

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	54
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1526-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

						10(E)11520/1			
Ŋ	64-Pin TQFP, QFN	ADC	Timers	ссР	USART	SSP	Interrupt	Pull-up	Basic
RE7	59	—		CCP2 ⁽¹⁾	_		_	Y	_
RF0	18	AN16	—	_	—	_		—	VCAP
RF1	17	AN6	—	_	—			—	—
RF2	16	AN7	—	—	—	—	_	—	—
RF3	15	AN8	—	—	—			—	—
RF4	14	AN9	_	_	_			_	_
RF5	13	AN10	_	_	_			_	—
RF6	12	AN11	_	_	_			—	_
RF7	11	AN5	—	—	—	SS1	—	—	—
RG0	3	_	—	CCP3	—			_	—
RG1	4	AN15	_	_	TX2/CK2	_		—	—
RG2	5	AN14	_	_	RX2/DT2	_	_	—	—
RG3	6	AN13		CCP4	—	_	_	_	_
RG4	8	AN12	T5G	CCP5	—	_		—	—
RG5	7	_		—	—	_	_	Y ⁽²⁾	MCLR/Vpp
Vdd	10, 26, 38, 57	—	—	—	—	_		_	Vdd
Vss	9, 25, 41, 56		—			_	—	_	Vss
AVDD	19	—		_	—			—	AVDD
AVss	20	—	_	—	—		_	—	AVss

TABLE 1:	64-PIN DEVICE ALLOCATION TABLE	(PIC16(L)F1526/7) (CONTINUED)
		(

Note 1: Alternate pin function selected with the APFCON (Register 12-1) register.
2: Weak pull-up is always enabled when MCLR is enabled, otherwise the pull-up is under user control.

3.5 Special Function Register

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.5.1 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.5.1.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.8.2** "**Linear Data Memory**" for more information.

3.5.2 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

3.5.3 DEVICE MEMORY MAPS

The memory maps for PIC16(L)F1526/7 are shown in Table 3-3.

IAB	LE 3-2: 5	PECIAL	FUNCTION	JN REG	121 EK 2	UNINARI		NUED)			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	nk 4										
20Ch	—	Unimpleme	nted							_	_
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	—	Unimpleme	nted							_	_
20Fh	WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	1111 1111	1111 1111
210h	WPUE	WPUE7	WPUE6	WPUE5	WPUE4	WPUE3	WPUE2	WPUE1	WPUE0	1111 1111	1111 1111
211h	SSP1BUF	Synchronou	us Serial Por	t Receive Bu	uffer/Transm	it Register				xxxx xxxx	uuuu uuuu
212h	SSP1ADD	Synchronou	us Serial Por	t (I ² C mode)	Address Re	gister				0000 0000	0000 0000
213h	SSP1MSK	Synchronou	us Serial Por	t (I ² C mode)	Address Ma	ask Register				1111 1111	1111 1111
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM<	<3:0>		0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h	—	Unimpleme	nted							_	—
219h	SSP2BUF	Synchronou	Synchronous Serial Port Receive Buffer/Transmit Register						xxxx xxxx	uuuu uuuu	
21Ah	SSP2ADD	Synchronou	Synchronous Serial Port (I ² C mode) Address Register						0000 0000	0000 0000	
21Bh	SSP2MSK	Synchronou	us Serial Por	t (I ² C mode)	Address Ma	ask Register				1111 1111	1111 1111
21Ch	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
21Dh	SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM<	<3:0>		0000 0000	0000 0000
21Eh	SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
21Fh	SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
Ban	nk 5										
28Ch	PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx xxxx	uuuu uuuu
28Dh	PORTG	—	—	RG5	RG4	RG3	RG2	RG1	RG0	xx xxxx	uu uuuu
28Eh	—	Unimpleme	nted							_	—
28Fh	—	Unimpleme	nted							_	—
290h	—	Unimpleme	nted							_	—
291h	CCPR1L	Capture/Co	mpare/PWM	Register 1	(LSB)					xxxx xxxx	uuuu uuuu
292h	CCPR1H	Capture/Co	mpare/PWM	Register 1	(MSB)					xxxx xxxx	uuuu uuuu
293h	CCP1CON	_	—	DC1E	3<1:0>		CCP1M	<3:0>		00 0000	00 0000
294h	—	Unimpleme	nted							_	—
295h	—	Unimpleme	nted							_	—
296h	—	Unimpleme	nted							_	—
297h	—	Unimpleme	nted							_	—
298h	CCPR2L	Capture/Co	mpare/PWM	Register 2	(LSB)					xxxx xxxx	uuuu uuuu
299h	CCPR2H	Capture/Co	mpare/PWM	Register 2	(MSB)					xxxx xxxx	uuuu uuuu
29Ah	CCP2CON	—	—	DC2E	3<1:0>		CCP2M	<3:0>		00 0000	00 0000
29Bh	—	Unimpleme	nted							-	—
29Ch	—	Unimpleme	nted							—	—
29Dh	CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	0000 0000	0000 0000
29Eh	CCPTMRS1	C8TSE	L<1:0>	C7TSE	L<1:0>	C6TSE	L<1:0>	C5TSE	L<1:0>	0000 0000	0000 0000
29Fh	CCPTMRS2	_	_		_	C10TSI	EL<1:0>	C9TSE	L<1:0>	0000	0000

