

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Product Status Core Processor Core Size Speed	Obsolete Z8 8-Bit 10MHz
Core Processor Core Size	Z8 8-Bit
Core Size	8-Bit
Speed	1 OMLI-
	TOMINZ
Connectivity	-
Peripherals	WDT
Number of I/O	13
Program Memory Size	512B (512 x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	32 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8e00010psc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION (Continued)

Note: All signals with an overline, " $\overline{}$ ", are active Low. For example, $\overline{B/W}$ (WORD is active Low, only); $\overline{B/W}$ (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{CC}	V_{DD}
Ground	GND	V_{SS}

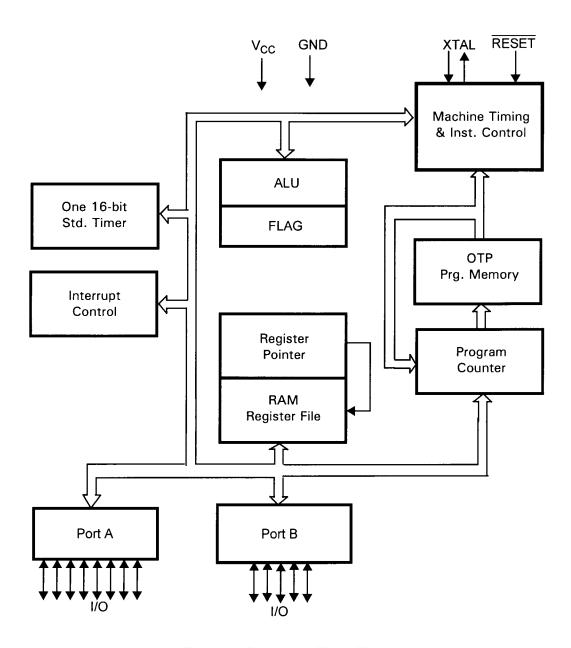


Figure 1. Functional Block Diagram

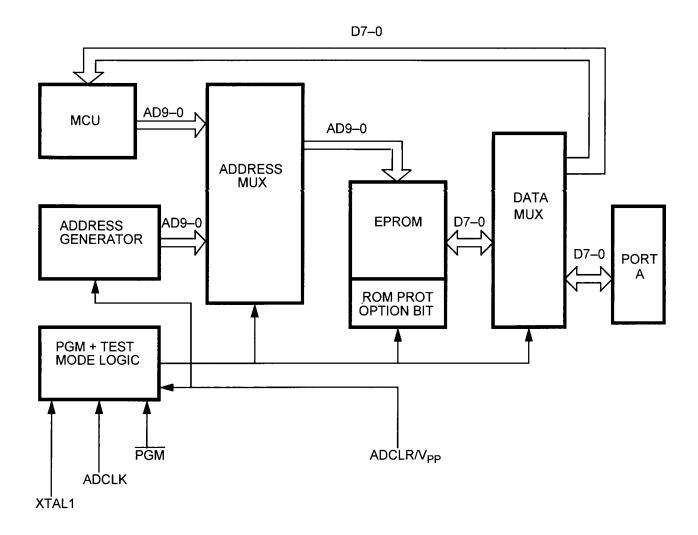


Figure 2. EPROM Programming Mode Block Diagram

PIN DESCRIPTION

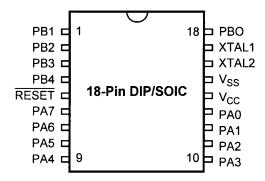


Figure 3. 18-Pin DIP/SOIC Pin Identification

Table 1. 18-Pin DIP/SOIC Pin Assignments

Standard M	ode		
Pin#	Symbol	Function	Direction
1–4	PB1-PB4	Port B, Pins 1,2,3,4	In/Output
5	RESET	Reset	Input
6–9	PA7-PA4	Port A, Pins 7,6,5,4	In/Output
10–13	PA3-PA0	Port A, Pins 3,2,1,0	In/Output
14	V _{CC}	Power Supply	3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
15	V _{SS}	Ground	
16	XTAL2	Crystal Oscillator Clock	Output
17	XTAL1	Crystal Oscillator Clock	Input
18	PB0	Port B, Pin 0	In/Output

