

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	54
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1527-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F151X/152X Family Types

				tes)		AI	C						
Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High-Endurance Flash (bytes)	(Z)S,O/I	10-bit (ch)	Advanced Control	Timers (8/16-bit)	EUSART	MSSP (I ² C/SPI)	ССР	Debug ⁽¹⁾	XLP
PIC16(L)F1512	(1)	2048	128	128	25	17	Y	2/1	1	1	2	I	Y
PIC16(L)F1513	(1)	4096	256	128	25	17	Y	2/1	1	1	2	I	Y
PIC16(L)F1516	(2)	8192	512	128	25	17	N	2/1	1	1	2	I	Y
PIC16(L)F1517	(2)	8192	512	128	36	28	Ν	2/1	1	1	2	I	Y
PIC16(L)F1518	(2)	16384	1024	128	25	17	Ν	2/1	1	1	2	I	Y
PIC16(L)F1519	(2)	16384	1024	128	36	28	Ν	2/1	1	1	2	I	Y
PIC16(L)F1526	(3)	8192	768	128	54	30	N	6/3	2	2	10		Y
PIC16(L)F1527	(3)	16384	1536	128	54	30	Ν	6/3	2	2	10		Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS41624 PIC16(L)F1512/13 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.
- **2:** DS41452 PIC16(L)F1516/7/8/9 Data Sheet, 28/40/44-Pin Flash, 8-bit MCUs.
- **3:** DS41458 PIC16(L)F1526/7 Data Sheet, 64-Pin Flash, 8-bit MCUs.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

