
Microchip Technology - PIC16LF1526-E/MR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 54

Program Memory Size 14KB (8K x 14)

Program Memory Type FLASH

EEPROM Size -

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 30x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-VQFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1526-e-mr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic16lf1526-e-mr-4404697
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC16(L)F1526/7
FIGURE 3-1: PROGRAM MEMORY MAP
AND STACK FOR
PIC16(L)F1526

FIGURE 3-2: PROGRAM MEMORY MAP
AND STACK FOR
PIC16(L)F1527

PC<14:0>

15

0000h

0004h

Stack Level 0

Stack Level 15

Reset Vector

Interrupt Vector

Stack Level 1

0005h

On-chip
Program
Memory

Page 0
07FFh

Rollover to Page 0

0800h

0FFFh
1000h

7FFFh

Page 1

Rollover to Page 3

Page 2

Page 3

17FFh

1800h

1FFFh

2000h

CALL, CALLW
 RETURN, RETLW

 Interrupt, RETFIE

PC<14:0>

15

0000h

0004h

Stack Level 0

Stack Level 15

Reset Vector

Interrupt Vector

Stack Level 1

0005h

On-chip
Program
Memory

Page 0
07FFh

Rollover to Page 0

0800h

0FFFh
1000h

7FFFh

Page 1

Rollover to Page 7

Page 2

Page 3

17FFh

1800h

1FFFh

2000hPage 4

Page 7
3FFFh

4000h

CALL, CALLW
 RETURN, RETLW

 Interrupt, RETFIE
DS40001458D-page 18 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
3.2.1 READING PROGRAM MEMORY AS
DATA

There are two methods of accessing constants in pro-
gram memory. The first method is to use tables of
RETLW instructions. The second method is to set an
FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access
to tables of constants. The recommended way to create
such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

The BRW instruction makes this type of table very sim-
ple to implement. If your code must remain portable
with previous generations of microcontrollers, then the
BRW instruction is not available so the older table read
method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by set-
ting bit 7 of the FSRxH register and reading the match-
ing INDFx register. The MOVIW instruction will place the
lower 8 bits of the addressed word in the W register.
Writes to the program memory cannot be performed via
the INDF registers. Instructions that access the pro-
gram memory via the FSR require one extra instruction
cycle to complete. Example 3-2 demonstrates access-
ing the program memory via an FSR.

The high directive will set bit<7> if a label points to a
location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM
MEMORY VIA FSR

constants
BRW ;Add Index in W to

;program counter to
;select data

RETLW DATA0 ;Index0 data
RETLW DATA1 ;Index1 data
RETLW DATA2
RETLW DATA3

my_function
;… LOTS OF CODE…
MOVLW DATA_INDEX
CALL constants
;… THE CONSTANT IS IN W

constants
DW DATA0 ;First constant
DW DATA1 ;Second constant
DW DATA2
DW DATA3

my_function
;… LOTS OF CODE…
MOVLW DATA_INDEX
ADDLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants ;Msb is set

automatically
MOVWF FSR1H
BTFSC STATUS,C ;carry from

ADDLW?
INCF FSR1H,f ;yes
MOVIW 0[FSR1]

;THE PROGRAM MEMORY IS IN W
 2011-2015 Microchip Technology Inc. DS40001458D-page 19

PIC16(L)F1526/7
EXAMPLE 11-3: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following:
; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,
; stored in little endian format
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
;

BCF INTCON,GIE ; Disable ints so required sequences will execute properly
BANKSEL PMADRH ; Bank 3
MOVF ADDRH,W ; Load initial address
MOVWF PMADRH ;
MOVF ADDRL,W ;
MOVWF PMADRL ;
MOVLW LOW DATA_ADDR ; Load initial data address
MOVWF FSR0L ;
MOVLW HIGH DATA_ADDR ; Load initial data address
MOVWF FSR0H ;
BCF PMCON1,CFGS ; Not configuration space
BSF PMCON1,WREN ; Enable writes
BSF PMCON1,LWLO ; Only Load Write Latches

LOOP
MOVIW FSR0++ ; Load first data byte into lower
MOVWF PMDATL ;
MOVIW FSR0++ ; Load second data byte into upper
MOVWF PMDATH ;

MOVF PMADRL,W ; Check if lower bits of address are '00000'
XORLW 0x1F ; Check if we're on the last of 32 addresses
ANDLW 0x1F ;
BTFSC STATUS,Z ; Exit if last of 32 words,
GOTO START_WRITE ;

MOVLW 55h ; Start of required write sequence:
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin write
NOP ; NOP instructions are forced as processor

; loads program memory write latches
NOP ;

INCF PMADRL,F ; Still loading latches Increment address
GOTO LOOP ; Write next latches

START_WRITE
BCF PMCON1,LWLO ; No more loading latches - Actually start Flash program

; memory write

MOVLW 55h ; Start of required write sequence:
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin write
NOP ; NOP instructions are forced as processor writes

; all the program memory write latches simultaneously
NOP ; to program memory.

