

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	54
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1527t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F151X/152X Family Types


				tes)		AI	C						
Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High-Endurance Flash (bytes)	I/O's ⁽²⁾	10-bit (ch)	Advanced Control	Timers (8/16-bit)	EUSART	MSSP (I ² C/SPI)	ССР	Debug ⁽¹⁾	XLP
PIC16(L)F1512	(1)	2048	128	128	25	17	Y	2/1	1	1	2	I	Y
PIC16(L)F1513	(1)	4096	256	128	25	17	Y	2/1	1	1	2	I	Y
PIC16(L)F1516	(2)	8192	512	128	25	17	N	2/1	1	1	2	I	Y
PIC16(L)F1517	(2)	8192	512	128	36	28	Ν	2/1	1	1	2	I	Y
PIC16(L)F1518	(2)	16384	1024	128	25	17	Ν	2/1	1	1	2	I	Y
PIC16(L)F1519	(2)	16384	1024	128	36	28	Ν	2/1	1	1	2	I	Y
PIC16(L)F1526	(3)	8192	768	128	54	30	N	6/3	2	2	10	1	Y
PIC16(L)F1527	(3)	16384	1536	128	54	30	Ν	6/3	2	2	10		Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS41624 PIC16(L)F1512/13 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.
- **2:** DS41452 PIC16(L)F1516/7/8/9 Data Sheet, 28/40/44-Pin Flash, 8-bit MCUs.
- **3:** DS41458 PIC16(L)F1526/7 Data Sheet, 64-Pin Flash, 8-bit MCUs.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u		
SBOREN	BORFS	—	—	—	—	—	BORRDY		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit ⁽¹⁾ <u>If BOREN <1:0> \neq 01: SBOREN is read/write, but has no effect on the BOR. <u>If BOREN <1:0> = 01</u>: 1 = BOR Enabled 0 = BOR Disabled</u>	
bit 6	 BORFS: Brown-out Reset Fast Start bit⁽¹⁾ If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off) BORFS is Read/Write, but has no effect. If BOREN<1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control): 1 = Band gap is forced on always (covers sleep/wake-up/operating cases) 0 = Band gap operates normally, and may turn off 	
bit 5-1	Unimplemented: Read as '0'	
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive	
Noto 1	POPEN-1:0> hits are leasted in Configuration Words	

Note 1: BOREN<1:0> bits are located in Configuration Words.

U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
_	AD2IF	_	_	BCL1IF	BCL2IF	TMR4IF	_
bit 7							bit C
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'	
u = Bit is	unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all ot	her Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6		er5 Gate Interrup	ot Flag bit				
	1 = Interrupt	is pending is not pending					
bit 5-4		nted: Read as '	0'				
bit 3	•	SP1 Bus Collisi		-log bit			
DIL 3	1 = Interrupt		on menupi	lay bit			
		is not pending					
bit 2	BCL2IF: MS	SP2 Bus Collisi	on Interrupt F	=lag bit			
	1 = Interrupt	is pending					
	•	is not pending					
bit 1		ner4 to PR4 Inte	errupt Flag bit	t			
	1 = Interrupt	is pending is not pending					
bit 0		nted: Read as '	0'				
DILU	Uninpienie	nieu. Reau as	0				
Note:	Interrupt flag bits condition occurs,						
	its corresponding						
	Enable bit, GIE,	of the INTCON	register.				
	User software	should ensu	ure the				

REGISTER 7-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

appropriate interrupt flag bits are clear prior

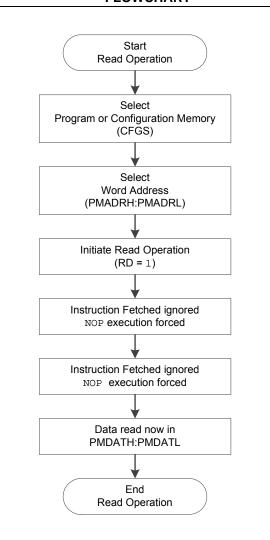
to enabling an interrupt.

TABLE 11-1:	FLASH MEMORY
	ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC16(L)F1526	32	32	
PIC16(L)F1527	32	52	

11.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:


- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program								
	memory read are required to be NOPS.								
	This prevents the user from executing a								
	two-cycle instruction on the next								
	instruction after the RD bit is set.								