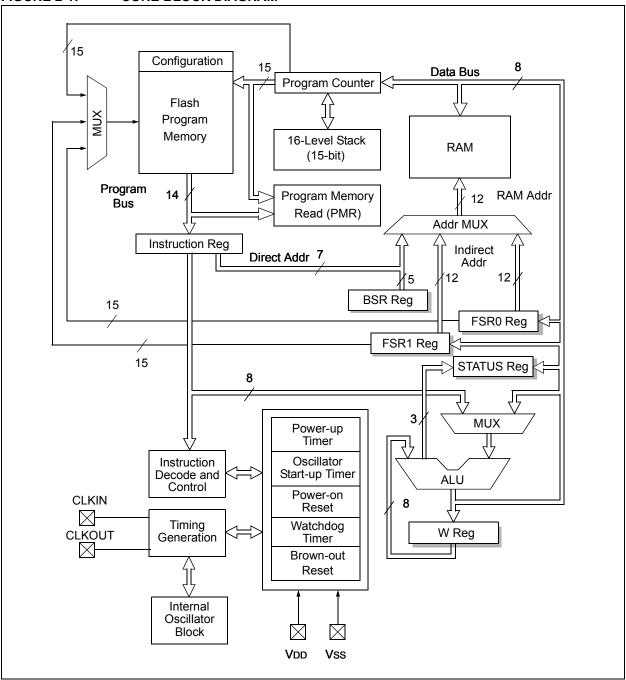


FIGURE 2-1: CORE BLOCK DIAGRAM

TABLE 3-3: PIC16(L)F1526/7 MEMORY MAP

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers (Table 3-2)														
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	—	28Ch	PORTF	30Ch	TRISF	38Ch	LATF
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	PORTG	30Dh	TRISG	38Dh	LATG
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	—	20Eh	—	28Eh	_	30Eh	—	38Eh	—
00Fh	PORTD	08Fh	TRISD	10Fh	LATD	18Fh	ANSELD	20Fh	WPUD	28Fh	-	30Fh	—	38Fh	—
010h	PORTE	090h	TRISE	110h	LATE	190h	ANSELE	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	—	191h	PMADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L	391h	—
012h	PIR2	092h	PIE2	112h	_	192h	PMADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H	392h	—
013h	PIR3	093h	PIE3	113h	_	193h	PMDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	—
014h	PIR4	094h	PIE4	114h	_	194h	PMDATH	214h	SSP1STAT	294h	_	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	_	195h	PMCON1	215h	SSP1CON1	295h	—	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	_	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	SSP1CON3	297h		317h	_	397h	—
018h	T1CON	098h	—	118h	_	198h	—	218h	_	298h	CCPR2L	318h	CCPR4L	398h	—
019h	T1GCON	099h	OSCCON	119h	_	199h	RC1REG	219h	SSP2BUF	299h	CCPR2H	319h	CCPR4H	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TX1REG	21Ah	SSP2ADD	29Ah	CCP2CON	31Ah	CCP4CON	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SP1BRG	21Bh	SSP2MSK	29Bh	—	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SP1BRGH	21Ch	SSP2STAT	29Ch	_	31Ch	CCPR5L	39Ch	—
01Dh	_	09Dh	ADCON0	11Dh	APFCON	19Dh	RC1STA	21Dh	SSP2CON1	29Dh	CCPTMRS0	31Dh	CCPR5H	39Dh	—
01Eh	_	09Eh	ADCON1	11Eh	_	19Eh	TX1STA	21Eh	SSP2CON2	29Eh	CCPTMRS1	31Eh	CCP5CON	39Eh	—
01Fh	—	09Fh	_	11Fh	—	19Fh	BAUD1CON	21Fh	SSP2CON3	29Fh	CCPTMRS2	31Fh	_	39Fh	_
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h 07Fh	Common RAM	0F0h 0FFh	Common RAM (Accesses 70h – 7Fh)	170h 17Fh	Common RAM (Accesses 70h – 7Fh)	1F0h 1FFh	Common RAM (Accesses 70h – 7Fh)	270h 27Fh	Common RAM (Accesses 70h – 7Fh)	2F0h 2FFh	Common RAM (Accesses 70h – 7Fh)	370h 37Fh	Common RAM (Accesses 70h – 7Fh)	3F0h 3FFh	Common RAM (Accesses 70h – 7Fh)

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16F1526/7 only.

3.5.4 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	0-31										
x00h or x80h	INDF0		this location ical register)		xxxx xxxx	uuuu uuuu					
x01h or x81h	INDF1		this location ical register)		nts of FSR1H	/FSR1L to a	ddress data r	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program Co	ounter (PC) I	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	_	-	-	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Dat	direct Data Memory Address 0 Low Pointer								uuuu uuuu
x05h or x85h	FSR0H	Indirect Dat	ndirect Data Memory Address 0 High Pointer							0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Dat	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Dat	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	_	-	-	BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Re	Working Register							0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	_	— Write Buffer for the upper 7 bits of the Program Counter							-000 0000	-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-4: CORE FUNCTION REGISTERS SUMMARY

4.6 Device ID and Revision ID

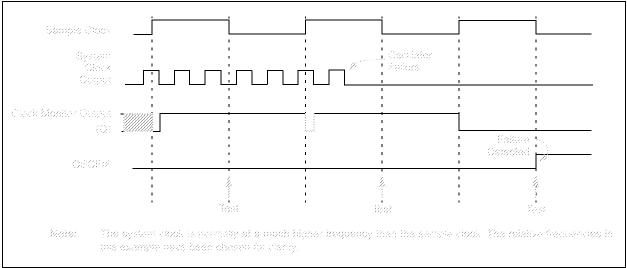
The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 11.5 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

REGISTER 4-3: DEVID: DEVICE ID REGISTER

		R	R	R	R	R	R
				DEV	<8:3>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
	DEV<2:0>				REV<4:0>		
bit 7							bit 0
Legend:							
R = Readable b	bit			U = Unimpleme	ented bit, read as	'1'	

-n/n = Value at POR and BOR/Value at all other Resets


bit 13-5 DEV<8:0>: Device ID bits

Device	DEVID<13:0> Values								
Device	DEV<8:0>	REV<4:0>							
PIC16F1526	01 0101 100	x xxxx							
PIC16F1527	01 0101 101	x xxxx							
PIC16LF1526	01 0101 110	x xxxx							
PIC16LF1527	01 0101 111	x xxxx							

bit 4-0 REV<4:0>: Revision ID bits

These bits are used to identify the revision (see Table under DEV<8:0> above).