; After NOPs, the processor
; stalls until the self-write process in complete
; after write processor continues with 3rd instruction

BCF PMCON1,WREN ; Disable writes
BSF INTCON,GIE ; Enable interrupts

R
e

q
u

ir
e

d
S

e
q

u
e

n
ce

R
e

q
u

ir
e

d
S

e
q

u
e

n
ce
DS40001458D-page 104 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON)
registers are used to steer specific peripheral input and
output functions between different pins. The APFCON
registers are shown in Register 12-1. For this device
family, the following functions can be moved between
different pins.

• Timer3

• CCP2

These bits have no effect on the values of any TRIS
register. PORT and TRIS overrides will be routed to the
correct pin. The unselected pin will be unaffected.

12.2 Register Definitions: Alternate Pin Function Control

REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0

— — — — — — T3CKISEL CCP2SEL

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-2 Unimplemented: Read as ‘0’

bit 1 T3CKISEL: Timer3 Input Selection bit
1 = T3CKI function is on RB4
0 = T3CKI function is on RB5

bit 0 CCP2SEL: Pin Selection bit
1 = CCP2 function is on RE7
0 = CCP2 function is on RC1
DS40001458D-page 112 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

REGISTER 12-9: ANSELB: PORTB ANALOG SELECT REGISTER

U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

— — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-6 Unimplemented: Read as ‘0’

bit 5-0 ANSB<5:0>: Analog Select between Analog or Digital Function on pins RB<5:0>, respectively
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.

REGISTER 12-10: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1

WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits
1 = Pull-up enabled
0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register
on Page

APFCON — — — — — — T3CKISEL CCP2SEL 118

ANSELB — — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 118

LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 117

PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 117

TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 117

WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 118

Legend: x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by
PORTB.
DS40001458D-page 118 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
FIGURE 16-4: ANALOG INPUT MODEL

FIGURE 16-5: ADC TRANSFER FUNCTION

CPINVA

Rs

Analog

5 pF

VDD

VT 0.6V

VT 0.6V I LEAKAGE(1)

RIC 1k

Sampling
Switch

SS Rss

CHOLD = 10 pF

VSS/VREF-

6V

Sampling Switch

5V
4V
3V
2V

5 6 7 8 9 10 11

(k)

VDD

Legend:

CPIN

VT

I LEAKAGE

RIC

SS

CHOLD

= Input Capacitance

= Threshold Voltage

= Leakage current at the pin due to

= Interconnect Resistance

= Sampling Switch

= Sample/Hold Capacitance

various junctions

RSS

Note 1: Refer to Section 25.0 “Electrical Specifications”.

RSS = Resistance of Sampling Switch

Input
pin

3FFh

3FEh

A
D

C
 O

u
tp

u
t C

o
d

e

3FDh

3FCh

03h

02h

01h

00h

Full-Scale

3FBh

0.5 LSB

VREF- Zero-Scale
Transition

VREF+Transition

1.5 LSB

Full-Scale Range

Analog Input Voltage
DS40001458D-page 154 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
FIGURE 18-2: TIMER1/3/5 CLOCK SOURCE DIAGRAM

Note 1: ST Buffer is high-speed type when using TxCKI.

Secondary

SOSCO/T1CKI

SOSCI

T1CON[SOSCEN]

0

1

TMR1CS<1:0>

(1)

EN

OUT

10

11

00

01

To Clock Switching (SOSC users)

T3CON[SOSCEN]

T5CON[SOSCEN]

Timer 1

TMR3CS<1:0>

10

Timer 3

TMR5CS<1:0>

10

Timer 5

1

0

1

0

T3CKI

T5CKI

(1)

(1)

Oscillator

Timer1

Timer3

Timer5

11

00

01

11

00

01

LFINTOSC

FOSC/4

FOSC

LFINTOSC

FOSC/4

FOSC

LFINTOSC

FOSC/4

FOSC
DS40001458D-page 160 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
18.6.6 TIMER1/3/5 GATE EVENT
INTERRUPT

When Timer1/3/5 Gate Event Interrupt is enabled, it is
possible to generate an interrupt upon the completion
of a gate event. When the falling edge of TxGVAL
occurs, the TMRxGIF flag bit in the PIR1 register will be
set. If the TMRxGIE bit in the PIE1 register is set, then
an interrupt will be recognized.