FIGURE 11-1: FLASH PROGRAM MEMORY READ FLOWCHART

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|
| ANSF7 | ANSF6 | ANSF5 | ANSF4 | ANSF3 | ANSF2 | ANSF1 |
| bit 7 | | | | | | |

REGISTER 12-27: ANSELF: PORTF ANALOG SELECT REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSF<7:0>**: Analog Select between Analog or Digital Function on pins RF<7:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELF	ANSF7	ANSF6	ANSF5	ANSF4	ANSF3	ANSF2	ANSF1	ANSF0	130
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	129
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	129
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	129

TABLE 12-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTF.

TABLE 12-15: SUMMARY OF CONFIGURATION WORD WITH PORTF

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	-	_	LVP	DEBUG	LPBOR	BORV	STVREN	_	45
CONFIG2	7:0	_	-	—	VCAPEN ⁽¹⁾	_	_	WRT	<1:0>	45

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by PORTF.

Note 1: PIC16F1526/7 only.

R/W-1 ANSF0

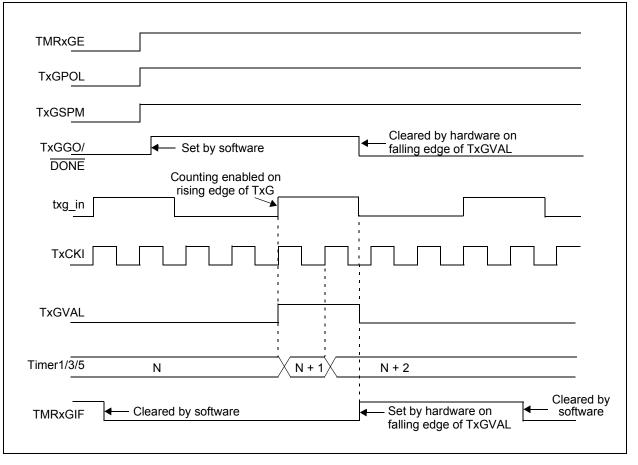
bit 0

17.2 Register Definitions: Option Register

REGISTER 17-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7							bit 0
Legend:							
R = Readable b		W = Writable	bit	•	mented bit, read		
u = Bit is uncha	inged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	WPUEN: Wea	•					
	1 = All weak p 0 = Weak pull-						
bit 6	INTEDG: Inter	•	-		Valueo		
	1 = Interrupt o						
	0 = Interrupt o	n falling edge	of INT pin				
bit 5	TMR0CS: Tim		irce Select bit				
	1 = Transition	•					
L:4 4	0 = Internal in:	•	•	+)			
bit 4	TMR0SE: Tim 1 = Increment		•				
	0 = Increment						
bit 3	PSA: Prescale	•					
	1 = Prescaler	is not assigne	d to the Timer	0 module			
	0 = Prescaler	is assigned to	the Timer0 m	odule			
bit 2-0	PS<2:0>: Pres	scaler Rate Se	elect bits				
	Bit V	/alue Timer0	Rate				
		00 1:2					
		01 1:4 10 1:8					
		11 1:1	-				
		00 1:3 01 1:6					
	11	10 1:1					
	11	11 1 :2	56				
TABLE 17-1:	SUMMARY	OF REGIST	ERS ASSO	CIATED WIT	H TIMER0		

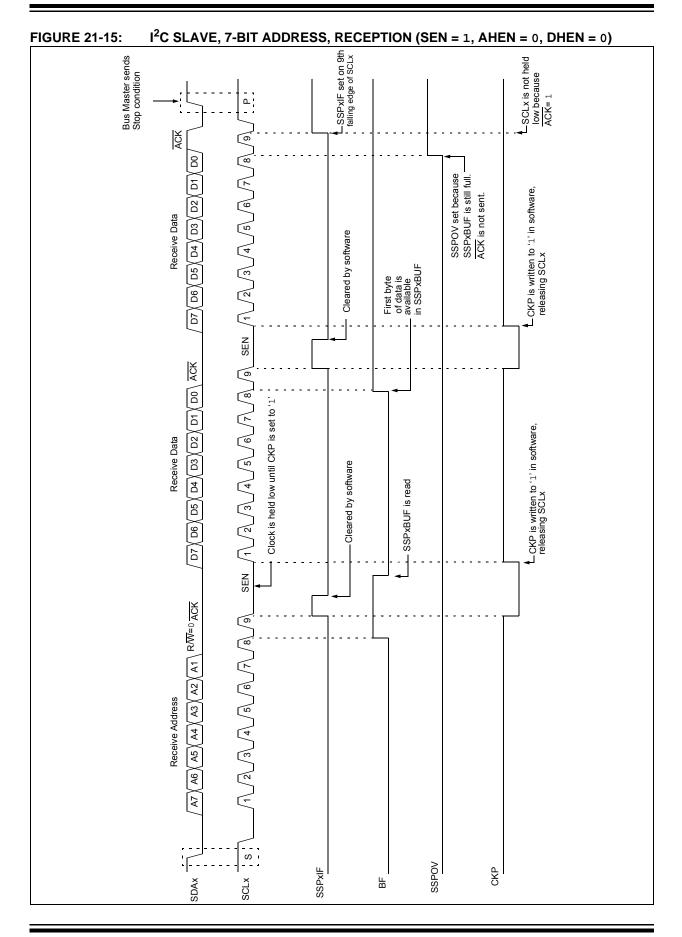
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	76
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		158
TMR0	Timer0 Mc	dule Regis	ter						156*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	114