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, TO is set on POR
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00-1 110x
MCLR Reset during normal operation	0000h	u uuuu	uu-u Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu-u Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
Brown-out Reset	0000h	1 luuu	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CCP10IF	CCP9IF	RC2IF	TX2IF	CCP8IF	CCP7IF	BCL2IF	SSP2IF
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unc		x = Bit is unk		•	at POR and BO		ther Resets
'1' = Bit is set	t U	'0' = Bit is cle	ared				
bit 7	CCP10IF: C	CP10 Interrupt	Flag bit				
Sit 7	1 = Interrupt	•	nag bit				
		t is not pending					
bit 6	CCP9IF: CC	P9 Interrupt Fla	ng bit				
	1 = Interrupt						
	0 = Interrupt	t is not pending					
bit 5		RT2 Receive In	iterrupt Flag b	bit			
	1 = Interrupt						
	•	t is not pending		.,			
bit 4		RT2 Transmit Ir	iterrupt Flag b	DIT			
	1 = Interrupt 0 = Interrupt	t is not pending					
bit 3		CP8 Interrupt Fla	a bit				
	1 = Interrupt	•	ig on				
		t is not pending					
bit 2	CCP7IF: CC	P7 Interrupt Fla	ng bit				
	1 = Interrupt	1 0					
	0 = Interrupt	t is not pending					
bit 1		SSP2 Bus Collis	ion Interrupt F	lag bit			
	1 = Interrupt						
L:1 0		t is not pending			h:t		
bit 0		nchronous Seria	al Port (MSSP	2) Interrupt Fla	g bit		
	1 = Interrupt 0 = Interrupt	t is not pending					
	·						
		are set when an					
		regardless of th					
Its		enable bit or th					

REGISTER 7-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior

to enabling an interrupt.

U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
						bit 0
bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
	'0' = Bit is clea	ared				
		ANSB5 — ANSB5 bit W = Writable anged x = Bit is unkr	ANSB5 ANSB4 bit W = Writable bit	ANSB5 ANSB4 ANSB3 bit W = Writable bit U = Unimplen anged x = Bit is unknown -n/n = Value a	ANSB5 ANSB4 ANSB3 ANSB2 bit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BO	ANSB5ANSB4ANSB3ANSB2ANSB1bitW = Writable bitU = Unimplemented bit, read as '0'angedx = Bit is unknown-n/n = Value at POR and BOR/Value at all of the second s

REGISTER 12-9: ANSELB: PORTB ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSB<5:0>**: Analog Select between Analog or Digital Function on pins RB<5:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.

REGISTER 12-10: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:

0		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **WPUB<7:0>**: Weak Pull-up Register bits

