

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga202-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 5-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DBUFWF ⁽¹⁾	—	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0
bit 15							bit 8
DAVA	DAMA	DAMA	D 444 0	D 444.0			DAMA
R/W-0	R/W-0				U-0	0-0	
	LOWIF	DONEIF	HALFIF	OVRUNIF	—		HALFEN
							DILU
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	iown
<u></u>							
bit 15	DBUFWF: DN	/A Buffered Da	ta Write Flag	bit ⁽¹⁾			
	1 = The cont	ent of the DM	A buffer has r	not been written	to the location	on specified in	DMADSTn or
	DMASRO	Cn in Null Write	mode	h		.	
	0 = The cont DMASRO	ent of the Div On in Null Write	mode	been written t	o the location	i specified in	DWADSIN OF
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13-8	CHSEL<5:0>	: DMA Channe	I Trigger Seled	ction bits			
	See Table 5-1	for a complete	list.				
bit 7	HIGHIF: DMA	High Address	Limit Interrupt	t Flag bit ^(1,2)			
	1 = The DMA	channel has a	ttempted to ac	cess an address	s higher than D	MAH or the up	per limit of the
	data RAN	/I space	ot invoked the	high address li	mit interrunt		
bit 6			imit Interrunt	Flag hit(1,2)	init interrupt		
bit 0	1 = The DMA	channel has a	attempted to a	ccess the DMA	SFR address	lower than DM	AL, but above
	the SFR	range (07FFh)					,
	0 = The DMA	channel has n	ot invoked the	e low address lin	nit interrupt		
bit 5	it 5 DONEIF: DMA Complete Operation Interrupt Flag bit ⁽¹⁾						
	$\frac{\text{If CHEN} = 1}{1 = \text{The previous DMA session has ended with completion}}$						
	0 = The curre	nt DMA session	n has not vet o	completed			
	If CHEN = 0:						
	1 = The previe	ous DMA sessi	on has ended	with completion			
	0 = The previo	ous DMA sessi	on has ended	without complet	ion		
bit 4		A 50% Waterma	ark Level Inter	rupt Flag bit			
	1 = DMACNIn has reached the halfway point to 0000h 0 = DMACNTn has not reached the halfway point						
bit 3	OVRUNIF: DI	MA Channel Ov	verrun Flag bit	(1)			
	 1 = The DMA channel is triggered while it is still completing the operation based on the previous trigger 0 = The overrun condition has not occurred 						
bit 2-1	Unimplemen	ted: Read as 'o)'				
bit 0	HALFEN: DM	IA Halfway Con	npletion Wate	rmark bit			
	 1 = Interrupts are invoked when DMACNTn has reached its halfway point and at completion 0 = An interrupt is invoked only at the completion of the transfer 						
Note 1. Se	atting these flag	s in software de	nes not gener	ate an interrunt			
9. To	sting for address	s in solution		or DMADSTn is	either greater	r than DMAH o	r less than

2: Testing for address limit violations (DMASRCn or DMADSTn is either greater than DMAH or less than DMAL) is NOT done before the actual access.

7.0 RESETS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS39712). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- · UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.

Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Resets will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). In addition, Reset events occurring while an extreme power-saving feature is in use (such as VBAT) will set one or more status bits in the RCON2 register (Register 7-2). A POR will clear all bits, except for the BOR and POR (RCON<1:0>) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON registers should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

REGISTER 7-1: RCON: RESET CONTROL REGISTER (CONTINUED)

bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽⁴⁾ 1 = WDT is enabled 0 = WDT is disabled
bit 4	WDTO: Watchdog Timer Time-out Flag bit ⁽¹⁾ 1 = WDT time-out has occurred 0 = WDT time-out has not occurred
bit 3	SLEEP: Wake from Sleep Flag bit ⁽¹⁾
	1 = Device has been in Sleep mode0 = Device has not been in Sleep mode
bit 2	IDLE: Wake from Idle Flag bit ⁽¹⁾
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	 1 = A Brown-out Reset has occurred (also set after a Power-on Reset) 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred
Noto 1:	All of the Reset status hits may be set or cleared in software. Setting one of

- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect.
 - **3:** Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
 - 4: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The internal FRC provides an 8 MHz clock source. It can optionally be reduced by the programmable clock divider to provide a range of system clock frequencies.

