

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	54
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 30x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1527t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

JRE 3-6: ACCI	ESSING THE ST	ACK EXAMPLE	2
			_
	OxOF	:	
	0x0E	E	
	0x0E)	
	0x0C	;	
	0x0E	3	
	0x0A	\	
	0x0§)	This figure shows the stack configuration
	30x0	3	If a RETURN instruction is executed, the
	0x07	,	return address will be placed in the Program Counter and the Stack Pointer
	0x06	3	decremented to the empty state (0x1F).
	0x05	5	
	0x04	l	
	0x03	3	
	0x02	2	
	0x01		
	0x00	Return Address	STKPTR = 0x00
IRE 3-7: ACCI	ESSING THE ST	ACK EXAMPLE	3
IRE 3-7: ACCI	ESSING THE ST	ACK EXAMPLE	<u>3</u>
IRE 3-7: ACCI	ESSING THE ST		3
IRE 3-7: ACCI	ESSING THE ST 0x0F 0x0E		3]
IRE 3-7: ACCI	ESSING THE ST 0x0F 0x0E 0x0D		3 3
IRE 3-7: ACCI	ESSING THE ST 0x0F 0x0E 0x0D 0x0C		3 After seven CALLS or six CALLS and an
IRE 3-7: ACCI	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0C 0x0B		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions
IRE 3-7: ACCI	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
JRE 3-7: ACCI	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x0A		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
JRE 3-7: ACCI	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x08		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
IRE 3-7: ACCI	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x08		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x07	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09 0x08 0x04 0x06 0x05 0x04 0x04 0x05	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x07 0x06 0x05 0x04 0x03 0x04 0x03 0x04	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:TOSL	ESSING THE ST 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x03 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x01 0x02	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.

3.8.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit ⁽¹⁾
	<u>If BOREN <1:0> ≠ 01</u> :
	SBOREN is read/write, but has no effect on the BOR.
	<u>If BOREN <1:0> = 01</u> :
	1 = BOR Enabled
	0 = BOR Disabled
bit 6	BORFS: Brown-out Reset Fast Start bit ⁽¹⁾
	If BOREN<1:0> = <u>11</u> (Always on) or BOREN<1:0> = <u>00</u> (Always off)
	BORFS is Read/Write, but has no effect.
	If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
	1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
	0 = Band gap operates normally, and may turn off
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF	<3:0>		—	SCS	<1:0>	61
STATUS	—	—	—	TO	PD	Z	DC	С	21
WDTCON	—	—		١	WDTPS<4:0	>		SWDTEN	93

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8 —		_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		—	40
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		43

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

11.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 11-2.

When read access is initiated on an address outside the parameters listed in Table 11-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 11-2:	USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)
-------------	---

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 11-4: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;

* PROG_DATA_HI, PROG_DATA_LO

BANKSEL	PMADRL	;	Select correct Bank
MOVLW	PROG_ADDR_LO	;	
MOVWF	PMADRL	;	Store LSB of address
CLRF	PMADRH	;	Clear MSB of address
BSF	PMCON1,CFGS	;	Select Configuration Space
BCF	INTCON,GIE	;	Disable interrupts
BSF	PMCON1,RD	;	Initiate read
NOP		;	Executed (See Figure 11-2)
NOP		;	Ignored (See Figure 11-2)
BSF	INTCON,GIE	;	Restore interrupts
MOVF	PMDATL,W	;	Get LSB of word
MOVWF	PROG_DATA_LO	;	Store in user location
MOVF	PMDATH,W	;	Get MSB of word
MOVWF	PROG_DATA_HI	;	Store in user location

12.9 PORTD Registers

12.9.1 DATA REGISTER

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 12-15). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTD register (Register 12-14) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATD).

12.9.2 DIRECTION CONTROL

The TRISD register (Register 12-15) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.9.3 ANALOG CONTROL

The ANSELD register (Register 12-17) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELD bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.9.4 PORTD FUNCTIONS AND OUTPUT PRIORITIES

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-9.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RD0	RD0
RD1	RD1
RD2	RD2
RD3	RD3
RD4	SDO2 RD4
RD5	SDA2 RD5 ⁽²⁾
RD6	SCL2 SCK2 RD6 ⁽²⁾
RD7	RD7

TABLE 12-9:	PORTD O	OUTPUT I	PRIORITY
-------------	---------	----------	----------

Note 1: Priority listed from highest to lowest.

2: RD5 and RD6 read the I^2C ST input when I^2C mode is enabled.

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 16.2.6 "ADC Conver-
	sion Procedure".