1 = Pull-up enabled

0 = Pull-up disabled

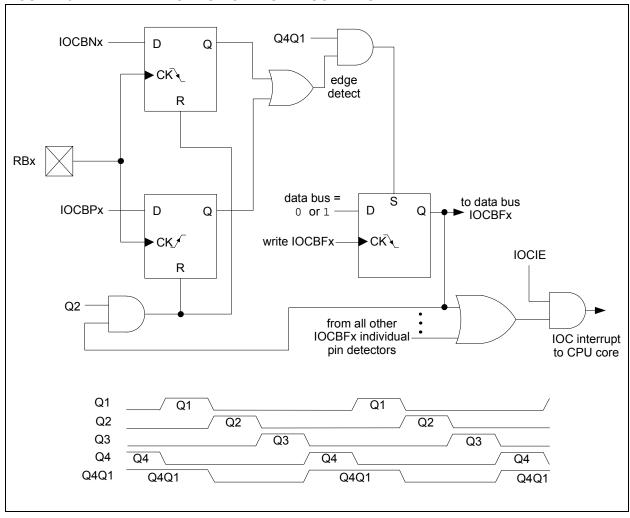
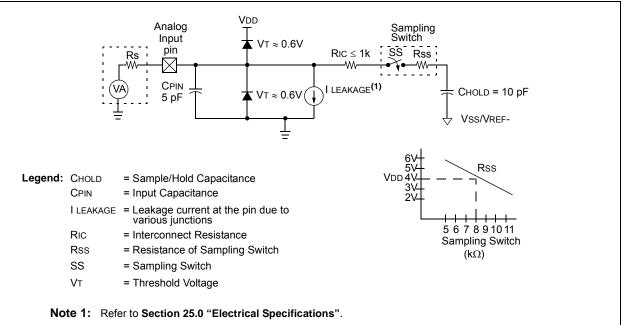

- Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - 2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	—	-	-	-	—	T3CKISEL	CCP2SEL	118
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	118
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	117
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	117
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	117
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	118


Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

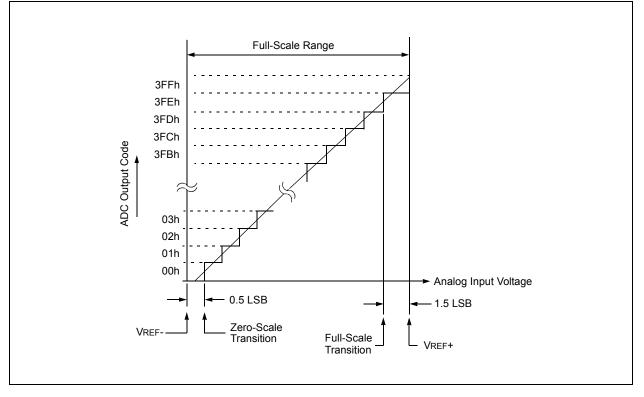


FIGURE 13-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM

FIGURE 16-4: ANALOG INPUT MODEL

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	—	_	DC1B	<1:0>		CCP1	M<3:0>		189	
CCP2CON	_	_	DC2B	<1:0>		CCP2	V<3:0>		189	
CCP3CON	_	_	DC3B	<1:0>		CCP3	V<3:0>		189	
CCP4CON	—	_	DC4B	<1:0>		CCP4	√<3:0>		189	
CCP5CON	—	_	DC5B	<1:0>		CCP5	√<3:0>		189	
CCP6CON	—	_	DC6B	<1:0>		CCP6	V<3:0>		189	
CCP7CON	—	_	DC7B	<1:0>		CCP7	M<3:0>		189	
CCP8CON	—	_	DC8B	<1:0>		CCP8	√<3:0>		189	
CCP9CON	—	_	DC9B	<1:0>		CCP9	√<3:0>		189	
CCP10CON	—	_	DC10	3<1:0>		CCP10	M<3:0>		189	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	76	
PIE1	TMR1GIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	77	
PIE2	OSFIE	TMR5GIE	TMR3GIE	_	BCL1IE	TMR10IE	TMR8IE	CCP2IE	78	
PIE3	CCP6IE	CCP5IE	CCP4IE	CCP3IE	TMR6IE	TMR5IE	TMR4IE	TMR3IE	79	
PIR1	TMR1GIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	81	
PIR2	OSFIF	TMR5GIF	TMR3GIF	_	BCL1IF	TMR10IF	TMR8IF	CCP2IF	82	
PIR3	CCP6IF	CCP5IF	CCP4IF	CCP3IF	TMR6IF	TMR5IF	TMR4IF	TMR3IF	83	
PR2	Timer2 Mod	ule Period Re	gister						213*	
PR4	Timer4 Mod	ule Period Re	gister						213*	
PR6	Timer6 Mode	ule Period Re	gister						213*	
PR8	Timer8 Mode	ule Period Re	gister						213*	
PR10	Timer10 Mo	dule Period R	egister						213*	
T2CON	—		T2OUT	PS<3:0>		TMR2ON	T2CKPS1	T2CKPS0	215	
T4CON	—		T4OUT	PS<3:0>		TMR4ON	T4CKPS1	T4CKPS0	215	
T6CON	—		T6OUT	PS<3:0>		TMR6ON	T6CKPS1	T6CKPS0	215	
T8CON	_		T8OUT	PS<3:0>		TMR8ON	T8CKPS1	T8CKPS0	215	
T10CON	_		T10OUT	PS<3:0>		TMR100N	T10CKPS1	T10CKPS0	215	
TMR2	Holding Reg	olding Register for the 8-bit TMR2 Register								
TMR4	Holding Reg	Holding Register for the 8-bit TMR4 Register ⁽¹⁾								
TMR6	Holding Reg	lolding Register for the 8-bit TMR6 Register ⁽¹⁾								
TMR8	Holding Register for the 8-bit TMR8 Register ⁽¹⁾								213*	
TMR10	Holding Reg	ister for the 8	-bit TMR10 R	egister ⁽¹⁾					213*	