The TMRxGIF flag bit operates even when the Tim-
er1/3/5 gate is not enabled (TMRxGE bit is cleared).

18.7 Timer1/3/5 Interrupt

The Timer1/3/5 register pair (TMRxH:TMRxL)
increments to FFFFh and rolls over to 0000h. When
Timer1/3/5 rolls over, the Timer1/3/5 interrupt flag bit of
the PIR1 register is set. To enable the interrupt on
rollover, you must set these bits:

• TMRxON bit of the TxCON register

• TMRxIE bit of the PIE1 register

• PEIE bit of the INTCON register

• GIE bit of the INTCON register

The interrupt is cleared by clearing the TMRxIF bit in
the Interrupt Service Routine.

18.8 Timer1/3/5 Operation During Sleep

Timer1/3/5 can only operate during Sleep when setup
in Asynchronous Counter mode. In this mode, an exter-
nal crystal or clock source can be used to increment the
counter. To set up the timer to wake the device:

• TMRxON bit of the TxCON register must be set

• TMRxIE bit of the PIE1 register must be set

• PEIE bit of the INTCON register must be set

• TxSYNC bit of the TxCON register must be set

• TMRxCS bits of the TxCON register must be
configured

• SOSCEN bit of the TxCON register must be
configured

The device will wake-up on an overflow and execute
the next instructions. If the GIE bit of the INTCON
register is set, the device will call the Interrupt Service
Routine.

Timer1/3/5 oscillator will continue to operate in Sleep
regardless of the TxSYNC bit setting.

18.9 ECCP/CCP Capture/Compare Time
Base

The CCP module uses the TMRxH:TMRxL register pair
as the time base when operating in Capture or Com-
pare mode.

In Capture mode, the value in the TMRxH:TMRxL
register pair is copied into the CCPR1H:CCPR1L
register pair on a configured event.

In Compare mode, an event is triggered when the value
CCPR1H:CCPR1L register pair matches the value in
the TMRxH:TMRxL register pair. This event can be a
Special Event Trigger.

For more information, see Section 20.0
“Capture/Compare/PWM Modules”.

18.10 ECCP/CCP Special Event Trigger

When the CCP is configured to trigger a special event,
the trigger will clear the TMRxH:TMRxL register pair.
This special event does not cause a Timer1/3/5 inter-
rupt. The CCP module may still be configured to gener-
ate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L
register pair becomes the period register for
Timer1/3/5.

Timer1/3/5 should be synchronized and FOSC/4 should
be selected as the clock source in order to utilize the
Special Event Trigger. Asynchronous operation of Tim-
er1/3/5 can cause a Special Event Trigger to be
missed.

In the event that a write to TMRxH or TMRxL coincides
with a Special Event Trigger from the CCP, the write will
take precedence.

For more information, see Section 16.2.5 “Special
Event Trigger”.

Note: The TMRxH:TMRxL register pair and the
TMRxIF bit should be cleared before
enabling interrupts.
DS40001458D-page 164 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
FIGURE 18-7: TIMER1/3/5 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE

TMRxGE

TxGPOL

txg_in

TxCKI

TxGVAL

Timer1/3/5 N N + 1 N + 2

TxGSPM

TxGGO/

DONE

Set by software
Cleared by hardware on
falling edge of TxGVAL

Set by hardware on
falling edge of TxGVALCleared by software

Cleared by
softwareTMRxGIF

TxGTM

Counting enabled on
rising edge of TxG

N + 4N + 3
 2011-2015 Microchip Technology Inc. DS40001458D-page 167

PIC16(L)F1526/7
FIGURE 21-16: I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 1)