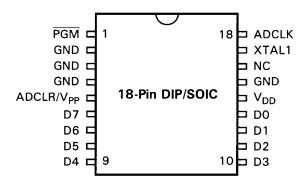


Figure 4. 18-Pin DIP/SOIC Pin Identification; EPROM Programming Mode

Table 2. 18-Pin DIP/SOIC Pin Assignments; EPROM Programmable Mode

EPROM Programming Mode					
Pin#	Symbol	Function	Direction		
1	PGM	Program Mode	Input		
2–4	GND	Ground			
5	ADCLR/V _{PP}	Clear Clock/Program Voltage	Input		
6–9	D7-D4	Data 7,6,5,4	In/Output		
10–13	D3-D0	Data 3,2,1,0	In/Output		
14	V_{DD}	Power Supply	***		
15	GND	Ground			
16	NC	No Connection			
17	XTAL1	1 MHz Clock	Input		
18	ADCLK	Address Clock	Input		

PIN DESCRIPTION (Continued)

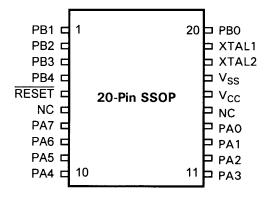


Figure 5. 20-Pin SSOP Pin Identification

 Table 3. 20-Pin SSOP Pin Assignments

Standard Mo	ode	•	
Pin#	Symbol	Function	Direction
1–4	PB1-PB4	Port B, Pins 1,2,3,4	In/Output
5	RESET	Reset	Input
6	NC	No Connection	
7–10	PA7-PA4	Port A, Pins 7,6,5,4	In/Output
11–14	PA3-PA0	Port A, Pins 3,2,1,0	In/Output
15	NC	No Connection	
16	V _{CC}	Power Supply	
17	V _{SS}	Ground	
18	XTAL2	Crystal Oscillator Clock	Output
19	XTAL1	Crystal Oscillator Clock	Input
20	PB0	Port B, Pin 0	In/Output

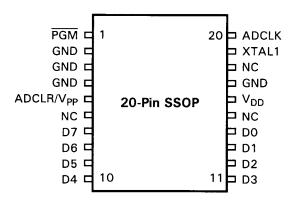


Figure 6. 20-Pin SSOP Pin Identification; EPROM Programming Mode

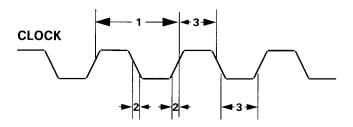
Table 4. 20-Pin SSOP Pin Assignments; EPROM Programming Mode

EPROM Programming Mode					
Pin#	Symbol	Symbol Function			
1	PGM	Program Mode	Input		
2–4	GND	Ground			
5	ADCLR/V _{PP}	Clear Clock/Program Voltage	Input		
6	NC	No Connection			
7–10	D7-D4	Data 7,6,5,4	In/Output		
11–14	D3-D0	Data 3,2,1,0	In/Output		
15	NC	No Connection			
16	V _{DD}	Power Supply			
17	GND	Ground			
18	NC	No Connection			
19	XTAL1	1 MHz Clock	Input		
20	ADCLK	Address Clock	Input		