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6/8/10

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2/4/6/8/10 module.

* Page provides register information.

					SYNC	C = 0, BRGH	l = 0, BRC	G16 = 0				
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Foso	: = 16.00	0 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_			_		_	_		_	_
1200	1221	1.73	255	1200	0.00	239	1202	0.16	207	1200	0.00	143
2400	2404	0.16	129	2400	0.00	119	2404	0.16	103	2400	0.00	71
9600	9470	-1.36	32	9600	0.00	29	9615	0.16	25	9600	0.00	17
10417	10417	0.00	29	10286	-1.26	27	10417	0.00	23	10165	-2.42	16
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8
57.6k	—	_	_	57.60k	0.00	7	—	_	_	57.60k	0.00	2
115.2k	—	_	—	_	_	_	_	_	_	_	_	—

TABLE 22-5:BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 0						
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc	: = 3.686	4 MHz	Fos	Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51		
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12		
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	—		
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	—		
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_		
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_		
57.6k	—	_	_	—	_	_	57.60k	0.00	0	—	_	_		
115.2k	—	_	—	—	_	—	—	_	—	—	—	—		

					SYNC	C = 0, BRGH	l = 1, BRC	G16 = 0					
BAUD	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Foso	: = 16.00	0 MHz	Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_		_	_		_	_		_	_	
1200	—	_	_	_	_	_	_	_	_	—	_	_	
2400	_	_	_	_	_	_	_	_	_	_	_	_	
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71	
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65	
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35	
57.6k	56.82k	-1.36	21	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11	
115.2k	113.64k	-1.36	10	115.2k	0.00	9	111.1k	-3.55	8	115.2k	0.00	5	

FIGURE 22-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

Serve 31 The EUSARY remembers to the while the WHI 13 is not.

Г

FIGURE 22-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

		Na farana sa	okordozą	009040090	003924	03	2010	oopaqoxo qo	20090903030	(303504)	en louiseek	20030060	.304
		jnununur - BRS-KB			un ny initia. P			nanahar	unipupun		1997. UNUTUT 1997. – Ale		2
N	84.3E 68.		: * :	·····	;), / /	·····	·····
	ad XBC Roxee	5) ((• • •	* * *	, , ,		N Ž 				700-5 		* * *
		· ·	sière Ca	orosoć šive	roteci 🛔	Steep Hos	2 1	Clanned	idee oo Gaar i	Road (02)	ROXREG -	9.	/
24.						varmedy Boral Boa on the presence o			te Vatili et r	80.0000	s weste the	ergessa eq	pes is
	25	The 8934	at i comoù	ta in Idia wi	20 20 2028 -	ož ko pret							

Mnem	nonic,	Description	Cycles		14-Bit	Opcode)	Status	Notes
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS					•	
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED					•	
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 24-3: INSTRUCTION SET (CONTINUED)

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

SWAPF	Swap Nibbles in f					
Syntax:	[label] SWAPF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$					
Status Affected:	None					
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.					

