

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
CN0	12	9	34	—		Interrupt-on-Change Inputs.
CN1	11	8	33	_	—	
CN2	2	27	19	—	—	
CN3	3	28	20	_	—	
CN4	4	1	21	_		
CN5	5	2	22	_		
CN6	6	3	23	_		
CN7	7	4	24			
CN8	_		25	_		
CN9	_		26			
CN10	—		27			
CN11	26	23	15			
CN12	25	22	14	_	_	
CN13	24	21	11	_	_	
CN14	23	20	10			
CN15	22	19	9			
CN16	21	18	8	_	_	
CN17	—		3			
CN18	—		2	_	_	
CN19	—		5	_	_	
CN20	—		4	_	—	
CN21	18	15	1	_	_	
CN22	17	14	44	—	—	
CN23	16	13	43	—	—	
CN24	15	12	42		—	
CN25	—		37		_	
CN26	—	—	38		—	
CN27	14	11	41	_	—	
CN28			36	_		
CN29	10	7	31	_		
CN30	9	6	30	-		
CN33	—		13	_		
CN34		_	32	_		
CN35	—	—	35	_	—	
CN36		_	12	_		
CTCMP	4	1	21	I	ANA	CTMU Comparator 2 Input (Pulse mode).

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog Input I^2C = ST with I^2C^{TM} or SMBus levels

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
PMA0/PMALL	_	_	3	0	_	Parallel Master Port Address.
PMA1/PMALH	_		2	0	_	
PMA14/PMCS/ PMCS1	_	—	15	0	—	
PMA2/PMALU	_		12	0	_	
PMA3	_		38	0	_	
PMA4	_		37	0	_	
PMA5	_		4	0	_	
PMA6	_		5	0	_	
PMA7	-	—	13	0	_	
PMA8	-	—	32	0	—	
PMA9	1 —	_	35	0	—	
PMACK1	_	—	27	Ι	ST/TTL	Parallel Master Port Acknowledge Input 1.
PMBE0	_		36	0	_	Parallel Master Port Byte Enable 0 Strobe.
PMBE1	—		25	0		Parallel Master Port Byte Enable 1 Strobe.
PMCS1	_		30	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe.
PMD0	_		10	I/O	ST/TTL	
PMD1	_		9	I/O	ST/TTL	Master mode) or Address/Data (Multiplexed
PMD2	_		8	I/O	ST/TTL	Master modes).
PMD3	_		1	I/O	ST/TTL	
PMD4	—		44	I/O	ST/TTL	
PMD5	_		43	I/O	ST/TTL	
PMD6	_		42	I/O	ST/TTL	
PMD7	_		41	I/O	ST/TTL	
PMRD	-	_	11	0	—	Parallel Master Port Read Strobe.
PMWR	_	—	14	0	—	Parallel Master Port Write Strobe.
RA0	2	27	19	I/O	ST	PORTA Digital I/Os.
RA1	3	28	20	I/O	ST	
RA2	9	6	30	I/O	ST	
RA3	10	7	31	I/O	ST	
RA4	12	9	34	Ι	ST	
RA7	_	—	13	I/O	ST	
RA8	—	_	32	I/O	ST	
RA9	_	—	35	I/O	ST	
RA10			12	I/O	ST	