DC ELECTRICAL CHARACTERISTICS

			T _A = 0°C	to +70°C				
Sym	Parameter	V _{CC} ¹	Min	Max	Typical @ 25°C ²	Units	Conditions	Notes
V _{CH}	Clock Input High Voltage	3.5V	0.7V _{CC}	V _{CC} +0.3	1.3	V	Driven by External Clock Generator	
		5.5V	0.7V _{CC}	V _{CC} +0.3	2.5	٧	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	3.5V	V _{SS} -0.3	0.2V _{CC}	0.7	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2V _{CC}	1.5	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	3.5V	0.7V _{CC}	V _{CC} +0.3	1.3	٧		
		5.5V	0.7V _{CC}	V _{CC} +0.3	2.5	٧		
V _{IL}	Input Low Voltage	3.5V	V _{ss} -0.3	0.2V _{CC}	0.7	V		
		5.5V	V _{ss} -0.3	0.2V _{cc}	1.5	٧		
V _{OH}	Output High Voltage	3.5V	V _{cc} -0.4		3.1	٧	I _{OH} = -2.0 mA	
		5.5V	V _{cc} -0.4		4.8	٧	$I_{OH} = -2.0 \text{ mA}$	
V _{OL1}	Output Low Voltage	3.5V		0.6	0.2	٧	I _{OL} = +4.0 mA	
		5.5V		0.4	0.1	V	I _{OL} = +4.0 mA	
V _{OL2}	Output Low Voltage	3.5V		1.2	0.5	V	I _{OL} = +6 mA	
		5.5V		1.2	0.5	V	I _{OL} = +12 mA	
V _{RH}	Reset Input High	3.5V	0.5V _{CC}	V _{CC}	1.1	٧		
	Voltage	5.5V	0.5V _{CC}	V _{CC}	2.2	V		
V _{RL}	Reset Input Low	3.5V	V _{SS} -0.3	0.2V _{CC}	0.9	٧		
	Voltage	5.5V	V _{SS} -0.3	0.2V _{CC}	1.4	٧		
I _{IL}	Input Leakage	3.5V	-1.0	2.0	0.064	μA	V _{IN} = 0V, V _{CC}	* * * *
		5.5V	-1.0	2.0	0.064	μA	V _{IN} = 0V, V _{CC}	
I _{OL}	Output Leakage	3.5V	-1.0	2.0	0.114	μA	V _{IN} = 0V, V _{CC}	
		5.5V	-1.0	2.0	0.114	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{IR}	Reset Input Current	3.5V	-10	-60	-30	μA		
		5.5V	-20	-180	-100	μA		
I _{cc}	Supply Current	3.5V		2.5	2.0	mA	@ 10 MHz	3,4
00		5.5V		6.0	4.0	mA	@ 10 MHz	3,4
I _{CC1}	Standby Current	3.5V		2.0	1.0	mA	Halt Mode V _{IN} = 0V V _{CC} @10 MHz	3,4
		5.5V		6.0	4.0	mA	Halt Mode V _{IN} = 0V V _{CC} @10 MHz	3,4

DC ELECTRICAL CHARACTERISTICS (Continued)


		$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$						
Sum	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C ²	Linita	Conditions	Notes
	Clock Input High	4.5V		V _{CC} +0.3	2.5	V V	Driven by External Clock	Notes
V _{СН}	Voltage	4.5 V	0.7 V _{cc}	v _{cc} · o.s	2.5	V	Generator	
		5.5V	0.7 V _{cc}	V _{cc} +0.3	2.5	٧	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	4.5V	V _{ss} -0.3	0.2 V _{cc}	1.5	V	Driven by External Clock Generator	
		5.5V	V _{ss} -0.3	0.2 V _{CC}	1.5	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	4.5V	0.7 V _{CC}	V _{cc} +0.3	2.5	٧		
		5.5V	0.7 V _{CC}	V _{cc} +0.3	2.5	V		
V _{IL}	Input Low Voltage	4.5V	V _{ss} -0.3	0.2 V _{cc}	1.5	V		
		5.5V	V _{ss} -0.3	0.2 V _{CC}	1.5	V		
 V _{он}	Output High Voltage	4.5V	V _{cc} -0.4		4.8	V	I _{OH} = -2.0 mA	
011		5.5V	V _{cc} -0.4	-	4.8	V	I _{OH} = -2.0 mA	
V _{OL1}	Output Low Voltage	4.5V		0.4	0.1	V	I _{OL} = +4.0 mA	
OLI		5.5V	41.40.0 0 MM V T 4874	0.4	0.1	V	I _{OL} = +4.0 mA	
V _{OL2}	Output Low Voltage	4.5V		1.2	0.5	V	I _{OL} = +12 mA,	
OLZ		5.5V	A STATE OF THE STA	1.2	0.5	V	I _{OL} = +12 mA,	
V_{RH}	Reset Input High	4.5V	0.5V _{CC}	V _{cc}	1.1	V	OL .	
	Voltage	5.5V	0.5V _{CC}	V _{CC}	2.2	V		
I _{IL}	Input Leakage	4.5V	-1.0	2.0	<1.0	μA	V _{IN} = 0V, V _{CC}	
		5.5V	-1.0	2.0	<1.0		V _{IN} = 0V, V _{CC}	
I _{OL}	Output Leakage	4.5V	-1.0	2.0	<1.0		V _{IN} = 0V, V _{CC}	
OL	-	5.5V	-1.0	2.0	<1.0		V _{IN} = 0V, V _{CC}	
I _{IR}	Reset Input Current	4.5V	-18	-180	-112	mA		
	•	5.5V	-18	-180	-112	mA		
I _{cc}	Supply Current	4.5V		7.0	4.0	mA	@ 10 MHz	3,4
CC		5.5V		7.0	4.0	mΑ	@ 10 MHz	3,4
I _{CC1}	Standby Current	4.5V		2.0	1.0	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 10 MHz	3,4
		5.5V		2.0	1.0		HALT Mode V _{IN} = 0V, V _{CC} @ 10 MHz	3,4