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in program memory (for more information, refer to **Section 29.1 "Configuration Bits"**). The Primary Oscillator Configuration bits, POSCMD<1:0> (Configuration Word 2<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (Configuration Word 2<10:8>), select the oscillator source that is used at a Power-on Reset. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various clock modes, as shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (Configuration Word 2<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
Fast RC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
(Reserved)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	11	100	1
Primary Oscillator (XT) with PLL Module (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
Fast RC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
Fast RC Oscillator (FRC)	Internal	11	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-23 through Register 11-35). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-4).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TABLE 11_{1}	SELECTABLE OUTPUT SOURCES	(MADS FUNCTION TO OUTDUT)
IADLL II - 4.	SELECTABLE COTT OF SOURCES	

Output Function Number ⁽¹⁾	Function	Output Name
0	NULL ⁽²⁾	Null
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS ⁽³⁾	UART1 Request-to-Send
5	U2TX	UART2 Transmit
6	U2RTS ⁽³⁾	UART2 Request-to-Send
7	SDO1	SPI1 Data Output
8	SCK1OUT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
13	OC1	Output Compare 1
14	OC2	Output Compare 2
15	OC3	Output Compare 3
16	OC4	Output Compare 4
17	OC5	Output Compare 5
18	OC6	Output Compare 6
19	U3TX	UART3 Transmit
20	U3RTS	UART3 Request-to-Send
21	U4TX	UART4 Transmit
22	U4RTS ⁽³⁾	UART4 Request-to-Send
23	SDO3	SPI3 Data Output
24	SCK3OUT	SPI3 Clock Output
25	SS3OUT	SPI3 Slave Select Output
26	C3OUT	Comparator 3 Output
27	MDOUT	DSM Modulator Output

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLKx functionality uses this output.

REGISTER 11-14: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

11.0	11.0						
0-0	0-0	D/ W-1	FV/VV-1	FV/VV=1	D/ VV-1	D/ W-1	D/ VV- I
—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
P - Roadable	a hit	M = M/ritable	hit	II – Unimplen	nented hit read	1 26 '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits

REGISTER 11-15: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3CTSR<5:0>: Assign UART3 Clear-to-Send (U3CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - 11100 = CTMU⁽²⁾
 - 11011 = A/D⁽²⁾
 - $11010 = \text{Comparator } 3^{(2)}$
 - $11001 = \text{Comparator } 2^{(2)}$
 - 11000 = Comparator 1⁽²⁾
 - 10111 = Reserved 10110 = Reserved
 - $10101 = \text{Input Capture 6}^{(2)}$
 - $10100 = \text{Input Capture 5}^{(2)}$
 - 10011 =Input Capture 4⁽²⁾
 - $10010 = \text{Input Capture 3}^{(2)}$
 - 10001 =Input Capture 2⁽²⁾
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Output Compare 6⁽¹⁾
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare $3^{(1)}_{(1)}$
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory-mapped to SPIxBUF.

FIGURE 16-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

REGISTER 18-3: UxTXREG: UARTx TRANSMIT REGISTER (NORMALLY WRITE-ONLY)

W-x	U-0	U-0	U-0	U-0	U-0	U-0	W-x
LAST ⁽¹⁾	—	—	—	—	—	—	UxTXREG8
bit 15							bit 8

| W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| UxTXREG7 | UxTXREG6 | UxTXREG5 | UxTXREG4 | UxTXREG3 | UxTXREG2 | UxTXREG1 | UxTXREG0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	AST: Last Byte Indicator for Smart Card Support bits	;(1)

bit 14-9 Unimplemented: Read as '0'

Γ.

bit 8 UxTXREG8: Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 UxTXREG<7:0>: Data of the Transmitted Character bits

Note 1: This bit is only available for UART1 and UART2.

REGISTER 18-4: UxADMD: UARTx ADDRESS MATCH DETECT REGISTER

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ADMMASK7 | ADMMASK6 | ADMMASK5 | ADMMASK4 | ADMMASK3 | ADMMASK2 | ADMMASK1 | ADMMASK0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| ADMADDR7 | ADMADDR6 | ADMADDR5 | ADMADDR4 | ADMADDR3 | ADMADDR2 | ADMADDR1 | ADMADDR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 ADMMASK<7:0>: UARTx ADMADDR<7:0> (UxADMD<7:0>) Masking bits

 For ADMMASK<x>:
 1 = ADMADDR<x> is used to detect the address match

 0 = ADMADDR<x> is not used to detect the address match

bit 7-0 **ADMADDR<7:0>:** UARTx Address Detect Task Off-Load bits Used with the ADMMASK<7:0> bits (UxADMD<15:8>) to off-load the task of detecting the address character from the processor during Address Detect mode.

