

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1536
Number of Logic Elements/Cells	13824
Total RAM Bits	884736
Number of I/O	320
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	676-BBGA, FCBGA
Supplier Device Package	676-FCBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc4vlx15-10ffg676c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

300MHz, Low-Power, High-Output-Current, Differential Line Driver

General Description

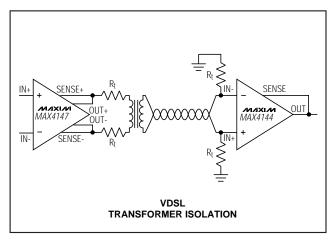
The MAX4147 differential line driver offers high-speed performance while consuming only 100mW of power. Its amplifier has fully symmetrical inputs and outputs and uses laser-trimmed, matched, thin-film resistors to deliver 70dB CMR at 10MHz. Using current-feedback techniques, the MAX4147 achieves a 300MHz bandwidth and a 2000V/µs slew rate.

Optimized for differential, high-output-current applications such as transformer drivers, the MAX4147 drives ± 2.6 V into a 26.5 Ω load (single-ended) or ± 5.6 V into a 53Ω load (differential). This device is preset for a closed-loop gain of 2V/V. Its ultra-low 0.008%/0.03° differential gain/phase allow for a variety of video and RF signal-processing applications.

For power-sensitive applications, the MAX4147 has a shutdown function that reduces supply current to less than 1mA. In addition, superior SFDR (-82dBc at 10kHz, $R_L = 33\Omega$) makes it ideal as a transformer driver for HDSL applications.

For a complete differential transmission link, use the MAX4147 with the MAX4144 line receiver (see the MAX4144 data sheet for more information).

Applications

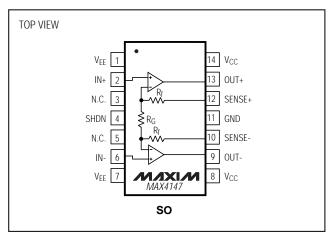

VDSL, ADSL, HDSL

Video Twisted-Pair Driver

Differential Pulse Amplifier

Differential ADC Driver

Typical Application Circuit


Features

- ♦ 2V/V Fixed Gain
- **♦ 300MHz -3dB Bandwidth**
- ♦ 2000V/µs Slew Rate
- ♦ 82dBc SFDR at 10kHz
- ♦ 70dB CMR at 10MHz
- Low Differential Gain/Phase: 0.008%/0.03°
- ♦ High Output Drive: ±5.6V into 53Ω
- ♦ Low Power: 100mW

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX4147ESD	-40°C to +85°C	14 SO

Pin Configuration

MIXIM

ABSOLUTE MAXIMUM RATINGS

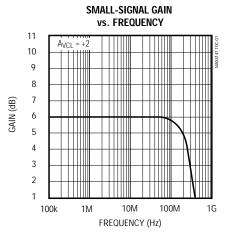
Supply Voltage (V _{CC} to V _{EE})	Operating Temperature Range MAX4147ESD40°C to +85°C Storage Temperature Range65°C to +160°C Lead Temperature (soldering, 10sec)+300°C
Short-Circuit Duration	, ,

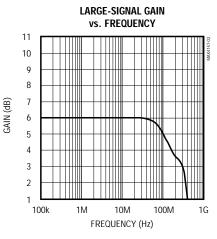
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

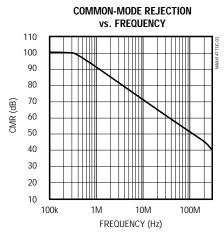
ELECTRICAL CHARACTERISTICS

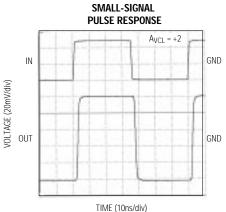
 $(V_{CC} = +5V, V_{EE} = -5V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.)