T _A = -40°C to +105°C								
Sym	Parameter	V _{cc} ¹	Min	Max	Typical @ 25°C ²	Units	Conditions	Notes
I _{CC2}	Standby Current	4.5V		700	250	nA	STOP Mode V _{IN} = 0V, V _{CC}	5
		5.5V		700	250	nA	STOP Mode V _{IN} = 0V, V _{CC}	5

Notes:

- 1. The V_{CC} voltage specification of 4.5 V and 5.5 V guarantees 5.0 V \pm 0.5 V. 2. Typical values are measured at V_{CC} = 3.3V and V_{CC} = 5.0V. 3. All outputs unloaded, I/O pins floating, and all inputs are at V_{CC} or V_{SS} level.
- 4. CL1 = CL2 = 22 pF.
- 5. Same as note 3 except inputs at V_{CC}.

AC ELECTRICAL CHARACTERISTICS

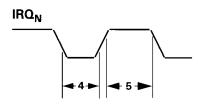


Figure 8. AC Electrical Timing Diagram

Table 5. Additional Timings

 $T_A = -40$ °C to +105°C @ 10 MHz

No	Symbol	Parameter	V_{CC}^{1}	Min	Max	Units	Notes
1	ТрС	Input Clock Period	3.5V	100	DC	ns	2
		_	5.5V	100	DC	ns	2
2	TrC,TfC	Clock Input Rise and Fall Times	3.5V		15	ns	2
		_	5.5V		15	ns	2
3	TwC	Input Clock Width	3.5V	50		ns	2
		_	5.5V	50		ns	2
4	TwlL	Int. Request Input Low Time	3.5V	70		ns	2
		va	5.5V	70		ns	2
5	TwlH	Int. Request Input High Time	3.5V	5TpC			2
		_	5.5V	5TpC			2
6	Twsm	STOP Mode Recovery Width Spec.	3.5V	12		ns	
		_	5.5V	12	od/v	ns	
7	Tost	Oscillator Start-Up Time	3.5V		5TpC		
		_	5.5V		5TpC		

Notes:

- 1. The V_{DD} voltage specification of 3.5V guarantees 3.5V. The V_{DD} voltage specification of 5.5V guarantees 5.0V \pm 0.5V. 2. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

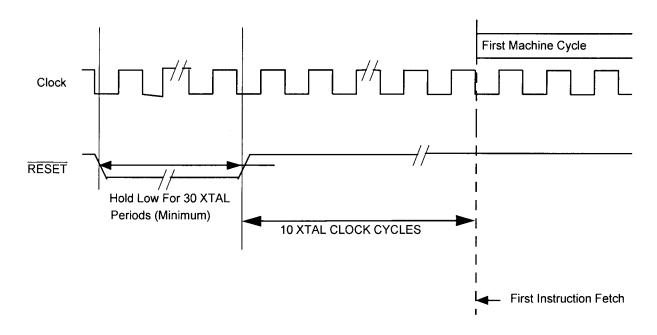


Figure 9. Reset Timing

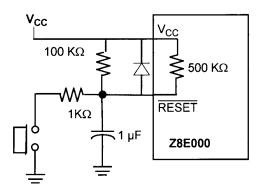


Figure 10. Example of External Power-On Reset Circuit

Z8E000 WATCH-DOG TIMER (WDT) (Continued)