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

 $I^2C = ST \text{ with } I^2C^{TM} \text{ or SMBus levels}$

TABLE 4-9: I²C[™] REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	02DA	—		—	_	_		—	—			I	2C1 Receiv	ve Register				0000
I2C1TRN	02DC	_	_	_	_	_	_	_	_			l:	2C1 Transn	nit Register				OOFF
I2C1BRG	02DE	_	_	_	_		Baud Rate Generator Register							0000				
I2C1CONL	02E0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	0M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN						1000				
I2C1CONH	02E2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C1STAT	02E4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	02E6	—	_	_	_	—	_					2C1 Addres	ss Register					0000
I2C1MSK	02E8	—	_	—	_	—	-				I2C	1 Address I	Mask Regis	ter				0000
I2C2RCV	02EA	—	_	—	_	—	-	_	_			I	2C2 Receiv	e Register				0000
I2C2TRN	02EC	_	_	_	_	_	_	_	_			l:	2C2 Transn	nit Register				OOFF
I2C2BRG	02EE	_	—	_	_					Bau	d Rate Gen	erator Regi	ster					0000
I2C2CONL	02F0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2CONH	02F2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C2STAT	02F4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	02F6	—	_	—	_	—	-					2C2 Addres	ss Register					0000
I2C2MSK	02F8	—	_	_	_	—	_				I2C	2 Address I	Mask Regis	ter				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DSRPAG (Data Space Read Register)	DSWPAG (Data Space Write Register)	Source/Destination Address While Indirect Addressing	24-Bit EA Pointing to EDS	Comment
x ⁽¹⁾	x ⁽¹⁾	0000h to 1FFFh	000000h to 001FFFh	Near Data Space ⁽²⁾
X. /	Χ',	2000h to 7FFFh	002000h to 007FFFh	
001h	001h		008000h to 00FFFEh	
002h	002h		010000h to 017FFEh	
003h •	003h •		018000h to 0187FEh	EPMP Memory Space
•	•	8000h to FFFFh	•	
•	•			
•	•		•	
• 1FFh	• 1FFh		FF8000h to FFFFFEh	
000h	000h		Invalid Address	Address Error Trap ⁽³⁾

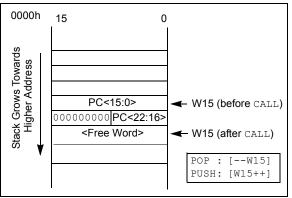
TABLE 4-34: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.

- 2: This Data Space can also be accessed by Direct Addressing.
- **3:** When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	will concatenate the SRL Register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be wordaligned. Whenever an EA is generated using W15 as a Source or Destination Pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

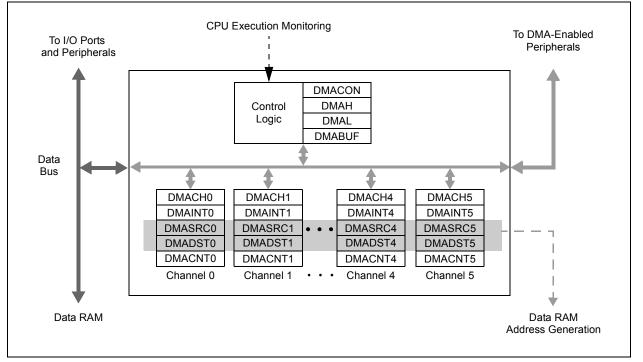
A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-7: CALL STACK FRAME

5.0 DIRECT MEMORY ACCESS CONTROLLER (DMA)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access Controller (DMA)" (DS39742). The information in this data sheet supersedes the information in the FRM.

The Direct Memory Access (DMA) Controller is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.


The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA capable peripherals located on the new DMA SFR bus. The controller serves as a master device on the DMA SFR bus, controlling data flow from DMA capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations causing a processor stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Six multiple independent and independently programmable channels
- Concurrent operation with the CPU (no DMA caused Wait states)
- DMA bus arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or word support for data transfer
- 16-Bit Source and Destination Address register for each channel, dynamically updated and reloadable
- 16-Bit Transaction Count register, dynamically updated and reloadable
- Upper and Lower Address Limit registers
- Counter half-full level interrupt
- · Software triggered transfer
- Null Write mode for symmetric buffer operations

A simplified block diagram of the DMA Controller is shown in Figure 5-1.

FIGURE 5-1: DMA FUNCTIONAL BLOCK DIAGRAM

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 8-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	—	—	SPI3TXIE	SPI3IE	U4TXIE	U4RXIE					
bit 15							bit 8					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0					
U4ERIE	_	I2C2BCIE	I2C1BCIE	U3TXIE	U3RXIE	U3ERIE						
bit 7							bit					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'						
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
bit 15-12	Unimplemer	nted: Read as ') '									
bit 11	SPI3TXIE: S	PI3 Transmit In	terrupt Enable	bit								
	•	request is enab										
		request is not e										
bit 10	SPI3IE: SPI3 General Interrupt Enable bit											
		request is enab request is not e										
bit 9	•	•		ole hit								
bit 0	U4TXIE: UART4 Transmitter Interrupt Enable bit 1 = Interrupt request is enabled											
		0 = Interrupt request is not enabled										
bit 8	U4RXIE: UART4 Receiver Interrupt Enable bit											
		request is enab										
bit 7	-	request is not e RT4 Error Interr										
		request is enab	•									
		request is not e										
bit 6	Unimplemer	nted: Read as '	o '									
bit 5	12C2BCIE: 12	2C2 Bus Collisio	on Interrupt Ena	able bit								
	1 = Interrupt	request is enab	led									
	•	request is not e										
bit 4		2C1 Bus Collisio request is enab		able bit								
		request is not e										
bit 3	-	RT3 Transmitter		ole bit								
	1 = Interrupt	request is enab	led									
	0 = Interrupt request is not enabled											
bit 2	U3RXIE: UART3 Receiver Interrupt Enable bit											
		request is enab request is not e										
bit 1	-	RT3 Error Interr										
		request is enab										
	•	request is not e										