REGISTE	R 22-4: CRY	OTP: CRYPTO	GRAPHIC O	TP PAGE PR	OGRAM CO	NTROL REG	ISTER				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	_	—	_	_	_				
bit 15							bit 8				
R/HSC-x ⁽¹) R/W-0 ⁽¹⁾	R/S/HC-1	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/S/HC-0 ⁽²⁾				
PGMTST		CRYREAD ^(3,4)	KEYPG3	KEYPG2	KEYPG1	KEYPG0	CRYWR ^(3,4)				
bit 7	OTTIE	ORTREAD	NETT 00		NET OF		bit 0				
l egend:											
R = Readal	ble bit	W = Writable bit		U = Unimplem	nented bit, read	as '0'					
S = Settabl	e bit	HC = Hardware	Clearable bit	HSC = Hardware Settable/Clearable bit							
-n = Value a	at POR	'1' = Bit is set		(0) = Bit is cleared $x = Bit is unknown$							
bit 15-8	Unimplemer	nted: Read as '0'									
bit 7	PGMTST: Ke	ey Storage/Configu	ration Progra	m Test bit ⁽¹⁾							
	This bit mirro	rors the state of the TSTPGM bit and is used to test the programming of the secure OTP array									
	atter program	aller programming. 1 = TSTPGM (CEGPAGE<30>) is programmed ('1')									
0 = TSTPGM is not programmed ('0')											
bit 6	OTPIE: Key	Storage/Configura	tion Program	Interrupt Enable	e bit ⁽¹⁾						
	1 = Generate	1 = Generates an interrupt when the current programming or read operation completes									
	0 = Does not	0 = Does not generate an interrupt when the current programming or read operation completes; software									
	operation is complete										
bit 5	CRYREAD: (Cryptographic Key	Storage/Con	figuration Read	bit ^(3,4)						
	1 = This bit is	set to start a read	operation; rea	d operation is in	progress while	gress while this bit is set and CRYGO = 1					
	0 = Read operation has completed										
bit 4-1	KEYPG<3:0	: Key Storage/Co	nfiguration Pr	ogram Page Se	elect bits ⁽¹⁾						
	1111	1111									
	• • = Rese	arved									
	•	ived									
	1001										
	1000 = OTP	1000 = OTP Page 8									
	0111 = OIP 0110 = OTP	0111 = OTP Page 7									
	0101 = OTP	0110 = OTP Page 6 0101 = OTP Page 5									
	0100 = OTP	Page 4									
	0011 = OTP	0011 = OTP Page 3									
	0010 = OIP	Page 2									
	0001 = OIP	rage i	-GPAGE, OT	P Page 0)							
bit 0	CRYWR: Cry	ptographic Kev St	orage/Config	uration Program	n bit <mark>(2,3,4)</mark>						
	1 = Programs	s the Key Storage/	Configuration	bits with the va	alue found in C	RYTXTC<63:0)>				
	0 = Program	operation has con	npleted								
Note 1:	These bits are re	eset on systems R	esets or wher	never the CRYN	/ID bit is set.						

- 2: These bits are reset on systems Resets, when the CRYMD bit is set or when CRYGO is cleared.
- 3: Set this bit only when CRYON = 1 and CRYGO = 0. Do not set CRYREAD or CRYWR both, at any given time.
- 4: Do not clear CRYON or these bits while they are set; always allow the hardware operation to complete and clear the bit automatically.

.,						
Mode of		KEVSBC-2:0>	Key	Source	OTP Address	
Operation	KETWOD-1.02	RE13RC-3.02	SKEYEN = 0	SKEYEN = 1	OTP Address	
		0000 (1)	CRYKE	Y<127:0>	_	
		0001	AES Key #1	AES Key #1 Key Config Error ⁽²⁾		
	00	0010	AES	<255:128>		
128-Bit AES		0011	AES	Key #3	<383:256>	
		0100	0100 AES Key #4		<511:384>	
		1111	Rese			
		All Others	Key Con	_		
		0000 (1)	CRYKEY<191:0>			
		0001	AES Key #1 Key Config Error ⁽²⁾		<191:0>	
192-Bit AES	01	0010	AES Key #2		<383:192>	
		1111	Rese	erved ⁽²⁾		
		All Others	Key Con	fig Error ⁽²⁾		
		0000 (1)	CRYKE	Y<255:0>	_	
		0001	AES Key #1	Key Config Error ⁽²⁾	<255:0>	
256-Bit AES	10	0010	AES	Key #2	<511:256>	
		1111	Rese	Reserved ⁽²⁾		
		All Others	Key Config Error ⁽²⁾			
(Reserved)	11	XXXX	Key Con	fig Error ⁽²⁾	_	

TABLE 22-2: AES KEY MODE/SOURCE SELECTION

Note 1: This configuration is considered a Key Configuration Error (KEYFAIL bit is set) if SWKYDIS is also set.

2: The KEYFAIL bit (CRYSTAT<1>) is set when these configurations are selected and remains set until a valid configuration is selected.