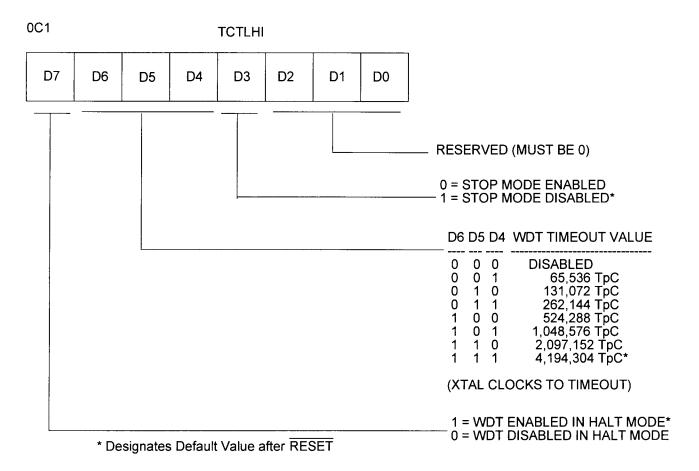


Figure 12. Z8E000 TCTLHI Register for Control of WDT

Note: The WDT can only be disabled via software if the first instruction out of RESET performs this function. Logic within the Z8E000 will detect that it is in the process of executing the first instruction after the part leaves RESET. During the execution of this instruction, the upper five bits of the TCTLHI register can be written. After this first instruction, hardware will not allow the upper five bits of this register to be written.

The TCTLHI bits for control of the WDT are described below:

WDT Time Select (D6, D5, D4). Bits 6, 5, and 4 determine the time-out period. Table 7 indicates the range of timeout values that can be obtained. The default values of D6, D5, and D4 are all 1, thus setting the WDT to its maximum timeout period when coming out of RESET.

Table 7. Time-Out Period of the WDT

D6	D5	D4	Crystal Clocks to Timeout	Time-Out Using a10 MHz Crystal
0	0	0	Disabled	Disabled
0	0	1	65,536 TpC	6.55 ms
0	1	0	131,072 TpC	13.11 ms
0	1	1	262,144 TpC	26.21 ms
1	0	0	524,288 TpC	52.43 ms
1	0	1	1,048,576 TpC	104.86 ms
1	1	0	2,097,152 TpC	209.72 ms
1	1	1	4,194,304 TpC	419.43 ms
- NI 1				Laborat III

Notes:

TpC = XTAL clock cycle.

The default on reset is D6 = D5 = D4 = 1.

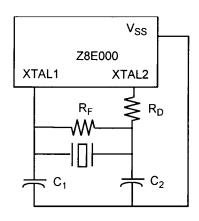


Figure 16. Crystal/Ceramic Resonator Oscillator

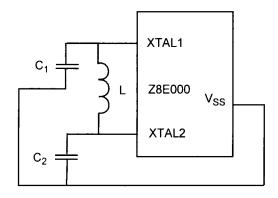


Figure 17. LC Clock

In most cases, the R_D is zero ohms (0Ω) , and R_F is infinite. The set value is determined and specified by the crystal/ceramic resonator manufacturer. R_D can be increased to de-

crease the amount of drive from the oscillator output to the crystal. R_D can also be used as an adjustment to avoid clipping of the oscillator signal to reduce noise. R_F can be used to improve the start-up of the crystal/ceramic resonator. The Z8E000 oscillator already has an internal shunt resistor in parallel to the crystal/ceramic resonator.

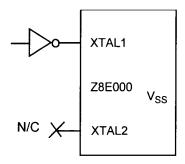


Figure 18. External Clock

Figure 16, Figure 17, and Figure 18 recommend that the load capacitor ground trace connect directly to the V_{SS} (GND) pin of the Z8E000, thereby ensuring that no system noise is injected into the Z8E000 clock. This trace should not be shared with any other components except at the V_{SS} pin of the Z8E000.