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_		—	_		
oit 15							bit 8
U-0	U-0	U-0	r-0	R/CO-1	R/CO-1	R/CO-1	R/CO-0
	—	—	_	VDDBOR ⁽¹⁾	VDDPOR ^(1,2)	VBPOR ^(1,3)	VBAT ⁽¹⁾
bit 7							bit C
Legend:		CO = Clearab	-	r = Reserved			
R = Read		W = Writable b	bit		nented bit, read		
-n = Valu	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-5	•	ted: Read as 'C	1-				
bit 4	Reserved: M		(1)				
bit 3		D Brown-out R	•				
		own-out Reset ł own-out Reset ł	·		e)		
bit 2		D Power-on Re					
5.12		wer-on Reset h			e)		
		wer-on Reset h	•	•			
bit 1	VBPOR: VBA	T Power-on Res	set Flag bit ^(1,3)				
	1 = A VBAT F	OR has occurr	ed (no battery	connected to	the VBAT pin o	r VBAT power is	s below Deep
		maphore retent		oy hardware)			
		OR has not occ	curred				
bit 0	VBAT: VBAT F	0					
		xit has occurred xit from Vват ha			e VBAT pin (set	by hardware)	
	0 = A POR e		as not occurre	u			
Note 1:	This bit is set in h	ardware only; it	can only be c	leared in softwa	are.		
2:	This bit indicates Power-on Reset.	a VDD Power-o	n Reset. Settir	ng the POR bit	(RCON<0>) inc	licates a VCORE	I
3:	This bit is set whe	en the device is	originally pow	ered up, even i	f power is pres	ent on VBAT.	

REGISTER 10-3: RCON2: RESET AND SYSTEM CONTROL REGISTER 2

REGISTER 11-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

Legend: R = Readable		W = Writable			nented hit read		
bit 7							bit C
_	_	_	_	—		ANSC<2:0>	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
bit 15							bit 8
	_	—		—	—	—	—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: PORTC Analog Function Selection bits 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled

Note 1: These pins are not available in 28-pin devices.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
TON ⁽²⁾	—	TSIDL ⁽²⁾	—	_	_	TECS1 ^(2,3)	TECS0 ^{(2,3}				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0				
_	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	_	—	TCS ^(2,3)	_				
bit 7							bit				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 15	TON: Timery										
	1 = Starts 16- 0 = Stops 16-										
bit 14	•	ted: Read as ')'								
bit 13	TSIDL: Timer	ry Stop in Idle M	lode bit ⁽²⁾								
		ues module ope			lle mode						
		s module opera		de							
bit 12-10	-	ted: Read as '				(2.2)					
bit 9-8		Timery Extende		-	selected when	TCS = 1) ^(2,3)					
		11 = Generic Timer (TMRCK) External Input 10 = LPRC Oscillator									
		xternal Clock In	put								
	00 = SOSC		•								
bit 7	Unimplemen	ted: Read as ')'								
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽²⁾										
	When TCS =										
	This bit is ign When TCS =										
		<u></u> ne accumulatio	n is enabled								
	0 = Gated tin	ne accumulatio	n is disabled								
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescale	Select bits ⁽²⁾							
	11 = 1:256										
	10 = 1:64 01 = 1:8										
	01 = 1.8 00 = 1:1										
bit 3-2		ted: Read as ')'								
bit 1	-	Clock Source S									
	-	clock from pin,		sing edge)							
	0 = Internal c	lock (Fosc/2)									
bit 0	Unimplemen	ted: Read as ')'								
	Changing the value reset and is not re	-	nile the timer is	running (TON	= 1) causes th	e timer prescale	counter to				
	When 32-bit oper operation; all time					ts have no effect	on Timery				
	If TCS = 1 and TI available RPn/RF				• • • •	•					