REGISTER 26-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	—	—	_	—	CVREFP	CVREFM1	CVREFM0	
bit 15				•			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	leared x = Bit is unki		iown	
bit 15-11	Unimplemented: Read as '0'							
bit 10	CVREFP: Cor	mparator Voltag	je Reference S	Select bit (valid	only when CR	EF is '1')		
	1 = VREF+ is u 0 = The CVR	used as a refere (4-bit DAC) wit	ence voltage to hin this module	the comparate provides the r	ors reference volta	ge to the comp	arators	
bit 9-8	CVREFM<1:0 (valid only who	I>: Comparator en CCH<1:0> =	Voltage Band	Gap Reference	e Source Selec	et bits		
	00 = Band ga 01 = Band ga 10 = Reserve	p voltage is pro p voltage, divid d in is provided a	wided as an in ed by two, is p s an input to th	put to the comp rovided as an i	parators nput to the cor	nparators		
bit 7	CVREN: Com	inarator Voltage	Reference Fr	nable bit				
bit i	1 = CVREF cire 0 = CVREF cire	cuit is powered	on down					
bit 6	CVROE: Com	parator VREF C	output Enable b	oit				
	1 = CVREF vol 0 = CVREF vol	ltage level is ou Itage level is di	tput on the CV sconnected fro	/REF pin m the CVREF p	in			
bit 5	CVRSS: Com	parator VREF S	ource Selectio	n bit				
	1 = Comparate 0 = Comparate	or reference so or reference so	urce, CVRSRC urce, CVRSRC	= VREF+ - VRE = AVDD - AVSS	:F- 3			
bit 4-0	CVR<4:0>: C	omparator VRE	Value Selecti	on bits				
	CVREF = (CVF	R<4:0>/32) • (C	VRSRC)					

30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CH	DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $				
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
Operat	ing Voltag	je						
DC10	VDD Supply Voltage		2.0		3.6	V	BOR disabled	
			VBOR		3.6	V	BOR enabled	
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	Greater of: VPORREL or VBOR	—	-	V	VBOR used only if BOR is enabled (BOREN = 1)	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_	-	V	(Note 2)	
DC16A	VPORREL	VDD Power-on Reset Release Voltage	1.80	1.88	1.95	V	(Note 3)	
DC17A	SRVDD	Recommended Vod Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	0-3.3V in 66 ms, 0-2.5V in 50 ms (Note 2)	
DC17B	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.1	2.2	V	(Note 3)	

Note 1: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

2: If the VPOR or SRVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

3: On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

TABLE 32-11: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operatin	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Symbol	Characteristics Min Typ Max Units				Comments				
DVR	TVREG	Voltage Regulator Start-up Time		10	_	μS	VREGS = 1 with any POR or BOR			
DVR10	Vbg	Internal Band Gap Reference	—	1.2	—	V				
DVR11	Tbg	Band Gap Reference Start-up Time	—	1	-	ms				
DVR20	Vrgout	Regulator Output Voltage	—	1.8	—	V	Vdd > 1.9V			
DVR21	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3Ω recommended; < 5Ω required			
DVR30	Vlvr	Low-Voltage Regulator Output Voltage	_	1.2	-	V	RETEN = 1, LPCFG = 0			

TABLE 32-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
DC18	Vhlvd	HLVD Voltage on VDD Transition	HLVDL<3:0> = 0100 ⁽¹⁾	3.45	3.59	3.74	V	
			HLVDL<3:0> = 0101	3.33	3.45	3.58	V	
			HLVDL<3:0> = 0110	3.0	3.125	3.25	V	
			HLVDL<3:0> = 0111	2.8	2.92	3.04	V	
			HLVDL<3:0> = 1000	2.7	2.81	2.93	V	
			HLVDL<3:0> = 1001	2.50	2.6	2.70	V	
			HLVDL<3:0> = 1010	2.4	2.52	2.64	V	
			HLVDL<3:0> = 1011	2.30	2.4	2.50	V	
			HLVDL<3:0> = 1100	2.20	2.29	2.39	V	
			HLVDL<3:0> = 1101	2.1	2.19	2.28	V	
			HLVDL<3:0> = 1110	2.0	2.08	2.17	V	
DC101	VTHL	HLVD Voltage on HLVDIN Pin Transition	HLVDL<3:0> = 1111		1.2		V	

Note 1: Trip points for values of HLVD<3:0> from '0000' to '0011' are not implemented.

FIGURE 32-12: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 32-34: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC15	Tfd	Fault Input to PWM I/O Change	_	_	50	ns		
OC20	TFLT	Fault Input Pulse Width	50	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 32-15: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-37: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \\ \end{array} $					
Param No.	aram Symbol Characteristic ⁽¹⁾		Min	Typ ⁽²⁾	Max	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	_		ns		
SP71	TscH	SCKx Input High Time	30	—		ns		
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—		_	ns	See Parameter DO32	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See Parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—		30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns		
SP52	TscH2ssH, TscL2ssH	SSx After SCKx Edge	1.5 Tcy + 40	—	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Contact Pitch	Е		0.65 BSC			
Optional Center Pad Width	W2			6.60		
Optional Center Pad Length	T2			6.60		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-205-3

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.