Note: A parallel resonant crystal or resonator data sheet will specify a load capacitor value that is the series combination of C_1 and C_2 , including all parasitics (PCB and holder).

LC OSCILLATOR

The Z8E000 oscillator can use a LC network to generate a XTAL clock (Figure 18).

The frequency stays stable over V_{CC} and temperature. The oscillation frequency is determined by the equation:

Frequency =
$$\frac{1}{2\pi (LC_T)^{1/2}}$$

where L is the total inductance including parasitics and C_T is the total series capacitance including the parasitics.

Simple series capacitance is calculated using the following equation:

$$1/ C_T$$
 = $1/C_1 + 1/C_2$
If C_1 = C_2
 $1/C_T$ = $2 C_1$
 C_1 = $2 C_T$

A sample calculation of capacitance C_1 and C_2 for 5.83-MHz frequency and inductance value of 27 uH is illustrated as follows:

5.83 (10^6) =
$$\frac{1}{2\pi [2.7 (10^{-6}) C_T] 1/2}$$

$$C_T = 27.6 \text{ pf}$$

Thus $C_1 = 55.2 \text{ pf}$ and $C_2 = 55.2 \text{ pf}$.

TIMERS

Two 8-bit timers (T2 and T3), are provided but can only operate in cascade to function as a 16-bit standard timer (Figure 19).

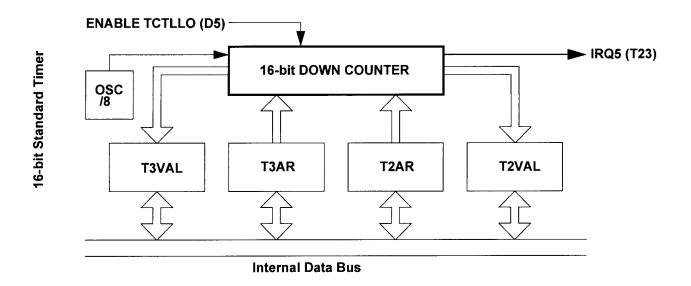


Figure 19. Timer Block Diagram

TIMERS (Continued)

er, when hardware clears a control register bit for a timer that is configured for single-shot operation, the clearing of the control bit will override a software write. Reading either register can be done at any time, and will have no effect on the functionality of the timer.

When defined to operate as a single 16-bit entity, the entire 16-bit value must reach 0 before an interrupt is generated. In this case, a single interrupt will be generated, and the interrupt will correspond to the even 8-bit timer. For example, timers T2 and T3 are cascaded to form a single 16-bit timer, so the interrupt for the combined timer will be defined to be that of timer T2 rather than T3 (Figure 20). When a timer pair is specified to act as a single 16-bit timer, the even timer registers in the pair (timer T2) will be defined to hold the timer's least significant byte. Conversely, the odd timer in the pair (timer T3) will hold the timer's most significant byte.

In parallel with the posting of the interrupt request, the interrupting timer's count value will be initialized by copying the contents of the auto-initialization value register to the count value register.

Note: Any time that a timer pair is defined to act as a single 16-bit timer, the auto-reload function will be performed automatically. All 16-bit timers will continue counting while their interrupt requests are active, and will operate in a free-running manner.

If interrupts are disabled for a long period of time, it is possible for the timer to decrement to 0 again before its initial interrupt has been responded to. This condition is termed a degenerate case, and hardware is not required to detect it.

When the timer control register is written, all timers that are enabled by the write will begin counting using the value that is held in their count register. In this case, an auto-initialization is not performed. All timers can receive an internal clock source only. Each timer that is enabled will be updated every 8th XTAL clock cycle.

READ/WRITE OPERATIONS

The control for each port is done on a bit-wise basis. All bits are capable of operating as inputs or outputs, depending upon the setting of the port's directional control register. If configured as an input, each bit is provided a Schmitt-trigger. The output of the Schmitt-trigger is latched twice to perform a synchronization function, while the output of the synchronizer is fed to the port input register, which can be read by software.