DEOIO

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend: Note

1: PIC16F1526/7 only.

Unimplemented, read as '1'. 2:

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
TMR1GIE	ADIE	RC1IE	TX1IE	SSP1IE	SSP2IE	TMR2IE	TMR1IE	
bit 7		I	I	1	1	I	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is cleared						
bit 7	TMR1GIE: Tir	mer1 Gate Inte	rrupt Enable t	oit				
	1 = Enables tl 0 = Disables t	he Timer1 Gate the Timer1 Gat	e Acquisition i e Acquisition	nterrupt interrupt				
bit 6	ADIE: Analog	-to-Digital Con	verter (ADC)	Interrupt Enab	le bit			
	 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt 							
bit 5	5 RC1IE: USART1 Receive Interrupt Enable bit							
	 1 = Enables the USART1 receive interrupt 0 = Disables the USART1 receive interrupt 							
bit 4	TX1IE: USAR	T1 Transmit In	terrupt Enable	e bit				
	1 = Enables tl 0 = Disables t	he USART1 tra he USART1 tra	insmit interrup ansmit interru	pt				
bit 3	SSP1IE: Synd	chronous Seria	I Port (MSSP	1) Interrupt En	able bit			
	1 = Enables tl 0 = Disables t	he MSSP1 inte he MSSP1 inte	rrupt errupt					
bit 2	SSP2IE: Synd	chronous Seria	I Port (MSSP	2) Interrupt En	able bit			
	1 = Enables tl 0 = Disables t	he MSSP2 inte he MSSP2 inte	rrupt errupt					
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt Er	nable bit				
	1 = Enables tl	he Timer2 to P	R2 match inte	errupt				
	0 = Disables t	the Timer2 to P	R2 match inte	errupt				
bit 0	TMR1IE: Time	er1 Overflow Ir	terrupt Enabl	e bit				
	1 = Enables t	he Timer1 over	flow interrupt					
				L				
Note: Bit	PEIE of the IN ⁻	I CON register	must be					
કરા	to chable ally p		ιupι.					

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	
	AD2IE			BCL1IE	BCL2IE	TMR4IE		
bit 7							bit 0	
r								
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	Unimplemented: Read as '0'							
bit 6	AD2IE: Analog-to-Digital Converter (ADC2) Interrupt Enable bit							
	1 = Enables the ADC interrupt							
	0 = Disables the ADC interrupt							
bit 5-4	Unimplemen	ted: Read as '0)'					
bit 3	BCL1IE: MSS	SP1 Bus Collisi	on Interrupt E	Enable bit				
	1 = Enables	the MSSP1 Bus	s Collision Int	errupt				
hit 0								
		SPZ BUS COIIISI						
	$\perp = \text{Enables}$ 0 = Disables	the MSSP2 Bus	s Collision Int	terrupt				
bit 1	TMR4IE: TMF	R4 to PR4 Mate	h Interrupt F	nable bit				
	1 = Enables t	he Timer8 to PI	R4 match inte	errupt				
	0 = Disables	the Timer8 to P	R4 match inte	errupt				
bit 0	Unimplemen	ted: Read as ')'					
Note: Rit		TCON register	must he					
set	to enable any p	peripheral interi	rupt.					

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

11.6 Register Definitions: Flash Program Memory Control

REGISTER 11-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged	I	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 11-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	-			PMDA	\T<13:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PMAD | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

.

PMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 11-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				PMADR<14:8>	>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Unimplemented, read as '1'.