R
ec

e
iv

in
g

 A
dd

re
ss

R
ec

e
iv

in
g

 D
at

a
R

e
ce

iv
e

d
D

a
ta

P

A
7

A
6

A
5

A
4

A
3

A
2

A
1

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

S
D

A
x

S
C

L
x

B
F

C
K

P S P

1
2

3
4

5
6

7
8

9
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

M
a

st
er

 s
en

ds
S

to
p

 c
on

di
tio

n

S

D
a

ta
 is

 r
e

ad
 f

ro
m

 S
S

P
xB

U
F

C
le

a
re

d
 b

y
so

ftw
ar

e
S

S
P

xI
F

 is
 s

et
 o

n
9t

h
 fa

lli
n

g
e

dg
e

 o
f

S
C

Lx
,

af
te

r
A

C
K

C
K

P
 s

et
 b

y
so

ftw
ar

e
,

S
C

Lx
 is

 r
el

e
as

e
d

S
la

ve
 s

o
ftw

a
re

9

A
C

K
T

IM
 c

le
ar

ed
 b

y
h

ar
d

w
ar

e
 in

 9
th

ri

si
ng

 e
dg

e
o

f S
C

Lx

se
ts

 A
C

K
D

T
 to

no
t

A
C

K

W
h

en
 D

H
E

N
=
1

:
C

K
P

 is
 c

le
a

re
d

 b
y

ha
rd

w
a

re
 o

n
8

th
 f

al
lin

g
e

dg
e

 o
f

S
C

Lx

S
la

ve
 s

of
tw

ar
e

cl
ea

rs
 A

C
K

D
T

 to

A
C

K
 t

he
 r

ec
ei

ve
d

b
yt

e

A
C

K
T

IM
 s

e
t b

y
ha

rd
w

ar
e

on
 8

th
 fa

lli
n

g
e

dg
e

 o
f

S
C

Lx

W
he

n
 A

H
E

N
=
1

:
C

K
P

 is
 c

le
ar

ed
 b

y
h

ar
d

w
ar

e
an

d
 S

C
Lx

 is
 s

tr
et

ch
ed

A
dd

re
ss

 is
re

ad
 fr

o
m

S

S
B

U
F

A
C

K
T

IM
 s

e
t b

y
ha

rd
w

a
re

on
 8

th
 fa

lli
ng

 e
dg

e
o

f S
C

Lx

A
C

K

M
a

st
er

 R
el

e
as

es
 S

D
A

x
to

 s
la

ve
 fo

r
A

C
K

 s
e

qu
e

nc
e

N
o

 in
te

rr
u

pt
a

fte
r

no
t A

C
K

fr
om

 S
la

ve

A
C

K
=
1

A
C

K

A
C

K
D

T

A
C

K
T

IM

S
S

P
xI

F

If
A

H
E

N
=
1

:
S

S
P

xI
F

 is
 s

et
 2011-2015 Microchip Technology Inc. DS40001458D-page 213

PIC16(L)F1526/7
21.5.3.3 7-bit Transmission with Address
Hold Enabled

Setting the AHEN bit of the SSPxCON3 register
enables additional clock stretching and interrupt gen-
eration after the 8th falling edge of a received match-
ing address. Once a matching address has been
clocked in, CKP is cleared and the SSPxIF interrupt is
set.

Figure 21-19 displays a standard waveform of a 7-bit
Address Slave Transmission with AHEN enabled.

1. Bus starts Idle.

2. Master sends Start condition; the S bit of
SSPxSTAT is set; SSPxIF is set if interrupt on
Start detect is enabled.

3. Master sends matching address with R/W bit
set. After the 8th falling edge of the SCLx line the
CKP bit is cleared and SSPxIF interrupt is gen-
erated.

4. Slave software clears SSPxIF.

5. Slave software reads ACKTIM bit of SSPxCON3
register, and R/W and D/A of the SSPxSTAT
register to determine the source of the interrupt.

6. Slave reads the address value from the
SSPxBUF register clearing the BF bit.

7. Slave software decides from this information if it
wishes to ACK or not ACK and sets the ACKDT
bit of the SSPxCON2 register accordingly.

8. Slave sets the CKP bit releasing SCLx.

9. Master clocks in the ACK value from the slave.

10. Slave hardware automatically clears the CKP bit
and sets SSPxIF after the ACK if the R/W bit is
set.

11. Slave software clears SSPxIF.

12. Slave loads value to transmit to the master into
SSPxBUF setting the BF bit.

13. Slave sets CKP bit releasing the clock.

14. Master clocks out the data from the slave and
sends an ACK value on the 9th SCLx pulse.

15. Slave hardware copies the ACK value into the
ACKSTAT bit of the SSPxCON2 register.

16. Steps 10-15 are repeated for each byte transmit-
ted to the master from the slave.

17. If the master sends a not ACK the slave
releases the bus allowing the master to send a
Stop and end the communication.

Note: SSPxBUF cannot be loaded until after the
ACK.