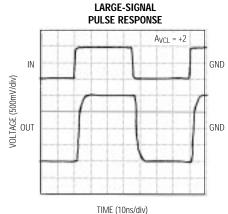
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC SPECIFICATIONS			1			
Input Offset Voltage	Vos	Vout = 0V, RL = ∞		0.5	6	mV
Input Offset Voltage Drift	TCVos	V _{OUT} = 0V, R _L = ∞		30		μV/°C
Input Bias Current	IB	V _{OUT} = 0V, R _L = ∞, V _{IN} = -V _{OS}		9	20	μΑ
Input Offset Current	los	Vout = 0V, RL = ∞, VIN = -Vos		0.03	2	μΑ
Input Voltage Noice		f = 10kHz		8		nV/√Hz
Input Voltage Noise	en	f = 1MHz to 100MHz		80		μVRMS
Input Current Noice		f = 10kHz		1.7		pA/√Hz
Input Current Noise	In	f = 1MHz to 100MHz		17		nA _{RMS}
Input Capacitance	CIN			1		pF
Differential Input Resistance				1		MΩ
Differential Input Voltage Range		R _L = ∞	-3.6		3.6	V
Common-Mode Input Voltage Range	VcM	R _L = ∞	-2.8		2.8	V
Gain	Ay	$-1V \le V_{OUT} \le +1V$, $R_L = 53\Omega$		2		V/V
Gain Error		$-1V \le V_{OUT} \le +1V$, $R_L = 53\Omega$		0.3	1	%
Common-Mode Rejection	CMR	$V_{CM} = \pm 2.8V$	70	100		dB
Power-Supply Rejection	PSR	$V_S = \pm 4.5 V \text{ to } \pm 5.5 V$	70	100		dB
Quiescent Supply Current	Isy	V _{IN} = 0, R _L = ∞		10	13	mA
Shutdown Supply Current	ISHDN	V _{IN} = 0, R _L = ∞		0.6	1	mA
	Vout	Single-ended, R _L = ∞	3.2	3.8		- V
Output Voltage Swing		Differential, R _L = ∞	7.2	7.8		
Output Voltage Swing		Single-ended, $R_L = 26.5\Omega$	2.2	2.6		
		Differential, $R_L = 53\Omega$	5.0	5.6		
Output Current Drive	lout	V _{OUT} = ±2.2V	110	160		mA
SHDN High Threshold	VIH				2.0	V
SHDN Low Threshold	VIL		0.8			V
SHDN Input Current	ISHDN	V _{SHDN} ≤ 0.8V		75	150	μΑ
STEN IIIput Guilent	וטחטכי	VSHDN≥2V		10		nA

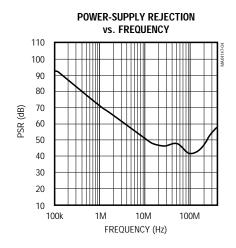

ELECTRICAL CHARACTERISTICS (continued)

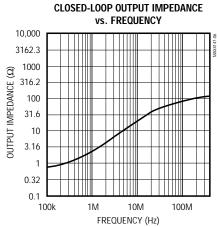

 $(V_{CC} = +5V, V_{EE} = -5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

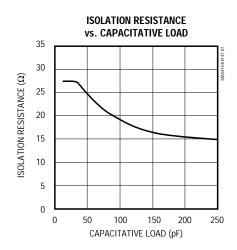

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
AC SPECIFICATIONS								
-3dB Bandwidth	BW _(-3dB)	V _{OUT} ≤ 0.1V _{RMS}	300			MHz		
Full-Power Bandwidth	FPBW	V _{OUT} = 2Vp-p		250			MHz	
0.1dB Bandwidth	BW(0.1dB)	Vout ≤ 0.1V _{RMS}	70			MHz		
Common-Mode Rejection	CMR	f = 10MHz		70			dB	
Slew Rate	SR	Differential, -2V ≤ V _{OUT} ≤ +2V			2000		V/µs	
Settling Time	ts	$1V \le V_{OUT} \le +1V$, $R_L = 150\Omega$, $A_{VCL} = +2$	to 0.1%		10		ns	
			to 0.01%		30			
Differential Gain	DG	$f = 3.58MHz, R_L = 150\Omega$			0.008		%	
Differential Phase	DP	$f = 3.58MHz, R_L = 150\Omega$		$f = 3.58MHz, R_L = 150\Omega$		0.03		degrees
Spurious Free Dynamic Dange	SFDR	f_{C} = 10kHz, V_{OUT} = 4.0Vp-p, R_{L} = 33Ω single-ended, R_{S} = $50\Omega,$ Figure 1			-82		- dBc	
Spurious-Free Dynamic Range	SFUR	$f_C = 5MHz$, $V_{OUT} = 2Vp-p$, $R_L = 150\Omega$ differential, Figure 2			-75		ubc	