REGISTER 17-3: I20	xSTAT: I2Cx STATUS REGISTER
--------------------	-----------------------------

REGISTER	17-3: 120	XSTAT: 120	Cx STATUS	REGISTER			
R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	ACKTIM	—	—	BCL	GCSTAT	ADD10
bit 15							bita
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	12COV	D/A	P	S	R/W	RBF	TBF
bit 7	12000	DIA	I	5	10.00	I TOI	bit
							Dit
Legend:		C = Clearab	ole bit	HS = Hardware	Settable/Cleara	ble bit	
R = Readab	le bit	W = Writabl	e bit	U = Unimpleme	ented bit, read as	s 'O'	
-n = Value a	t POR	'1' = Bit is s	et	'0' = Bit is clear	ed	HS = Hardware	e Settable bit
bit 15	1 = Acknow	ledge was no	e Status bit (up ot received fro ceived from s	m slave	ter and Slave m	odes)	
bit 14	1 = Master t	ransmit is in	s bit (when op progress (8 b t in progress	•	master; applical	ble to master trai	nsmit operatior
bit 13	1 = Indicates	s I ² C bus is i	n an Acknowl			g edge of SCLx o c clock	lock
bit 12-11	Unimpleme	nted: Read a	as '0'				
bit 10	1 = A bus co	ollision has b		during a master	ared when I ² C m or slave transmi	nodule is disable t operation	d, I2CEN = 0)
bit 9	1 = General	call address	tatus bit (clea was received was not rece		etection)		
bit 8				ared after Stop d	etection)		
bit o	1 = 10-bit ac	ddress was n ddress was n	natched		eteetiony		
bit 7		mpt to write to are	sion Detect bi o the I2CxTRI		because the I ² C	module is busy;	must be cleare
bit 6	1 = A byte	was receive are" in Trans				the previous by	yte; I2COV is
bit 5	1 = Indicates 0 = Indicates	s that the las s that the las	t byte receive	g as I ² C slave) d was data d or transmitted	was an address		
bit 4	1 = Indicates	en Start, Res	bit has been		d when the I ² C m	nodule is disable	d, I2CEN = 0.

Data Port Size	PMA<9:8>	PMA<7:0>	PMD<7:4>	PMD<3:0>	Accessible memory
	Demultiplexed	Address (AI	DRMUX<1:0>	= 00)	
8-Bit (PTSZ<1:0> = 00)	Addr<9:8>	Addr<7:0>	Da	ata	1K
4-Bit (PTSZ<1:0> = 01)	Addr<9:8>	Addr<7:0>	_	Data	1K
	1 Address	Phase (ADRM	/IUX<1:0> = 0	1)	
8-Bit (PTSZ<1:0> = 00)	_	PMALL	Addr<7:	0> Data	1K
4-Bit (PTSZ<1:0> = 01)	Addr<9:8>	PMALL	Addr<7:4>	Addr<3:0>	1K
4-Dil (P132<1.02 - 01)	Auui < 9.62	FIVIALL	—	Data (1)	IK
	2 Address I	Phases (ADR	MUX<1:0> = 1	.0)	
		PMALL	Addr	<7:0>	
8-Bit (PTSZ<1:0> = 00)	—	PMALH	Addr<	:15:8>	64K
		—	Da	ata	
		PMALL	Addr	<3:0>	
4-Bit (PTSZ<1:0> = 01)	Addr<9:8>	PMALH	Addr<7:4>		1K
		—	Da	ata	
	3 Address I	Phases (ADR	MUX<1:0> = 1	1)	
		PMALL	Addr	<7:0>	
8-Bit (PTSZ<1:0> = 00)		PMALH	Addr<	:15:8>	2 Mbytes
6-Bit (F132 > 1.0 - 0.0)	_	PMALU	Addr<	22:16>	2 Mbytes
		—	Da	ata	
		PMALL	Addr	<3:0>	
4-Bit (PTSZ<1:0> = 01)	Addr<13:12>	PMALH	Addr	<7:4>	16K
		PMALU		<11:8>	
		—	Da	ata	