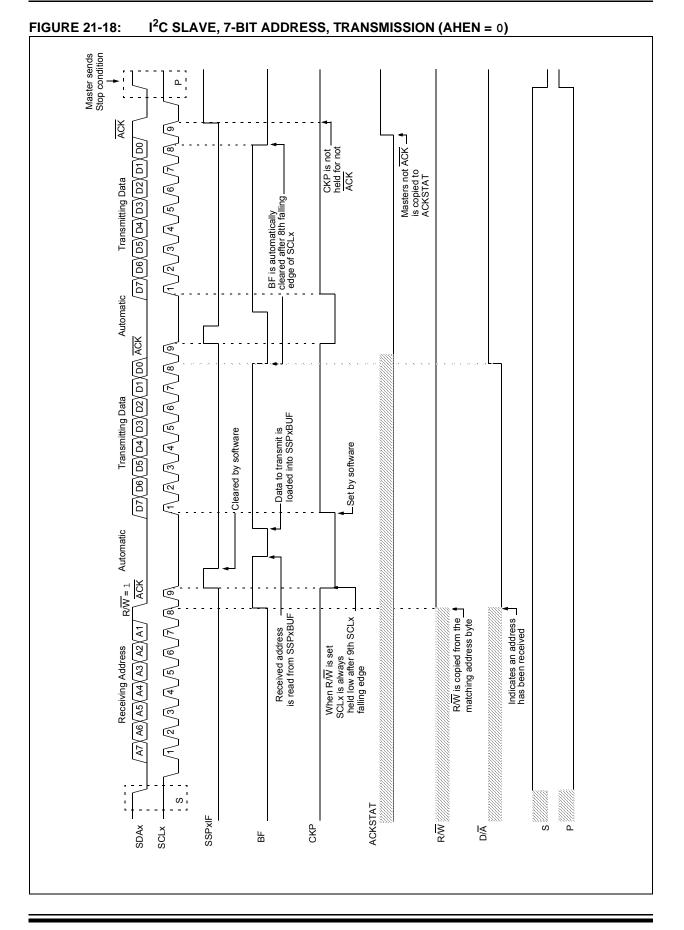

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

FIGURE 18-5: TIMER1/3/5 GATE TOGGLE MODE

TMRxGE		
TxGPOL		
TxGTM		
txg_in		
TxGVAL		
Timer1/3/5 N	N + 1 N + 2 N + 3 N + 4	N + 5 N + 6 N + 7 N + 8