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

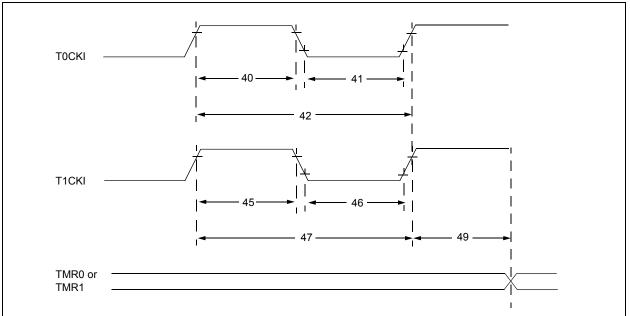
XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

25.2 DC Characteristics: Supply Current (IDD) (Continued)

PIC16LF	PIC16LF1526/7		$\begin{array}{llllllllllllllllllllllllllllllllllll$								
PIC16F1	526/7		rd Operat ng temper		$-40^{\circ}C \le T$	`A ≤ +85°C	erwise stated) C for industrial °C for extended				
Param	Device	Min.	Typ†	Max.	Units		Conditions				
No.	Characteristics	IVIII.	турт	IVIAX.	Units	Vdd	Note				
	Supply Current (IDD) ^(1,)	2, 3)									
D018		—	0.9	1.4	mA	1.8	Fosc = 16 MHz				
			1.5	1.8	mA	3.0	HFINTOSC				
D018		—	1.0	1.5	mA	2.3	Fosc = 16 MHz				
			1.5	1.8	mA	3.0	HFINTOSC				
		-	1.7	1.9	mA	5.0					
D020		-	1.7	2.0	mA	3.0	Fosc = 20 MHz				
			2.1	2.5	mA	3.6	HS Oscillator				
D020			1.8	2.1	mA	3.0	Fosc = 20 MHz				
		_	2.2	2.7	mA	5.0	HS Oscillator				
D021		—	190	240	μA	1.8	Fosc = 4 MHz				
		—	340	400	μA	3.0	EXTRC (Note 4)				
D021		—	250	350	μA	2.3	Fosc = 4 MHz				
		—	340	440	μA	3.0	EXTRC (Note 4)				
		_	425	525	μA	5.0					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: 0.1 µF capacitor on VCAP pin (PIC16F1526/7).

4: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

FIGURE 25-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 25-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

	ng Temperatur	•	nless otherwis ⊼≤+125°C	e stated)					
Param No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H			No Prescaler	0.5 Tcy + 20			ns	
				With Prescaler	10	—	—	ns	
41*	T⊤0L	T0CKI Low Pulse Width		No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	_	_	ns	
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—		ns	
			Synchronous, with Prescaler		15	_		ns	
			Asynchronous		30		_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20			ns	
			Synchronous, with Prescaler		15			ns	
			Asynchronous		30	_	_	ns	
47*	Тт1Р	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value
			Asynchronous		60	—	_	ns	
48	F⊤1	Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit SOSCEN)			32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	—	Timers in Sync mode

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

27.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

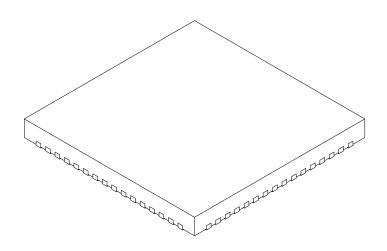
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


27.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	64				
Pitch	е	0.50 BSC				
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	9.00 BSC				
Exposed Pad Width	E2	5.30	5.40	5.50		
Overall Length	D	9.00 BSC				
Exposed Pad Length	D2	5.30	5.40	5.50		
Contact Width	b	0.20	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2