Note: Master must send a not ACK on the last byte
to ensure that the slave releases the SCLx
line to receive a Stop.
 2011-2015 Microchip Technology Inc. DS40001458D-page 217

PIC16(L)F1526/7
22.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the
special Break character sequences that are required by
the LIN bus standard. A Break character consists of a
Start bit, followed by 12 ‘0’ bits and a Stop bit.

To send a Break character, set the SENDB and TXEN
bits of the TXxSTA register. The Break character trans-
mission is then initiated by a write to the TXxREG. The
value of data written to TXxREG will be ignored and all
‘0’s will be transmitted.

The SENDB bit is automatically reset by hardware after
the corresponding Stop bit is sent. This allows the user
to preload the transmit FIFO with the next transmit byte
following the Break character (typically, the Sync
character in the LIN specification).

The TRMT bit of the TXxSTA register indicates when the
transmit operation is active or Idle, just as it does during
normal transmission. See Figure 22-9 for the timing of
the Break character sequence.

22.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame
header made up of a Break, followed by an auto-baud
Sync byte. This sequence is typical of a LIN bus
master.

1. Configure the EUSART for the desired mode.

2. Set the TXEN and SENDB bits to enable the
Break sequence.

3. Load the TXxREG with a dummy character to
initiate transmission (the value is ignored).

4. Write ‘55h’ to TXxREG to load the Sync charac-
ter into the transmit FIFO buffer.

5. After the Break has been sent, the SENDB bit is
reset by hardware and the Sync character is
then transmitted.

When the TXxREG becomes empty, as indicated by
the TXxIF, the next data byte can be written to TXxREG.

22.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break
character in two ways.

The first method to detect a Break character uses the
FERR bit of the RCxSTA register and the Received
data as indicated by RCxREG. The Baud Rate
Generator is assumed to have been initialized to the
expected baud rate.

A Break character has been received when;

• RCxIF bit is set

• FERR bit is set

• RCxREG = 00h

The second method uses the Auto-Wake-up feature
described in Section 22.4.3 “Auto-Wake-up on
Break”. By enabling this feature, the EUSART will
sample the next two transitions on RXx/DTx, cause an
RCxIF interrupt, and receive the next data byte
followed by another interrupt.

Note that following a Break character, the user will
typically want to enable the Auto-Baud Detect feature.
For both methods, the user can set the ABDEN bit of
the BAUDxCON register before placing the EUSART in
Sleep mode.

FIGURE 22-9: SEND BREAK CHARACTER SEQUENCE

Write to TXxREG
Dummy Write

BRG Output
(Shift Clock)

Start bit bit 0 bit 1 bit 11 Stop bit

Break

TXxIF bit
(Transmit

interrupt Flag)

TXx/CKx (pin)

TRMT bit
(Transmit Shift

Reg. Empty Flag)

SENDB
(send Break

control bit)

SENDB Sampled Here Auto Cleared
 2011-2015 Microchip Technology Inc. DS40001458D-page 269

PIC16(L)F1526/7
22.5 EUSART Synchronous Mode

Synchronous serial communications are typically used
in systems with a single master and one or more
slaves. The master device contains the necessary
circuitry for baud rate generation and supplies the clock
for all devices in the system. Slave devices can take
advantage of the master clock by eliminating the
internal clock generation circuitry.

There are two signal lines in Synchronous mode: a
bidirectional data line and a clock line. Slaves use the
external clock supplied by the master to shift the serial
data into and out of their respective receive and
transmit shift registers. Since the data line is
bidirectional, synchronous operation is half-duplex
only. Half-duplex refers to the fact that master and
slave devices can receive and transmit data but not
both simultaneously. The EUSART can operate as
either a master or slave device.

Start and Stop bits are not used in synchronous
transmissions.

22.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART
for Synchronous Master operation:

• SYNC = 1

• CSRC = 1

• SREN = 0 (for transmit); SREN = 1 (for receive)

• CREN = 0 (for transmit); CREN = 1 (for receive)

• SPEN = 1

Setting the SYNC bit of the TXxSTA register configures
the device for synchronous operation. Setting the CSRC
bit of the TXxSTA register configures the device as a
master. Clearing the SREN and CREN bits of the
RCxSTA register ensures that the device is in the
Transmit mode, otherwise the device will be configured
to receive. Setting the SPEN bit of the RCxSTA register
enables the EUSART. If the RXx/DTx or TXx/CKx pins
are shared with an analog peripheral the analog I/O
functions must be disabled by clearing the corresponding
ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and
TXx/CKx pins should be set.