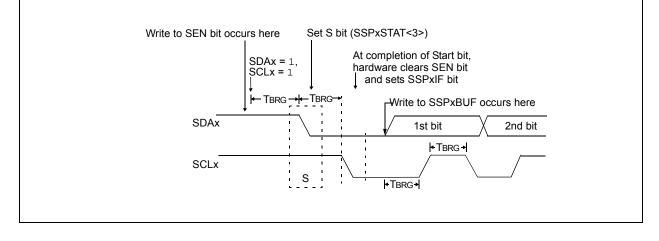

FIGURE 18-6: TIMER1/3/5 GATE SINGLE-PULSE MODE



18.12 Register Definitions: Timer1/3/5 Gate Control

REGISTER 18-2: TxGCON: TIMER1/3/5 GATE CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u
TMRxGE	TxGPOL	TxGTM	TxGSPM	TxGGO/ DONE	TxGVAL	TxGS	S<1:0>
bit 7							bit 0
Lovendi							
Legend:	L :4		L :4				
R = Readable		W = Writable		U = Unimplem			
u = Bit is unch	langed	x = Bit is unki				R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cle	eared by hardw	vare	
bit 7	TMRxGE: Ti	mer1/3/5 Gate	Enable bit				
	If TMRxON =	<u>= 0</u> :					
	This bit is igr						
	If TMRxON =		optrolled by th	ne Timer1/3/5 ga	ata function		
				r1/3/5 gate func			
bit 6		mer1/3/5 Gate I		<u> </u>			
			•	/3/5 counts whe	en gate is high)	
		•	•	3/5 counts whe	• •	,	
bit 5	TxGTM: Tim	er1/3/5 Gate To	ggle Mode bit				
		3/5 Gate Toggle					
				oled and toggle	flip-flop is clea	red	
hit 4	-	ate flip-flop tog					
bit 4		mer1/3/5 Gate	•	s enabled and is	controlling Ti	mer1/3/5 gate	
		3/5 Gate Single			s controlling Th	nei 1/3/3 gate	
bit 3		_		ulse Acquisition	Status bit		
			•	on is ready, wai		е	
				on has complete			
bit 2	TxGVAL: Tir	mer1/3/5 Gate (Current State b	bit			
		e current state o y Timer1/3/5 G		/5 gate that coul //RxGE).	ld be provided	to TMRxH:TM	RxL.
bit 1-0	TxGSS<1:0>	-: Timer1/3/5 G	ate Source Se	lect bits			
	-	0 match PR10		(1)			
		2/4/6/8 match P		PR8(1)			
) overflow outpu /3/5 gate pin	it				
Note 1: Se		or Timer selection	n				

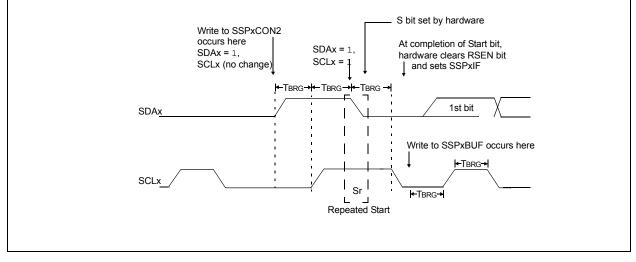

21.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 21-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SDAx bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared

FIGURE 21-26: FIRST START BIT TIMING

by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C Specification states that a bus collision cannot occur on a Start.



21.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

21.6.13.1 Bus Collision During a Start Condition

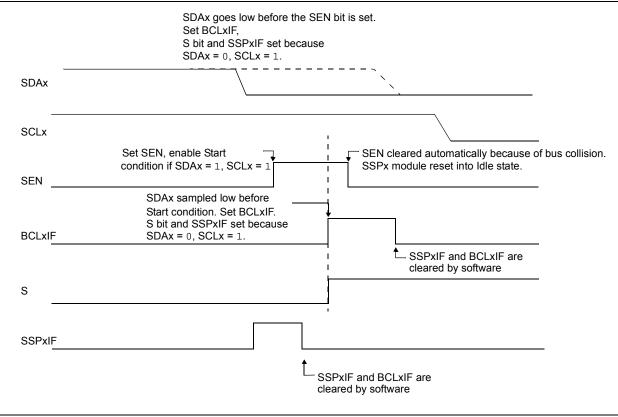
During a Start condition, a bus collision occurs if:

- a) SDAx or SCLx are sampled low at the beginning of the Start condition (Figure 21-33).
- b) SCLx is sampled low before SDAx is asserted low (Figure 21-34).

During a Start condition, both the SDAx and the SCLx pins are monitored.

If the SDAx pin is already low, or the SCLx pin is already low, then all of the following occur:

- · the Start condition is aborted,
- · the BCLxIF flag is set and
- the MSSPx module is reset to its Idle state (Figure 21-33).


The Start condition begins with the SDAx and SCLx pins deasserted. When the SDAx pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCLx pin is sampled low while SDAx is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDAx pin is sampled low during this count, the BRG is reset and the SDAx line is asserted early (Figure 21-35). If, however, a '1' is sampled on the

SDAx pin, the SDAx pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCLx pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCLx pin is asserted low.