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

16.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 16-2: SPECIAL EVENT TRIGGER

Device	ССР			
PIC16(L)F1526/7	CCP10			

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to **Section 20.0** "Capture/Compare/PWM **Modules**" for more information.

18.0 TIMER1/3/5 MODULE WITH GATE CONTROL

The Timer1/3/5 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMRxH:TMRxL)
- Programmable internal or external clock source
- · 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1/3/5 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Auto-conversion Trigger (with CCP)
- · Selectable Gate Source Polarity

- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt

Figure 18-1 is a block diagram of the Timer1/3/5 module.

Note: The 'x' variable used in this section is used to designate Timer1, Timer3 or Timer5. For example, TxCON references T1CON, T3CON or T5CON. PRx references PR1, PR3 or PR5.

FIGURE 18-1: TIMER1/3/5 BLOCK DIAGRAM

20.1 Capture Mode

The Capture mode function described in this section is available and identical for CCP modules.

Capture mode makes use of the 16-bit Timer1/3/5 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMRxH:TMRxL register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- · Every rising edge
- · Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 20-1 shows a simplified diagram of the Capture operation.

20.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the CCP2x pin function can be moved to alternative pins using the APFCON register. Refer to **Section 12.1 "Alternate Pin Function"** for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 20-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

20.1.2 TIMER1/3/5 MODE RESOURCE

Timer1/3/5 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 18.0 "Timer1/3/5 Module with Gate Control" for more information on configuring Timer1/3/5.

TABLE 20-1:	CCPx CAPTURE TIMER1/3/5
	RESOURCES

ССР	TMR1	TMR3	TMR5
CCP1	٠	٠	
CCP2	٠	٠	
CCP3	•	•	
CCP4	٠	٠	
CCP5	٠	٠	
CCP6	•		•
CCP7	٠		•
CCP8	٠		•
CCP9	•		•
CCP10	٠		•

20.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- Address masking
- · Address Hold and Data Hold modes
- Selectable SDAx hold times

Figure 21-2 is a block diagram of the I^2C Interface module in Master mode. Figure 21-3 is a diagram of the I^2C interface module in Slave mode.

The PIC16F1527 has two MSSP modules, MSSP1 and MSSP2, each module operating independently from the other.

- Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSP1CON1 and SSP1CON2 registers control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.
 - 2: Throughout this section, generic references to an MSSP module in any of its operating modes may be interpreted as being equally applicable to MSSP1 or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

FIGURE 21-2: MSSPX BLOCK DIAGRAM (I²C MASTER MODE)

FIGURE 21-13: I²C RESTART CONDITION

21.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out (Case 1).
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high (Case 2).

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 21-38). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 21-39).

FIGURE 21-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 21-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