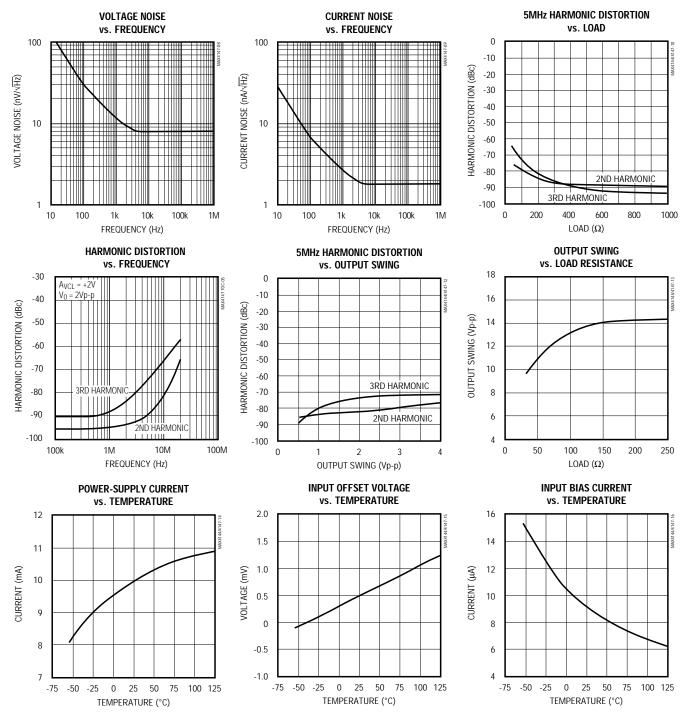

Typical Operating Characteristics

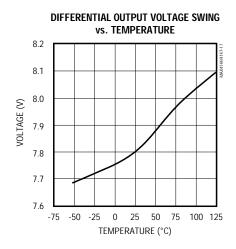

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 150\Omega, T_A = +25^{\circ}C, unless otherwise noted.)$

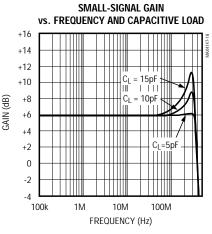


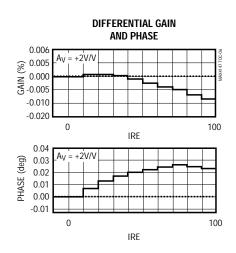







Typical Operating Characteristics (continued)


 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 150\Omega, T_A = +25^{\circ}C, unless otherwise noted.)$



_Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 150\Omega, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION
1, 7	VEE	Negative Power Supply. Connect to -5V.
2	IN+	Noninverting Input
3, 5	N.C.	No Connect. Not internally connected.
4	SHDN	Logic Input for Shutdown Circuitry. A logic low enables the amplifier. A logic high disables the amplifier. The amplifier outputs are high impedance in shutdown mode; thus the impedances seen at OUT+ and OUT- are that of the feedback resistors and the protection circuitry (Figure 3).
6	IN-	Inverting Input
8, 14	Vcc	Positive Power Supply
9	OUT-	Inverting Output
10	SENSE-	Sense Line for the Inverting Output. Connect to OUT-, close to the pin.
11	GND	Ground
12	SENSE+	Sense Line for the Noninverting Output. Connect to OUT+, close to the pin.
13	OUT+	Noninverting Output

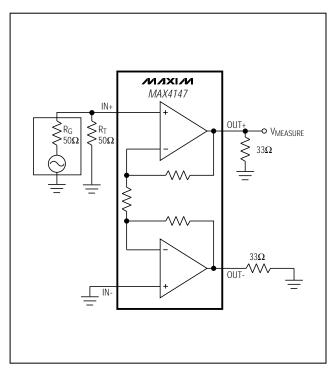


Figure 1. Single-Ended Distortion Setup

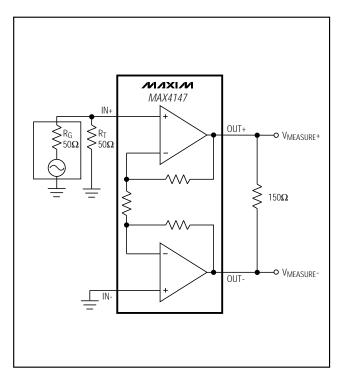


Figure 2. Differential Distortion Setup

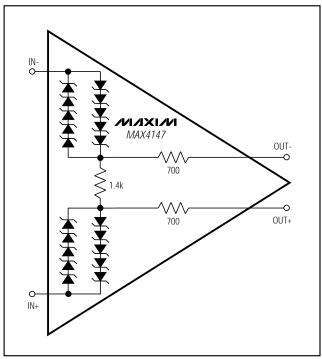
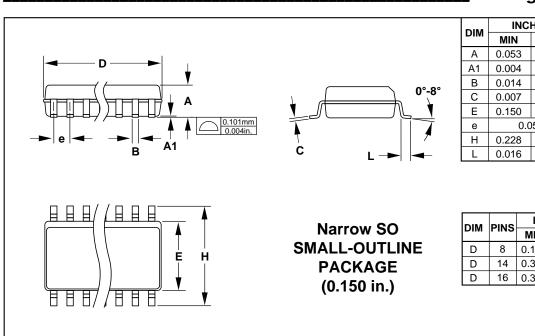



Figure 3. MAX4147 Shutdown Equivalent Circuit

Package Information

DIM	INC	HES	MILLIMETERS				
DIM	MIN	MAX	MIN	MAX			
Α	0.053	0.069	1.35	1.75			
A1	0.004	0.010	0.10	0.25			
В	0.014	0.019	0.35	0.49			
С	0.007	0.010	0.19	0.25			
Е	0.150	0.157	3.80	4.00			
е	0.0)50	1.3	27			
Н	0.228	0.244	5.80	6.20			
L	0.016	0.050	0.40	1.27			

21-0041A

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.