TABLE 20-1: MEMORY ADDRESSABLE IN DIFFERENT MODES

REGISTER 22-1: CRYCONL: CRYPTOGRAPHIC CONTROL LOW REGISTER (CONTINUED)

bit 7-4	OPMOD<3:0>: Operating Mode Selection bits ^(1,2)
	1111 = Loads session key (decrypt session key in CRYTXTA/CRYTXTB using the Key Encryption Key and write to CRYKEY)
	1110 = Encrypts session key (encrypt session key in CRYKEY using the Key Encryption Key and write to CRYTXTA/CRYTXTB)
	1011 = Reserved
	1010 = Generate a random number
	1001
	•
	• = Reserved
	•
	0010 = AES decryption key expansion
	0001 = Decryption 0000 = Encryption
bit 3	CPHRSEL: Cipher Engine Select bit ^(1,2)
DIL 3	
	1 = AES engine 0 = DES engine
	•
bit 2-0	CPHRMOD<2:0>: Cipher Mode bits ^(1,2)
	11x = Reserved
	101 = Reserved
	100 = Counter (CTR) mode
	011 = Output Feedback (OFB) mode
	010 = Cipher Feedback (CFB) mode
	001 = Cipher Block Chaining (CBC) mode
	000 = Electronic Codebook (ECB) mode
Note 1	These bits are react on system Peacets or whenever the CRVMD bit is act

- **Note 1:** These bits are reset on system Resets or whenever the CRYMD bit is set.
 - **2:** Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).
 - **3:** If the device enters Idle mode when CRYSIDL = 1, the module will stop its current operation. Entering into Idle mode while an OTP write operation is in process can result in irreversible corruption of the OTP.

REGISTER 22-2: CRYCONH: CRYPTOGRAPHIC CONTROL HIGH REGISTER

U-0	R/W-0 ⁽¹⁾						
	CTRSIZE6 ^(2,3)	CTRSIZE5 ^(2,3)	CTRSIZE4 ^(2,3)	CTRSIZE3 ^(2,3)	CTRSIZE2 ^(2,3)	CTRSIZE1 ^(2,3)	CTRSIZE0 ^(2,3)
bit 15							bit 8

R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
SKEYSEL	KEYMOD1 ⁽²⁾	KEYMOD0 ⁽²⁾	—	KEYSRC3 ⁽²⁾	KEYSRC2 ⁽²⁾	KEYSRC1 ⁽²⁾	KEYSRC0 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

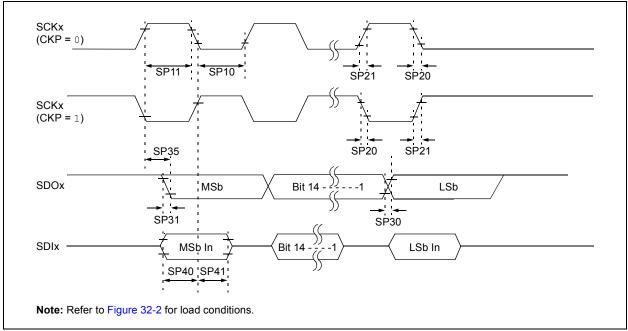
	Unimplemented. Read as 0
bit 14-8	CTRSIZE<6:0>: Counter Size Select bits ^(1,2,3)
	Counter is defined as CRYTXTB <n:0>, where n = CTRSIZEx. The counter increments after each operation</n:0>
	and generates a rollover event when the counter rolls over from $(2^{n-1} - 1)$ to 0.
	1111111 = 128 bits (CRYTXTB<127:0>)
	1111110 = 127 bits (CRYTXTB<126:0>)
	•
	•
	0000010 = 3 bits (CRYTXTB<2:0>)
	0000001 = 2 bits (CRYTXTB<1:0>) 0000000 = 1 bit (CRYTXTB<0>); rollover event occurs when CRYTXTB<0> toggles from '1' to '0'
bit 7	SKEYSEL: Session Key Select bit ⁽¹⁾
	1 = Key generation/encryption/loading performed with CRYKEY<255:128>
	0 = Key generation/encryption/loading performed with CRYKEY<127:0>
bit 6-5	KEYMOD<1:0>: AES/DES Encrypt/Decrypt Key Mode/Key Length Select bits ^(1,2)
	For DES Encrypt/Decrypt Operations (CPHRSEL = 0):
	11 = 64-bit, 3-key 3DES
	10 = Reserved
	01 = 64-bit, standard 2-key 3DES
	00 = 64 -bit DES
	For AES Encrypt/Decrypt Operations (CPHRSEL = 1): 11 = Reserved
	10 = 256-bit AES
	01 = 192-bit AES
	00 = 128-bit AES
bit 4	Unimplemented: Read as '0'
	•
bit 3-0	KEYSRC<3:0>: Cipher Key Source bits ^(1,2)
	Refer to Table 22-1 and Table 22-2 for KEYSRC<3:0> values.
Note 1:	These bits are reset on system Resets or whenever the CRYMD bit is set.

