

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga202-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
CN0	12	9	34	—		Interrupt-on-Change Inputs.
CN1	11	8	33	_	—	
CN2	2	27	19	—	—	
CN3	3	28	20	_	—	
CN4	4	1	21	_		
CN5	5	2	22	_		
CN6	6	3	23	_		
CN7	7	4	24			
CN8	_		25	_		
CN9	_		26			
CN10	—		27			
CN11	26	23	15			
CN12	25	22	14	_	_	
CN13	24	21	11	_	_	
CN14	23	20	10			
CN15	22	19	9			
CN16	21	18	8	_	_	
CN17	—		3			
CN18	—		2	_	_	
CN19	—		5	_	_	
CN20	—		4	_	—	
CN21	18	15	1	_	_	
CN22	17	14	44	—	—	
CN23	16	13	43	—	—	
CN24	15	12	42		—	
CN25	—		37		_	
CN26	—	—	38		—	
CN27	14	11	41	_	—	
CN28			36	_		
CN29	10	7	31	_		
CN30	9	6	30			
CN33	—		13	_		
CN34		_	32	_		
CN35	—	—	35	—	—	
CN36		_	12	_		
CTCMP	4	1	21	I	ANA	CTMU Comparator 2 Input (Pulse mode).

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog Input I^2C = ST with I^2C^{TM} or SMBus levels

	Pin Num	ber/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
RB0	4	1	21	I/O	ST	PORTB Digital I/Os.
RB1	5	2	22	I/O	ST	
RB2	6	3	23	I/O	ST	
RB3	7	4	24	I/O	ST	
RB4	11	8	33	Ι	ST	
RB5	14	11	41	I/O	ST	
RB6	15	12	42	I/O	ST	
RB7	16	13	43	I/O	ST]
RB8	17	14	44	I/O	ST	
RB9	18	15	1	I/O	ST	
RB10	21	18	8	I/O	ST	
RB11	22	19	9	I/O	ST	
RB12	23	20	10	I/O	ST	
RB13	24	21	11	I/O	ST	
RB14	25	22	14	I/O	ST	
RB15	26	23	15	I/O	ST	
RC0	_		25	I/O	ST	PORTC Digital I/Os.
RC1	—		26	I/O	ST	
RC2	—		27	I/O	ST	
RC3	_		36	I/O	ST	
RC4	_		37	I/O	ST	
RC5	_	_	38	I/O	ST	
RC6	_	—	2	I/O	ST	
RC7	_	_	3	I/O	ST	
RC8	—		4	I/O	ST	
RC9	—		5	I/O	ST	
REFI	22	19	9	_]
REFO	24	21	11	_		Reference Clock Output.
Legend: ST =	Schmitt Trigger Analog input	input			= TTL co = Output	mpatible input I = Input P = Power

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog input I²C = ST with I²C™ or SMBus levels