22.5.1.1 Master Clock

Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a master transmits the clock on the TXx/CKx line. The
TXx/CKx pin output driver is automatically enabled when
the EUSART is configured for synchronous transmit or
receive operation. Serial data bits change on the leading
edge to ensure they are valid at the trailing edge of each
clock. One clock cycle is generated for each data bit.
Only as many clock cycles are generated as there are
data bits.

22.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire
compatibility. Clock polarity is selected with the SCKP
bit of the BAUDxCON register. Setting the SCKP bit
sets the clock Idle state as high. When the SCKP bit is
set, the data changes on the falling edge of each clock
and is sampled on the rising edge of each clock.
Clearing the SCKP bit sets the Idle state as low. When
the SCKP bit is cleared, the data changes on the rising
edge of each clock and is sampled on the falling edge
of each clock.

22.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx
pin. The RXx/DTx and TXx/CKx pin output drivers are
automatically enabled when the EUSART is configured
for synchronous master transmit operation.

A transmission is initiated by writing a character to the
TXxREG register. If the TSR still contains all or part of
a previous character the new character data is held in
the TXxREG until the last bit of the previous character
has been transmitted. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXxREG is immediately trans-
ferred to the TSR. The transmission of the character
commences immediately following the transfer of the
data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the
master clock and remains valid until the subsequent
leading clock edge.

Note: The TSR register is not mapped in data
memory, so it is not available to the user.
DS40001458D-page 270 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
TABLE 24-3: INSTRUCTION SET

Mnemonic,
Operands

Description Cycles
14-Bit Opcode Status

Affected
Notes

MSb LSb

BYTE-ORIENTED FILE REGISTER OPERATIONS

ADDWF
ADDWFC
ANDWF
ASRF
LSLF
LSRF
CLRF
CLRW
COMF
DECF
INCF
IORWF
MOVF
MOVWF
RLF
RRF
SUBWF
SUBWFB
SWAPF
XORWF

f, d
f, d
f, d
f, d
f, d
f, d
f
–
f, d
f, d
f, d
f, d
f, d
f
f, d
f, d
f, d
f, d
f, d
f, d

Add W and f
Add with Carry W and f
AND W with f
Arithmetic Right Shift
Logical Left Shift
Logical Right Shift
Clear f
Clear W
Complement f
Decrement f
Increment f
Inclusive OR W with f
Move f
Move W to f
Rotate Left f through Carry
Rotate Right f through Carry
Subtract W from f
Subtract with Borrow W from f
Swap nibbles in f
Exclusive OR W with f

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

00
11
00
11
11
11
00
00
00
00
00
00
00
00
00
00
00
11
00
00

0111
1101
0101
0111
0101
0110
0001
0001
1001
0011
1010
0100
1000
0000
1101
1100
0010
1011
1110
0110

dfff
dfff
dfff
dfff
dfff
dfff
lfff
0000
dfff
dfff
dfff
dfff
dfff
1fff
dfff
dfff
dfff
dfff
dfff
dfff

ffff
ffff
ffff
ffff
ffff
ffff
ffff
00xx
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff

C, DC, Z
C, DC, Z
Z
C, Z
C, Z
C, Z
Z
Z
Z
Z
Z
Z
Z

C
C
C, DC, Z
C, DC, Z

Z

2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
2
2
2

BYTE ORIENTED SKIP OPERATIONS

DECFSZ
INCFSZ

f, d
f, d

Decrement f, Skip if 0
Increment f, Skip if 0

1(2)
1(2)

00
00

1011
1111

dfff
dfff

ffff
ffff

1, 2
1, 2

BIT-ORIENTED FILE REGISTER OPERATIONS

BCF
BSF

f, b
f, b

Bit Clear f
Bit Set f

1
1

01
01

00bb
01bb

bfff
bfff

ffff
ffff

2
2

BIT-ORIENTED SKIP OPERATIONS

BTFSC
BTFSS

f, b
f, b

Bit Test f, Skip if Clear
Bit Test f, Skip if Set

1 (2)
1 (2)

01
01

10bb
11bb

bfff
bfff

ffff
ffff

1, 2
1, 2

LITERAL OPERATIONS

ADDLW
ANDLW
IORLW
MOVLB
MOVLP
MOVLW
SUBLW
XORLW

k
k
k
k
k
k
k
k

Add literal and W
AND literal with W
Inclusive OR literal with W
Move literal to BSR
Move literal to PCLATH
Move literal to W
Subtract W from literal
Exclusive OR literal with W