U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0		
bit 7					•		bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

'0' = Bit is cleared

bit 7-6	Unimplemented: Read as '0'
bit 5	 ANSA5: Analog Select between Analog or Digital Function on pins RA5, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 4	Unimplemented: Read as '0'
bit 3-0	ANSA<3:0> : Analog Select between Analog or Digital Function on pins RA<3:0>, respectively 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
	When a string a give to an end on the second string TDIO bit must be acted by the second string to an

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	115
APFCON	_	_	—	_	_	—	T3CKISEL	CCP2SEL	112
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	114
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			158
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	114
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	114

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	-		FCMEN	IESO	CLKOUTEN	BOREN<1:0>		—	45
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>		FOSC<2:0>		40

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

'1' = Bit is set

12.13 PORTF Registers

12.13.1 DATA REGISTER

PORTF is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISF (Register 12-25). Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTF register (Register 12-24) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATF).

12.13.2 DIRECTION CONTROL

The TRISF register (Register 12-25) controls the PORTF pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISF register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.13.3 ANALOG CONTROL

The ANSELF register (Register 12-27) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELF bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELF bits has no effect on digital output functions. A pin with TRIS clear and ANSELF set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELF bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.13.4 PORTE FUNCTIONS AND OUTPUT PRIORITIES

Each PORTF pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-13.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RF0	V _{CAP} (2)
	RF0
RF1	RF1
RF2	RF2
RF3	RF3
RF4	RF4
RF5	RF5
RF6	RF6
RF7	RF7

TABLE 12-13: PORTF OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

2: PIC16F1526/7 only

13.6 Register Definitions: Interrupt-on-change Control

REGISTER 13-1: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER

Legend:							
							bit o
hit 7	•						bit 0
IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
R/W-0/0							

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBP<7:0>: Interrupt-on-Change PORTB Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 13-2: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change PORTB Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 13-3: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCBF<7:0>: Interrupt-on-Change PORTB Flag bits

- 1 = An enabled change was detected on the associated pin. Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

21.8 Register Definitions: MSSP Control

REGISTER 21-1: SSPxSTAT: SSPx STATUS REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit	i i	U = Unimplem	ented bit, read as	ʻ0'	
u = Bit is unchan	iged	x = Bit is unknown		-n/n = Value at	POR and BOR/V	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is cleared					
bit 7	7 SMP: SPI Data Input Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in Slave mode In I ² C Master or Slave mode:						
bit 6	 1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for high speed mode (400 kHz) CKE: SPI Clock Edge Select bit (SPI mode only) In SPI Master or Slave mode: 						
	 a Transmit occurs on transition from Idle to active clock state a Transmit occurs on transition from Idle to active clock state In I²C™ mode only: a Enable input logic so that thresholds are compliant with SMBus specification b = Disable SMBus specific inputs 						
bit 5	D/A: Data/Address bit (I ² C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address						
bit 4	 P: Stop bit (l²C mode only. This bit is cleared when the MSSPx module is disabled, SSPEN is cleared.) 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset) 0 = Stop bit was not detected last 						
bit 3	 Start bit (I²C mode only. This bit is cleared when the MSSPx module is disabled, SSPEN is cleared.) 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset) 0 = Start bit was not detected last 						
bit 2	R /W: Read/Writ This bit holds th to the next Start In I ² C Slave mod 1 = Read 0 = Write In I ² C Master m 1 = Transmit is 0 = Transmit is	te bit information le R/W bit informat t bit, Stop bit, or r ode: node: s in progress s not in progress is bit with SEN. F	(I ² C mode only itio <u>n foll</u> owing t not ACK bit.	/) he last address r CEN or ACKEN \	natch. This bit is o will indicate if the I	nly valid from the	address match
bit 1	UA: Update Add 1 = Indicates th 0 = Address do	dress bit (10-bit I at the user needs es not need to be	² C mode only) s to update the e updated	address in the S	SSPxADD register		

FIGURE 22-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 22-1, Register 22-2 and Register 22-3, respectively.

For all modes of EUSART operation, the TRIS control bits corresponding to the RXx/DTx and TXx/CKx pins should be set to '1'. The EUSART control will automatically reconfigure the pin from input to output, as needed.

When the receiver or transmitter section is not enabled then the corresponding RXx/DTx or TXx/CKx pin may be used for general purpose input and output.