REGISTER 21-2: SSPxCON1: SSPx CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPxOV	SSPEN	CKP		SSPI	M<3:0>	
bit 7			-				bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimplemer	nted bit, read as '0'		
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at P	OR and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	y hardware	C = User cleared	
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to ti 0 = No collision <u>Slave mode:</u> 1 = The SSPxB 0 = No collision	Illision Detect bit he SSPxBUF registe 1 IUF register is written 1	er was attempted while it is still tran	I while the I ² C cond smitting the previous	litions were not valie word (must be clear	d for a transmission to ed in software)	be started
bit 6	SSPxOV: Receiv In SPI mode: 1 = A new byte Overflow ca setting over SSPxBUF r 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	ve Overflow Indicator is received while the s an only occur in Slave flow. In Master mode register (must be clear w eccived while the SS leared in software). w	 bit⁽¹⁾ SSPxBUF register mode. In Slave the overflow bit i red in software). PxBUF register 	er is still holding the p mode, the user mus s not set since each is still holding the p	revious data. In case t read the SSPxBUF new reception (and t previous byte. SSPx	of overflow, the data ir ; even if only transmitti ransmission) is initiated (OV is a "don't care" in	n SSPxSR is lost. ng data, to avoid d by writing to the n Transmit mode
bit 5	SSPEN: Synchro In both modes, w <u>In SPI mode:</u> 1 = Enables se 0 = Disables se <u>In I²C mode:</u> 1 = Enables the 0 = Disables se	onous Serial Port En when enabled, these rial port and configure erial port and configure e serial port and configure erial port and configure	able bit pins must be pro- es SCKx, SDOx, irres these pins a gures the SDAx a irres these pins a	operly configured as SDIx and SSx as the as I/O port pins and SCLx pins as the as I/O port pins	s input or output e source of the seria e source of the serial	l port pins ⁽²⁾ port pins ⁽³⁾	
bit 4	CKP: Clock Pola I = Idle state for 0 = Idle state for In I ² C Slave mod SCLx release co 1 = Enable clock k 0 = Holds clock k In I ² C Master mod Unused in this m	rity Select bit clock is a high level clock is a low level <u>le:</u> ntrol ow (clock stretch). (l <u>ode:</u> ode	Jsed to ensure o	lata setup time.)			
bit 3-0	$\begin{array}{l} \textbf{SSPM<3:0>:} Syr} \\ 1111 = ^2 C Slave \\ 1110 = ^2 C Slave \\ 1101 = Reservee \\ 1000 = Reservee \\ 1001 = ^2 C firm \\ 1000 = SPI Masi \\ 1001 = Reservee \\ 1000 = ^2 C Masi \\ 0111 = ^2 C Slave \\ 0110 = ^2 C Slave \\ 0101 = SPI Slave \\ 0100 = SPI Slave \\ 0100 = SPI Masi \\ 0010 = SPI Masi \\ 0010 = SPI Masi \\ 0000 = SPI Masi \\ 00$	nchronous Serial Po e mode, 10-bit addres e mode, 7-bit addres d vare controlled Mastr ter mode, clock = Fo e mode, clock = Fo e mode, clock = Fo e mode, clock = SCI e mode, clock = SCI e mode, clock = SCI ter mode, clock = Fo ter mode, clock = Fo ter mode, clock = Fo ter mode, clock = Fo	rt Mode Select b ss with Start and s with Start and er mode (Slave i ssc/(4 * (SSPxAI ss (x pin, <u>SSx</u> pin o (x pin o))))))))))))))))))))))))))))))))))))	its d Stop bit interrupts Stop bit interrupts e dle) DD+1)) ⁽⁵⁾ DD+1)) ⁽⁴⁾ control disabled, SS control enabled	enabled enabled	'O pin	
Note 1: 1 2: V 3: V 4: 5	n Master mode, the ov When enabled, these p When enabled, the SD/ SSPxADD values of 0,	erflow bit is not set s ins must be properly Ax and SCLx pins m 1 or 2 are not suppo	ince each new r configured as in ust be configure rted for I ² C mod	reception (and trans nput or output. d as inputs. le.	smission) is initiated	l by writing to the SSF	PxBUF register.

22.5.1.5 Synchronous Master Reception

Data is received at the RXx/DTx pin. The RXx/DTx pin output driver must be disabled by setting the corresponding TRIS bits when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCxSTA register) or the Continuous Receive Enable bit (CREN of the RCxSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RXx/DTx pin on the trailing edge of the TXx/CKx clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCxIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCxREG. The RCxIF bit remains set as long as there are un-read characters in the receive FIFO.

22.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TXx/CKx line. The TXx/CKx pin output driver must be disabled by setting the associated TRIS bit when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

22.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCxREG is read to access the FIFO. When this happens the OERR bit of the RCxSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCxREG.

If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

22.5.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift 9-bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the 8 Least Significant bits from the RCxREG.

22.5.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPxBRGH, SPxBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Set the RXx/DTx and TXx/CKx TRIS controls to '1'.
- Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC. Disable RXx/DTx and TXx/CKx output drivers by setting the corresponding TRIS bits.
- 4. Ensure bits CREN and SREN are clear.
- 5. If using interrupts, set the GIE and PEIE bits of the INTCON register and set RCxIE.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- Interrupt flag bit RCxIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCxIE was set.
- 9. Read the RCxSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCxREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

23.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP™ refer to the "*PIC16F/LF151X/152X Memory Programming Specification*" (DS41422).

23.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

23.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.4** "Low-Power **Brown-Out Reset (LPBOR)**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

23.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6 pin, 6 connector) configuration. See Figure 23-1.

Another connector often found in use with the PICkit™ programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 23-2.

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)
D111	IDDP	Supply Current during Programming	—	—	10	mA	
D112	VBE	VDD for Bulk Erase	2.7	_	VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN	—	VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	_	mA	
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—		E/W	-40°C to +85°C (Note 1)
D122	VPRW	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	_		E/W	0°C to +60°C lower byte Last 128 addresses

25.5 Memory Programming Requirements

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

FIGURE 25-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 25-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCP Input Low Time	No Prescaler	0.5Tcy + 20			ns	
			With Prescaler	20	I	Ι	ns	
CC02*	ТссН	CCP Input High Time	No Prescaler	0.5Tcy + 20	_		ns	
			With Prescaler	20	I	Ι	ns	
CC03*	TccP	CCP Input Period		<u>3Tcy + 40</u> N	_		ns	N = prescale value

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 26-22: IDD, MFINTOSC, Fosc = 500 kHz, PIC16F1526/7 ONLY