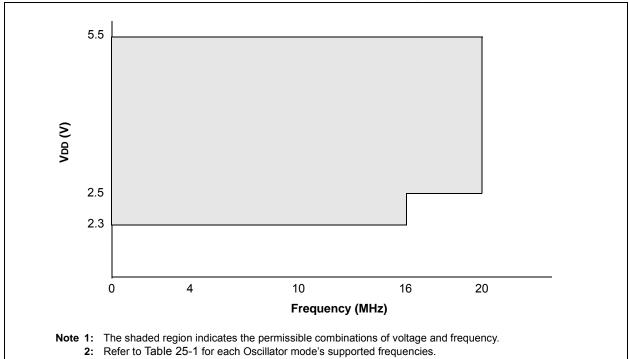
Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDAx before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion. Repeated Start or Stop conditions.

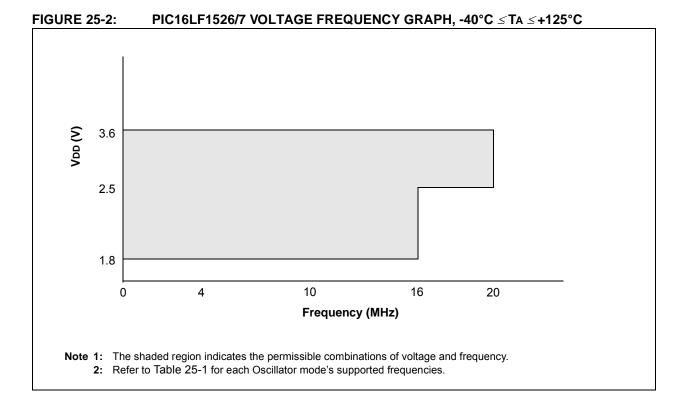
R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7		·					bit C
Legend:							
R = Readable		W = Writable		•	mented bit, read		
u = Bit is uncl	0	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7		knowledge Tim	e Status bit (1 ²	C mode only)	3)		
		•		• •	e, set on 8 [™] fal	ling edge of SC	l x clock
					g edge of SCLx		
bit 6	PCIE: Stop C	Condition Interru	upt Enable bit (I ² C mode only	/)		
		nterrupt on dete					
	•	ection interrupts					
bit 5		Condition Interro		· -	, ,		
		nterrupt on deten ection interrupts			ditions		
bit 4	BOEN: Buffe	r Overwrite En	able bit				
	In SPI Slave	<u>mode:</u> (1)					
					yte is shifted in		
					STAT register a	Iready set, SSI	POV bit of the
		xCON1 registe r mode and SP			updated		
		s ignored.		-			
	In I ² C Slave						
		of the SSPOV			r a received ad	dress/data byte	e, ignoring the
		xBUF is only u			r		
bit 3		Ax Hold Time S	-				
	1 = Minimum	of 300 ns hold	time on SDAx	after the fallir	ng edge of SCL	x	
					ng edge of SCL		
bit 2	SBCDE: Slav	ve Mode Bus C	ollision Detect	Enable bit (I ²	C Slave mode c	only)	
		ng edge of SCL the PIR2 regis			en the module i	s outputting a l	high state, the
		lave bus collisi		lad			
L:1 1		s collision inter	-				
bit 1		ess Hold Enabl	-	• •	hing received a	addross byto: (YAD bit of the
	SSPxCC	DN1 register wi	ll be cleared ar		-	iduless byle, C	
		holding is disal					
bit 0		Hold Enable bi		• ·			
					data byte; slave	hardware clea	irs the CKP bi
		SPxCON1 regis ding is disabled					
Note 1: Fo	or daisy-chained	-		r to ignore all b	out the last recei	ved byte. SSPC	DV is still set
wh	nen a new byte i					-	
	:- h:+ h	ant in Clave me	alaa that Ctart	and Chan age	dition data ation	: [! _ ! i]	

REGISTER 21-4: SSPxCON3: SSPx CONTROL REGISTER 3

2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.

3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.