A write to a port input register has the effect of updating the contents of the input register, but subsequent reads will not necessarily return the same value that was written. If the bit in question is defined as an input, the input register for that bit position will contain the current synchronized input value. Thus, writes to that bit position will be overwritten on the next clock cycle with the newly sampled input data. However, if the particular port bit is programmed as an output, the input register for that bit will retain the software-updated value. The port bits that are programmed as outputs do not sample the value being driven out.

Any bit in either port can be defined as an output by setting the appropriate bit in the directional control register. If such is the case, the value held in the appropriate bit of the port output register is driven directly onto the output pin.

Note: The above result does not necessarily reflect the actual output value. If an external error is holding an output pin

either High or Low against the output driver, the software read will return the *required* value, not the actual state caused by the contention. When a bit is defined as an output, the Schmitt-trigger on the input will be disabled to save power.

Updates to the output register will take effect based upon the timing of the internal instruction pipeline; however, this timing is referenced to the rising edge of the clock. The output register can be read at any time, and will return the current output value that is held. No restrictions are placed on the timing of reads and/or writes to any of the port registers with respect to the others, but care should be taken when updating the directional control and special function registers

When updating a directional control register, the special function register should first be disabled. If this precaution is not taken, spurious events could take place as a result of the change in port I/O status. This precaution is especially important when defining changes in Port B, as the spurious event referred to above could be one or more interrupts. Clearing of the SFR register should be the first step in configuring the port, and setting the SFR register should be the final step in the port configuration process. To ensure deterministic behavior, the SFR register should not be written until the pins are being driven appropriately and all initialization has been completed.

PORT A

Port A is a general-purpose port (Figure 23). Each of its lines can be independently programmed as input or output via the Port A Directional Control Register (PTADIR at 0D2H) as seen in Figure 22. A bit set to a "1" in PTADIR configures the corresponding bit in Port A as an output, while a bit cleared to "0" configures the corresponding bit in Port A as an input.

The input buffers are Schmitt-triggered. Bits programmed as outputs can be individually programmed as either pushpull or open drain by setting the corresponding bit in the Special Function Register (PTASFR, Figure 27.)

Register 0D2H
PTADIR Register

D7 D6 D5 D4 D3 D2 D1 D0

1 = Output
0 = Input

Figure 22. Port A Directional Control Register

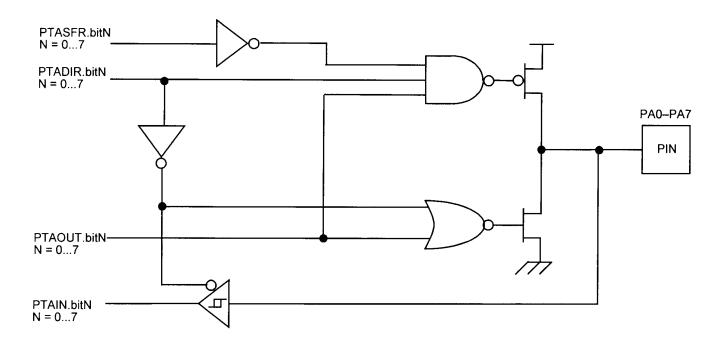


Figure 23. Port A Configuration with Open-Drain Capability and Schmitt-Trigger

PORT B

Port B Description

Port B is a 5-bit, bidirectional, CMOS-compatible I/O port. These five I/O lines can be configured under software control to be an input or output, independently. Input buffers are Schmitt-triggered. See Figure 29 through Figure 33 for diagrams of all five Port B pins.

In addition to standard input/output capability on all five pins of Port B, each pin provides special functionality as indicated in Table 8:

Table 8. Port B Special Functions

Port Pin	Input Special Function	Output Special Function
PB0	Stop Mode Recovery Input	None
PB1	None	None
PB2	IRQ3	None
PB3	None	None
PB4	IRQ1/IRQ4	None

Special functionality is invoked via the Port B Special Function Register. See Figure 28 for the arrangement and control conventions for this register.

