IE	SSP2IE	80	
PIR1	TMR1GIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	81	
PIR4	CCP10IF	CCP9IF	RC2IF	TX2IF	CCP8IF	CCP7IF	BCL2IF	SSP2IF	84	
RC1REG			El	JSART1 Re	ceive Regist	er	253*			
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	259	
RC2REG			El	JSART2 Re	Receive Register					
RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	259	
SP1BRGL			EUSART	1 Baud Rate	Generator,	Low Byte			261*	
SP1BRGH	EUSART1 Baud Rate Generator, High Byte 2							261*		
SP2BRGL	EUSART2 Baud Rate Generator, Low Byte 2							261*		
SP2BRGH			EUSART2	2 Baud Rate	Generator,	High Byte			261*	
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	258	
TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	258	

TABLE 22-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous slave reception. * Page provides register information.

	DC C	HARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O PORT:						
D030		with TTL buffer	—	-	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D030A			—	-	0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$	
D031		with Schmitt Trigger buffer	—	-	0.2 VDD	V	$2.0V \leq V\text{DD} \leq 5.5V$	
		with I ² C levels	—	_	0.3 VDD	V		
		with SMBus levels	—	_	0.8	V	$2.7V \le VDD \le 5.5V$	
D032		MCLR, OSC1 (RC mode)	_		0.2 VDD	V	(Note 1)	
D033		OSC1 (HS mode)	_		0.3 VDD	V		
	VIH	Input High Voltage						
		I/O PORT:		_	_			
D040		with TTL buffer	2.0		_	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D040A			0.25 VDD +		_	V	$1.8V \le VDD \le 4.5V$	
			0.8					
D041		with Schmitt Trigger buffer	0.8 VDD		-	V	$2.0V \leq V\text{DD} \leq 5.5V$	
		with I ² C levels	0.7 VDD	—	—	V		
		with SMBus levels	2.1	-	—	V	$2.7V \leq V\text{DD} \leq 5.5V$	
D042		MCLR	0.8 VDD	—	—	V		
D043A		OSC1 (HS mode)	0.7 Vdd	_	_	V		
D043B		OSC1 (RC mode)	0.9 VDD	—	—	V	VDD > 2.0V (Note 1)	
	lı∟	Input Leakage Current ⁽²⁾						
D060		I/O Ports	—	± 5	± 125	nA	$Vss \le Vpin \le Vdd$,	
							Pin at high impedance, 85°C	
			—	± 5	± 1000	nA	$VSS \leq VPIN \leq VDD$,	
		(2)					Pin at high impedance, 125°C	
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$VSS \leq VPIN \leq VDD$	
	1						Pin at high impedance, 85°C	
D o T o t	IPUR	Weak Pull-up Current	0-	(00				
D070*			25	100	200	μA A	VDD = 3.3V, $VPIN = VSS$	
	Mai	Output Low Voltage ⁽⁴⁾	25	140	300	μΑ	VDD - 5.00, VPIN - VSS	
000	VOL				1		101 = 9 mA	
D000		1/O FOILS	_	_	0.6	v	10L = 6 mA, VDD = 3.3 V	
					0.0	v	IOL = 1.8 mA, VDD = 1.8 V	
	Voн	Output High Voltage ⁽⁴⁾	1		1			
D090		I/O Ports					Юн = 3.5 mA, VDD = 5V	
			Vdd - 0.7	—	—	V	Юн = 3 mA, VDD = 3.3V	
							Юн = 1 mA, VDD = 1.8V	

25.4 DC Characteristics: I/O Ports

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

*

TABLE 25-4: **RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER** AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
30	TMCL	MCLR Pulse Width (low)	2	—	_	μS		
30A	TMCLR		_	_	_	_		
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V, 1:512 prescaler used	
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾	_	1024	_	Tosc	(Note 3)	
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms		
34*	Tioz	I/O high impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μS		
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55	2.70	2.85	V	BORV = 0, PIC16(L)F1526/7	
			2.35	2.45	2.58	V	BORV = 1, PIC16F1526/7	
			1.80	1.90	2.00	V	BORV = 1, PIC16LF1526/7	
36*	VHYST	Brown-out Reset Hysteresis	0	25	60	mV	-40°C to +85°C	
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	Vdd ≤ Vbor	
38	Vlpbor	Low-Power Brown-out Reset Voltage	1.8	2.1	2.5	V	LPBOR = 1	
* These parameters are characterized but not tested								

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

Note 1: If the ADC clock source is selected as RC, a time of TCY is added before the ADC clock starts. This allows the SLEEP instruction to be executed.

FIGURE 25-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