1
1
1
1
1
1
1
1

11
11
11
00
11
11
11
11

1110
1001
1000
0000
0001
0000
1100
1010

kkkk
kkkk
kkkk
001k
1kkk
kkkk
kkkk
kkkk

kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk

C, DC, Z
Z
Z

C, DC, Z
Z

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle
is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one
additional instruction cycle.
DS40001458D-page 282 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
24.2 Instruction Descriptions

ADDFSR Add Literal to FSRn

Syntax: [label] ADDFSR FSRn, k

Operands: -32 k 31
n [0, 1]

Operation: FSR(n) + k FSR(n)

Status Affected: None

Description: The signed 6-bit literal ‘k’ is added to
the contents of the FSRnH:FSRnL
register pair.

FSRn is limited to the range 0000h -
FFFFh. Moving beyond these bounds
will cause the FSR to wrap-around.

ADDLW Add literal and W

Syntax: [label] ADDLW k

Operands: 0 k 255

Operation: (W) + k (W)

Status Affected: C, DC, Z

Description: The contents of the W register are
added to the 8-bit literal ‘k’ and the
result is placed in the W register.

ADDWF Add W and f

Syntax: [label] ADDWF f,d

Operands: 0 f 127
d 0,1

Operation: (W) + (f) (destination)

Status Affected: C, DC, Z

Description: Add the contents of the W register
with register ‘f’. If ‘d’ is ‘0’, the result is
stored in the W register. If ‘d’ is ‘1’, the
result is stored back in register ‘f’.

ADDWFC ADD W and CARRY bit to f

Syntax: [label] ADDWFC f {,d}

Operands: 0 f 127
d [0,1]

Operation: (W) + (f) + (C) dest

Status Affected: C, DC, Z

Description: Add W, the Carry flag and data mem-
ory location ‘f’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed in data memory location ‘f’.

ANDLW AND literal with W

Syntax: [label] ANDLW k

Operands: 0 k 255

Operation: (W) .AND. (k) (W)

Status Affected: Z

Description: The contents of W register are
AND’ed with the 8-bit literal ‘k’. The
result is placed in the W register.

ANDWF AND W with f

Syntax: [label] ANDWF f,d

Operands: 0 f 127
d 0,1

Operation: (W) .AND. (f) (destination)

Status Affected: Z

Description: AND the W register with register ‘f’. If
‘d’ is ‘0’, the result is stored in the W
register. If ‘d’ is ‘1’, the result is stored
back in register ‘f’.

ASRF Arithmetic Right Shift

Syntax: [label] ASRF f {,d}

Operands: 0 f 127
d [0,1]

Operation: (f<7>) dest<7>
(f<7:1>) dest<6:0>,
(f<0>) C,

Status Affected: C, Z

Description: The contents of register ‘f’ are shifted
one bit to the right through the Carry
flag. The MSb remains unchanged. If
‘d’ is ‘0’, the result is placed in W. If ‘d’
is ‘1’, the result is stored back in reg-
ister ‘f’.

 register f C
DS40001458D-page 284 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7

MOVIW Move INDFn to W

Syntax: [label] MOVIW ++FSRn
[label] MOVIW --FSRn
[label] MOVIW FSRn++
[label] MOVIW FSRn--
[label] MOVIW k[FSRn]

Operands: n [0,1]
mm [00,01, 10, 11]
-32 k 31

Operation: INDFn W
Effective address is determined by
• FSR + 1 (preincrement)
• FSR - 1 (predecrement)
• FSR + k (relative offset)
After the Move, the FSR value will be
either:
• FSR + 1 (all increments)
• FSR - 1 (all decrements)
• Unchanged

Status Affected: Z

 Mode Syntax mm

 Preincrement ++FSRn 00

 Predecrement --FSRn 01

 Postincrement FSRn++ 10

 Postdecrement FSRn-- 11

Description: This instruction is used to move data
between W and one of the indirect
registers (INDFn). Before/after this
move, the pointer (FSRn) is updated by
pre/post incrementing/decrementing it.

Note: The INDFn registers are not
physical registers. Any instruction that
accesses an INDFn register actually
accesses the register at the address
specified by the FSRn.

FSRn is limited to the range 0000h -
FFFFh. Incrementing/decrementing it
beyond these bounds will cause it to
wrap-around.

MOVLB Move literal to BSR

Syntax: [label] MOVLB k

Operands: 0 k 31

Operation: k BSR

Status Affected: None

Description: The 5-bit literal ‘k’ is loaded into the
Bank Select Register (BSR).