- 2: Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).
 - 3: Used only in CTR operations when CRYTXTB is being used as a counter; otherwise, these bits have no effect.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0
bit 15							bit 8
		D 444 A					
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0	—	ASAM	SAMP	DONE
bit 7							bit (
Legend:		C = Clearable	e bit	U = Unimpler	nented bit, rea	d as 'O'	
R = Readabl	e bit	W = Writable	bit	HSC = Hardv	vare Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15		Operating Mode					
	1 = A/D Con 0 = A/D Con	verter module is	soperating				
bit 14		nted: Read as '	0'				
bit 13	-	D Stop in Idle M					
		•	eration when d	evice enters Id	lle mode		
		-	ation in Idle mo				
bit 12			uffer Mode Sele				
			Buffer address	•		egister AD1CON4<2:0	
bit 11		tended DMA/Bu				AD100N4~2.0	
			er features are	enabled			
	0 = Extended	d features are d	lisabled				
bit 10	MODE12: 12	2-Bit Operation	Mode bit				
	1 = 12-bit A/I						
bit 9-8	0 = 10-bit A/l	-	ormat bits (see	formats follow	(ina)		
Dit 9-0		nal result, signe	-		(ing)		
		•	ult, unsigned, le	eft justified			
		I result, signed					
bit 7 4			t, unsigned, rig	•			
bit 7-4		nplemented, do	Source Select	DIIS			
				tarts conversio	n (auto-convert)	; do not use in Aı	uto-Scan mod
	0110 = Unin				, , , , , , , , , , , , , , , , , , ,		
	0101 = TMR						
	0100 = CTN 0011 = TMR						
	0010 = TMR						
	0001 = INTC		he cleared by	offwara ta ata	rt conversion		
bit 3		nted: Read as '	be cleared by s	soltware to sta	rt conversion		
bit 2	-	Sample Auto-Si					
		-	lart bit liately after last	conversion: SA	AMP bit is auto	-set	
			SAMP bit is mai				
		vailable when F					

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).


R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
HLVDEN		LSIDL	—				—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	HLVDEN: Hig	gh/Low-Voltage	Detect Powe	r Enable bit						
	1 = HLVD is									
	0 = HLVD is									
bit 14	-	nted: Read as '0								
bit 13	0	Low-Voltage De	•							
		ues module operations module operations module operations and the second s		device enters Id	le mode					
bit 12-8		nted: Read as '0		oue						
bit 7	•	e Change Direc		t						
				exceeds trip poir	nt (HI VDI <3.0	>)				
				falls below trip p						
bit 6	BGVST: Ban	d Gap Voltage S	Stable Flag bi	t						
		that the band g	•							
		that the band g								
bit 5		nal Reference Vo								
		reference voltag d voltage range	e is stable; th	e High-Voltage D	etect logic gen	erates the inter	rupt flag at th			
			e is unstable	; the High-Voltag	e Detect logic	will not generat	te the interrup			
		•		d the HLVD inter	•	•				
bit 4	Unimplemer	nted: Read as '0)'							
bit 3-0	HLVDL<3:0>	High/Low-Volt	age Detection	n Limit bits						
			t is used (inp	ut comes from th	ne HLVDIN pin))				
	1110 = Trip Point 1 ⁽¹⁾ 1101 = Trip Point 2 ⁽¹⁾									
	1101 = Trip I 1100 = Trip I									
	•									
	•									
	• 0100 = Trip I	Point 11(1)								

REGISTER 28-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, 2
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, 2
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C, DC, N, OV, 2
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, 2
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, 2
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, 2
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, 2
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, 2
	SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 - Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
I /	SUBBR		$WREG = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
		f,WREG				
	SUBBR	Wb,Ws,Wd	Wd = Ws - Wb - (C)	1	1	C, DC, N, OV, 2
	SUBBR	Wb,#lit5,Wd	Wd = lit5 - Wb - (C)	1	1	C, DC, N, OV, 2
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None