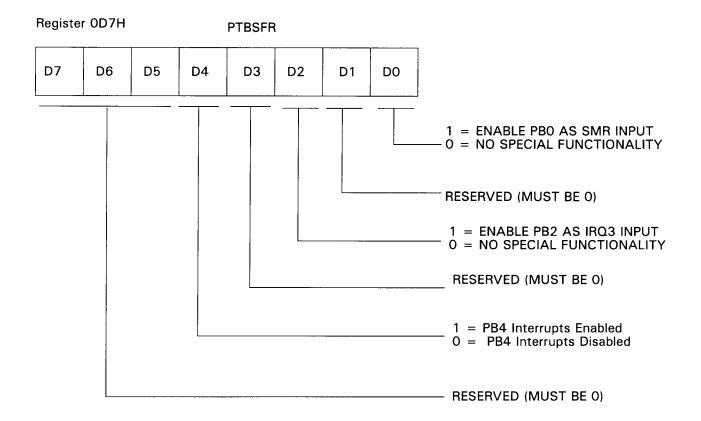


Figure 28. Port B Special Function Register

PORT B—PIN 2 CONFIGURATION

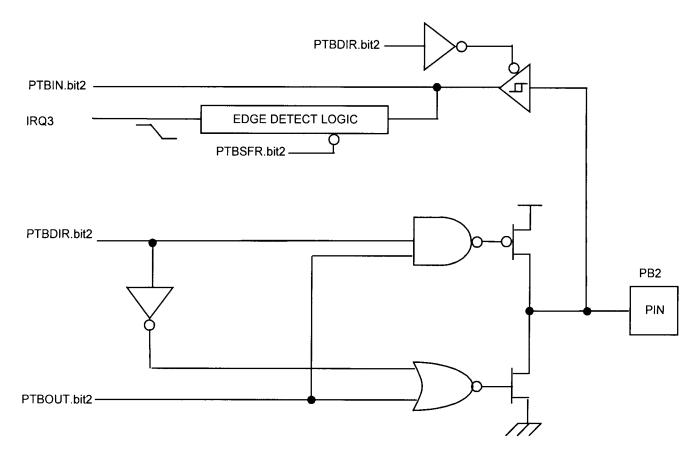
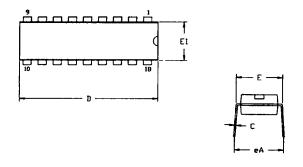
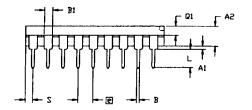
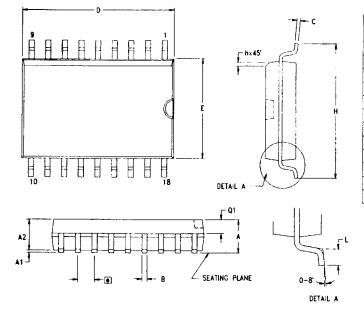




Figure 31. Port B Pin 2 Diagram

PACKAGE INFORMATION



SYMBOL	MILLIMETER		IN	INCH	
3111000	MIN	MAX	MIN	MAX	
Al	0.51	0.81	.020	.032	
A2	3.25	3.43	.128	.135	
В	0.38	0.53	.015	.021	
B1	1.14	1.65	.045	.065	
С	0.23	0.38	.009	.015	
D	22.35	23.37	.880	.920	
Ε	7.62	8.13	.300	320	
EL	6.22	6.48	.245	.255	
E	2.54	2.54 TYP .100 TYP		TYP	
eА	7.87	8.89	.310	.350	
L	3.18	3.81	125	.150	
Ql	1.52	1.65	.060	.065	
S	0.89	1.65	.035	.065	

CONTROLLING DIMENSIONS : INCH

Figure 39. 18-Pin DIP Package Diagram

SYMBOL	MILLIMETER		INCH	
	MIN	MAX	MIN	MAX
A	2.40	2.65	0.094	0.104
A1	0.10	0.30	0.004	0.012
A2	2.24	2.44	0.088	0.096
В	0.36	0.46	0.014	0.018
С	0.23	0.30	0.009	0.012
D	11.40	11.75	0.449	0.463
Ε	7.40	7.60	0.291	0.299
(0)	1.27 TYP		0.050 TYP	
н	10.00	10.65	0.394	0.419
h	0.30	0.50	0.012	0.020
L	0.60	1.00	0.024	0.039
Q1	0.97	1.07	0.038	0.042

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 40. 18-Pin SOIC Package Diagram