22.3 Register Definitions: EUSART Control

REGISTER 22-1: TXxSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7	·				•	· · ·	bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
-n = Value at Pe	OR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unknow	/n
bit 7	CSRC: Clock S Asynchronous Don't care Synchronous m 1 = Master m 0 = Slave mo	Source Select bit mode: node: ode (clock genera de (clock from ex	ated internally ternal source)	from BRG)			
bit 6	TX9: 9-bit Tran 1 = Selects 9 0 = Selects 8	smit Enable bit -bit transmission -bit transmission					
bit 5	TXEN: Transm1 = Transmit e0 = Transmit e	it Enable bit ⁽¹⁾ enabled disabled					
bit 4	SYNC: EUSAR 1 = Synchrono 0 = Asynchron	T Mode Select bi ous mode nous mode	t				
bit 3	SENDB: Send Break Character bit <u>Asynchronous mode</u> : 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed <u>Synchronous mode</u> : Don't care						
bit 2	BRGH: High Back Asynchronous 1 = High spee 0 = Low speed Synchronous m Unused in this	aud Rate Select b <u>mode</u> : d d <u>node:</u> mode	it				
bit 1	TRMT: Transm 1 = TSR empt 0 = TSR full	it Shift Register S y	tatus bit				
bit 0	TX9D: Ninth bit Can be address	t of Transmit Data s/data bit or a par	ity bit.				
Note 1: SR	EN/CREN overrid	les TXEN in Sync	mode.				

22.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

22.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART. If the RXx/DTx or TXx/CKx pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and TXx/CKx pins should be set.

22.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TXx/CKx line. The TXx/CKx pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

22.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock and is sampled on the rising edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock and is sampled on the falling edge of each clock.

22.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx pin. The RXx/DTx and TXx/CKx pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

22.5.1.4 Synchronous Master Transmission Set-up:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Set the TRIS bits corresponding to the RXx/DTx and TXx/CKx I/O pins.

- 4. Disable Receive mode by clearing bits SREN and CREN.
- 5. Enable Transmit mode by setting the TXEN bit.
- 6. If 9-bit transmission is desired, set the TX9 bit.
- 7. If interrupts are desired, set the TXxIE, GIE and PEIE interrupt enable bits.
- 8. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 9. Start transmission by loading data to the TXx-REG register.

FIGURE 22-10: SYNCHRONOUS TRANSMISSION

FIGURE 22-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

FIGURE 24-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations	0			
OPCODE d f(FILE#)			
d = 0 for destination W d = 1 for destination f f = 7-bit file register address				
Bit-oriented file register operations	0			
OPCODE b (BIT #) f (FILE	#)			
b = 3-bit bit address f = 7-bit file register address				
Literal and control operations				
General				
	0			
OPCODE k (literal)				
k = 8-bit immediate value				
CALL and GOTO instructions only				
13 11 10	0			
OPCODE k (literal)				
k = 11-bit immediate value				
13 7 6	0			
OPCODE k (literal)				
k = 7-bit immediate value				
13 5 4	0			
OPCODE k (liter	al)			
k = 5-bit immediate value				
BRA instruction only	0			
OPCODE k (literal)			
k = 9-bit immediate value				
FSR Offset instructions	0			
OPCODE n k (liter	al)			
n = appropriate FSR k = 6-bit immediate value	,			
FSR Increment instructions 13 3 2 1	0			
OPCODE n m	(mode)			
n = appropriate FSR m = 2-bit mode value				
OPCODE only 13	0			
OPCODE				

LSLF	Logical Left Shift	MOVF	Move f	
Syntax:	[<i>label</i>]LSLF f{,d}	Syntax:	[<i>label</i>] MOVF f,d	
Operands:	$0 \le f \le 127$ d $\in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$	
Operation:	$(f < 7 >) \rightarrow C$	Operation:	$(f) \rightarrow (dest)$	
	$(f < 6:0 >) \rightarrow dest < 7:1 >$	Status Affected:	Z	
Status Affected:	C, Z	Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.	
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.			
	C	Words:	1	
		Cycles:	1	
		Example:	MOVF FSR, 0	
LSRF	Logical Right Shift		After Instruction W = value in FSR register	
Syntax:	[<i>label</i>]LSRF f{,d}		Z = 1	

Syntax:	[<i>label</i>]LSRF f{,d}		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$		
Status Affected:	C, Z		
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		
	0 → register f → C		

25.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F1526/7	0.3V to +6.5V
Voltage on VCAP with respect to Vss, PIC16F1526/7	0.3V to +4.0V
Voltage on VDD with respect to Vss, PIC16LF1526/7	0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial	350 mA
Maximum current out of Vss pin, -40°C \leq TA \leq +125°C for extended	140 mA
Maximum current into VDD pin, -40°C \leq TA \leq +85°C for industrial	350 mA
Maximum current into VDD pin, -40°C \leq TA \leq +125°C for extended	140 mA
Clamp current, Iк (VPIN < 0 or VPIN > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	50 mA
Maximum output current sourced by any I/O pin	50 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VD IOL).	– Vон) х Iон} + ∑(Vol х

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 26-46: Vol vs. IoL OVER TEMPERATURE, VDD = 1.8V, PIC16LF1526 ONLY