FIGURE 32-13: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-35: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	rics	$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.0V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industri \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \\ \end{array}$			≤ +85°C for Industrial	
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time	Tcy/2	_	_	ns	(Note 3)
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	(Note 3)
SP20	TscF	SCKx Output Fall Time	-		_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

Code Examples	
Basic Clock Switching Sequence	. 148
Configuring UART1 Input/Output Functions	
EDS Read from Program Memory in Assembly	
EDS Read in Assembly	
EDS Write in Assembly	
Erasing a Program Memory Block (Assembly)	
Erasing a Program Memory Block (C Language)	
Initiating a Programming Sequence	
Loading the Write Buffers	
Port Read/Write in Assembly	
Port Read/Write in C	
PWRSAV Instruction Syntax	
Repeat Sequence	
Setting the RTCWREN Bit	
Single-Word Flash Programming	
Single-Word Flash Programming (C Language)	
Code Protection	
Code Segment Protection	
Configuration Options	
Configuration Register Protection	
General Segment Protection	
Comparator Voltage Reference	
Configuring	
Configuration Bits	
Core Features	
CPU	
Arithmetic Logic Unit (ALU)	32
Control Registers	
Core Registers	
Programmer's Model	
-	21
CRC	
CRC Polynomials	. 306
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials	. 306 . 306
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 306
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 306 . 289
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 306 . 289 . 290
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 306 . 289 . 290 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 306 . 289 . 290 . 291 . 290
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 289 . 290 . 291 . 291 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface Cryptographic Engine	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 291
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294
CRC Polynomials Setup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 294
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 294
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 293 . 293
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 293 . 293
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 293 . 293 . 292 . 292
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 294 . 293 . 293 . 292 . 292
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 293 . 293 . 292 . 293
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	. 306 . 306 . 306 . 289 . 290 . 291 . 290 . 291 . 290 . 294 . 294 . 293 . 293 . 292 . 293 . 339
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	.306 .306 .289 .290 .291 .290 .291 .290 .291 .290 .291 .290 .294 .293 .293 .293 .293 .293 .339 .341
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	.306 .306 .289 .290 .291 .290 .291 .290 .291 .290 .294 .294 .293 .293 .293 .292 .293 .339 .341 .341
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	.306 .306 .289 .290 .291 .290 .291 .290 .291 .290 .291 .290 .294 .294 .293 .293 .293 .293 .293 .339 .341 .341
CRC PolynomialsSetup Examples for 16 and 32-Bit Polynomials User Interface	.306 .306 .289 .290 .291 .290 .291 .290 .291 .290 .291 .290 .294 .293 .293 .293 .293 .293 .293 .339 .341 .341 .433

D

Data Memory
Address Space
Extended Data Space (EDS)58
Memory Map
Near Data Space
SFR Space
Software Stack 61
Space Organization, Alignment
Data Signal Modulator (DSM) 257
Data Signal Modulator. See DSM.
DC Characteristics
Comparator Specifications
Comparator Voltage Reference Specifications
CTMU Current Source Specifications
△ Current (BOR, WDT, DSBOR, DSWDT)
High/Low-Voltage Detect
I/O Pin Input Specifications
I/O Pin Output Specifications
Idle Current (IIDLE)
Internal Voltage Regulator Specifications
Operating Current (IDD)
Power-Down Current (IPD)
Program Memory
Temperature and Voltage Specifications
Thermal Operating Conditions
Thermal Packaging
VBAT Operating Voltage Specifications
Demo/Development Boards, Evaluation
and Starter Kits
Development Support
Third-Party Tools
Device Features
28-Pin Devices 12
44-Pin Devices11
Direct Memory Access Controller, See DMA.
DMA
Channel Trigger Sources74
Control Registers
Peripheral Module Disable (PMD)
Summary of Operations
Types of Data Transfers
Typical Setup
DMA Controller
DSM

Ε

Electrical Characteristics	
Absolute Maximum Ratings	. 375
V/F Graph (Industrial)	. 376
Enhanced Parallel Master Port (EPMP)	. 263
Enhanced Parallel Master Port. See EPMP.	
EPMP	
Key Features	. 263
Memory Addressable in Different Modes	. 263
Pin Descriptions	. 265