						_			
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	260
BAUD2CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	260
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	76
PIE1	TMR1GIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	77
PIE4	CCP10IE	CCP9IE	RC2IE	TX2IE	CCP8IE	CCP7IE	BCL2IE	SSP2IE	80
PIR1	TMR1GIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	81
PIR4	CCP10IF	CCP9IF	RC2IF	TX2IF	CCP8IF	CCP7IF	BCL2IF	SSP2IF	84
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	259
RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	259
SP1BRGL			EUSART1	Baud Rate	Generator	Low Byte			261*
SP1BRGH			EUSART1	Baud Rate	Generator,	High Byte			261*
SP2BRGL			EUSART2	Baud Rate	Generator	Low Byte			261*
SP2BRGH			EUSART2	Baud Rate	Generator,	High Byte			261*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	120
TX1REG			EU	SART1 Tra	nsmit Regis	ster			250*
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	258
TX2REG			EU	SART2 Tra	nsmit Regis	ster			250*
TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	258
17221A	LSKL	178	IXEN	STINC	SENDB	BRGH	IRMI	1,73D	25


TABLE 22-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for synchronous slave transmission.

* Page provides register information.

25.2 DC Characteristics: Supply Current (IDD)

PIC16LF	1526/7		rd Operat ng temper		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended				
PIC16F1	526/7		rd Operat ng temper		-40°C ≤ 1	erwise stated) C for industrial °C for extended			
Param No.	Device Characteristics	Min.	Тур†	Max.	Units		Conditions		
NO.						Vdd	Note		
	Supply Current (IDD) ⁽¹⁾	, 2, 3)			•		1		
D009	LDO Regulator	—	350	—	μA		Device operating at 8 MHz		
		—	13	—	μA		Sleep VREGPM = 0		
		—	0.3	—	μA		Sleep VREGPM = 1		
D010		—	10	20	μA	1.8	Fosc = 32 kHz		
		-	15	35	μA	3.0	LP Oscillator -40°C \leq TA \leq +85°C		
D010		—	20	35	μA	2.3	Fosc = 32 kHz		
			30	45	μA	3.0	LP Oscillator -40°C \leq TA \leq +85°C		
			40	50	μA	5.0			
D011		—	70	100	μA	1.8	Fosc = 1 MHz		
		—	130	200	μΑ	3.0	XT Oscillator		
D011		—	120	180	μA	2.3	Fosc = 1 MHz		
		—	160	240	μA	3.0	XT Oscillator		
		—	240	360	μA	5.0			
D012			170	245	μA	1.8	Fosc = 4 MHz		
		_	300	440	μA	3.0	XT Oscillator		
D012			290	475	μA	2.3	Fosc = 4 MHz		
		_	380	525	μA	3.0	XT Oscillator		
		—	460	675	μA	5.0			
D013			25	35	μA	1.8	Fosc = 500 kHz		
		-	42	60	μA	3.0	External Clock (ECL), Low-Power mode		
D013		—	50	65	μA	2.3	Fosc = 500 kHz		
		_	60	80	μA	3.0	External Clock (ECL), Low-Power mode		
			70	85	μA	5.0			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: 0.1 µF capacitor on VCAP pin (PIC16F1526/7).

4: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

*

27.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

27.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

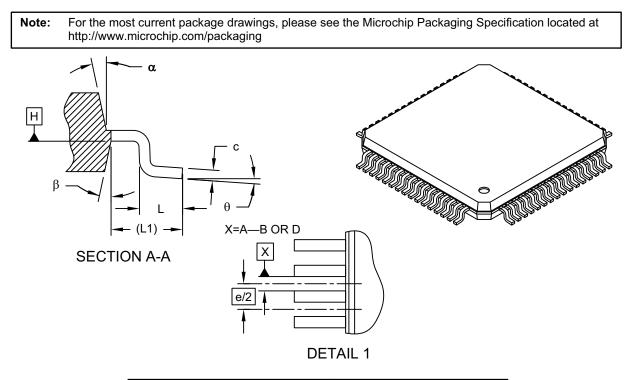
- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

27.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

	N	1ILLIMETER:	S		
Dimension	MIN	NOM	MAX		
Number of Leads	Ν		64		
Lead Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0°	3.5°	7°	
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

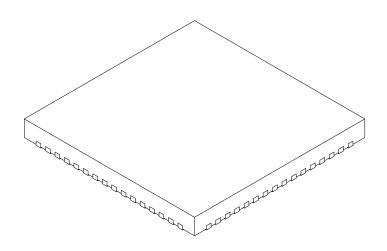
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	ILLIMETER	S			
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E		9.00 BSC			
Exposed Pad Width	E2	5.30	5.40	5.50		
Overall Length	D	9.00 BSC				
Exposed Pad Length	D2	5.30	5.40	5.50		
Contact Width	b	0.20	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2