MOVLP Move literal to PCLATH

Syntax: [label] MOVLP k

Operands: 0 k 127

Operation: k PCLATH

Status Affected: None

Description: The 7-bit literal ‘k’ is loaded into the
PCLATH register.

MOVLW Move literal to W

Syntax: [label] MOVLW k

Operands: 0 k 255

Operation: k (W)

Status Affected: None

Description: The 8-bit literal ‘k’ is loaded into W reg-
ister. The “don’t cares” will assemble as
‘0’s.

Words: 1

Cycles: 1

Example: MOVLW 0x5A

After Instruction
W = 0x5A

MOVWF Move W to f

Syntax: [label] MOVWF f

Operands: 0 f 127

Operation: (W) (f)

Status Affected: None

Description: Move data from W register to register
‘f’.

Words: 1

Cycles: 1

Example: MOVWF OPTION_REG

Before Instruction
OPTION_REG = 0xFF

 W = 0x4F
After Instruction

OPTION_REG = 0x4F
 W = 0x4F
 2011-2015 Microchip Technology Inc. DS40001458D-page 289

PIC16(L)F1526/7
FIGURE 25-12: ADC CONVERSION TIMING (NORMAL MODE)

FIGURE 25-13: ADC CONVERSION TIMING (SLEEP MODE)

AD131

AD130

BSF ADCON0, GO

Q4

ADC CLK

ADC Data

ADRES

ADIF

GO

Sample

OLD_DATA

Sampling Stopped

DONE

NEW_DATA

7 6 5 3 2 1 0

Note 1: If the ADC clock source is selected as RC, a time of TCY is added before the ADC clock starts. This allows the
SLEEP instruction to be executed.

1 TCY

4

AD134 (TOSC/2(1))

1 TCY

AD132

AD132

AD131

AD130

BSF ADCON0, GO

Q4

ADC CLK

ADC Data

ADRES

ADIF

GO

Sample

OLD_DATA

Sampling Stopped

DONE

NEW_DATA

7 5 3 2 1 0

Note 1: If the ADC clock source is selected as RC, a time of TCY is added before the ADC clock starts. This allows the
SLEEP instruction to be executed.

AD134

46

1 TCY(TOSC/2 + TCY(1))

1 TCY
DS40001458D-page 316 2011-2015 Microchip Technology Inc.

PIC16(L)F1526/7
FIGURE 26-5: IDD TYPICAL, XT AND EXTRC OSCILLATOR, PIC16F1526/7 ONLY

FIGURE 26-6: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16F1526/7 ONLY

4 MHz EXTRC

4 MHz XT

1 MHz EXTRC

1 MHz XT

0

50

100

150

200

250

300

350

400

450

500

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

ID
D

(μ
A

)

VDD (V)

Typical: 25°C

4 MHz EXTRC

4 MHz XT

1 MHz EXTRC

1 MHz XT

0

100

200

300

400

500

600

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

ID
D

(μ
A

)

VDD (V)

Max: 85°C + 3
 2011-2015 Microchip Technology Inc. DS40001458D-page 327

PIC16(L)F1526/7
FIGURE 26-21: IDD, MFINTOSC, FOSC = 500 kHz, PIC16LF1526 ONLY

FIGURE 26-22: IDD, MFINTOSC, FOSC = 500 kHz, PIC16F1526/7 ONLY

Typical

Max.

100

150

200

250

300

350

400

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

ID
D

(μ
A

)

VDD (V)

Max: 85°C + 3
Typical: 25°C

Typical

Max.

100

150

200

250

300

350

400

450

500

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

ID
D

(μ
A

)

VDD (V)

Max: 85°C + 3
Typical: 25°C
 2011-2015 Microchip Technology Inc. DS40001458D-page 335

PIC16(L)F1526/7
FIGURE 26-37: IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC16LF1526 ONLY

FIGURE 26-38: IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC16F1526/7 ONLY

12

Typical

Max.

6

8

10

12
D

(μ
A

)

Max: 85°C + 3
Typical: 25°C

0

2

4

6

1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 6 3 8

IP
D

(μ
A

)

0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

VDD (V)

Max

14

Ma 85°C + 3

Typical

Max.

6

8

10

12

14

IP
D

(μ
A

)

Max: 85°C + 3
Typical: 25°C

0

2

4

6

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

IP
D

(μ
A

)

0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

VDD (V)
 2011-2015 Microchip Technology Inc. DS40001458D-page 343