TABLE 4-18 :	A/D CONVERTER REGISTER MAP
---------------------	----------------------------

Name Addr Bit 19 Bit 19 Bit 9 Bit 9 Bit 8 Bit 7 Bit 6 Bit 7 Bit 7 Bit 6 Bit 7 Bit 7 <th< th=""><th>IADLL 4-</th><th>10.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	IADLL 4-	10.																	
ADC1BUF1 0202 ADC1BUF2 0204 ADC1BUF2 0204 ADC ADC ADC1BUF2 0206 ADD Data Buffer 3/Threshold for Channel 3 ADC ADC ADC1BUF5 0208 ADD Data Buffer 5/Threshold for Channel 4 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0200 ADD Data Buffer 6/Threshold for Channel 0 in Windowed Compare mode XXX ADC1BUF7 0210 ADD Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0212 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0212 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0214 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF12 0214 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF12 0214 A/D Data Buffer 10/Threshold for Channel 1 in Win		Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC18UF2 0204 AVC 18UF2 AVD Data Buffer 2/Threshold for Channel 3 xxxx ADC18UF4 0208 AVC Data Buffer 4/Threshold for Channel 3 xxxx ADC18UF4 0200 AVD Data Buffer 4/Threshold for Channel 5 xxxx ADC18UF6 0200 AVD Data Buffer 6/Threshold for Channel 6 xxxx ADC18UF6 0200 AVD Data Buffer 6/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF7 0202 AVD Data Buffer 8/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF7 0210 AVD Data Buffer 9/Threshold for Channel 0 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0214 AVD Data Buffer 9/Threshold for Channel 0 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0214 AVD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF11 0216 AVD Data Buffer 10/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF11 0218 AVD Data Buffer 10/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 0214 AVD Data Buffer 10/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 0216 A	ADC1BUF0	0200						A/D	Data Buffer	0/Thresho	ld for Chan	nel 0							XXXX
ADC1BUF3 0206 ADC1BUF4 0208 ADC1BUF4 0208 ADC1BUF4 0208 ADC1BUF4 0208 ADD Data Buffer 4Threshold for Channel 4 xxxx ADC1BUF5 0200 ADD Data Buffer 5Threshold for Channel 5 Xxxx Xxxx ADC1BUF5 0200 ADD Data Buffer 6Threshold for Channel 6 Xxxx ADC1BUF7 0202 ADD Data Buffer 9Threshold for Channel 6 Xxxx ADC1BUF7 0202 ADD Data Buffer 9Threshold for Channel 9 Threshold for Channel 1 in Windowed Compare mode Xxxx ADC1BUF10 0214 ADD Data Buffer 10Threshold for Channel 9 Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF11 0216 ADD Data Buffer 10Threshold for Channel 1 In Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF12 0218 ADD Data Buffer 112Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF13 0210 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF13 0218 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF14 0216 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF14 <t< td=""><td>ADC1BUF1</td><td>0202</td><td></td><td></td><td></td><td></td><td></td><td>A/D</td><td>Data Buffer</td><td>1/Thresho</td><td>ld for Chan</td><td>nel 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></t<>	ADC1BUF1	0202						A/D	Data Buffer	1/Thresho	ld for Chan	nel 1							XXXX
ADC18UF4 0208 ADC18UF5 20A ADC18UF5 20A ADC18UF5 ADC18UF1 ADC18UF1 ADC18UF1 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF11 ADC18UF11 ADC18UF11 ADC18UF12 Q18 ADC18UF11 ADC18UF13 ADC18UF14 ADC18U	ADC1BUF2	0204						A/D	Data Buffer	2/Thresho	ld for Chan	nel 2							XXXX
ADC18UF5 020A ADC18UF6 020C ADC18UF6 020C ADC18UF6 020C ADC18UF7 020E ADC18UF6 021C ADC18UF6 0210 ADC18UF6 0100 mode Compare mode Vaxxx Vaxx ADC18UF10 0214 ADD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ Vaxx	ADC1BUF3	0206						A/D	Data Buffer	3/Thresho	ld for Chan	nel 3							XXXX
ADC18UF6 020C ADC18UF7 020E ADC18UF7 020E ADC18UF7 020E ADC18UF7 020E ADC18UF7 021E ADC18UF7	ADC1BUF4	0208						A/D	Data Buffer	4/Thresho	ld for Chan	nel 4							XXXX
ADC18UF7 020E ADC18UF8 0210 ADC18UF8 0210 ADC18UF9 0210 ADC18UF9 0210 ADC18UF9 0210 ADC18UF9 0212 ADC18UF9 0212 ADC18UF9 0212 ADC18UF9 0212 ADD Data Buffer 3/Threshold for Channel 3/Threshold for Channel 1/Threshold for Channel 10/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF10 0216 ADD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF13 0214 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF14 0210 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF14 0212 ADON ADD AB AMD Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC18UF14 0216 C116 ADON	ADC1BUF5	020A						A/D	Data Buffer	5/Thresho	ld for Chan	nel 5							XXXX
ADC18UF8 0210 A/D Data Buffer 8/Threshold for Channel 9/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF9 0212 A/D Data Buffer 9/Threshold for Channel 1 in Windowed Compare mode xxxx ADC18UF10 0214 A/D Data Buffer 10/Threshold for Channel 1 in/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF11 0216 A/D Data Buffer 11/Threshold for Channel 1 in/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 5 to X/D Data Buffer 13 XXX ADC18UF14 021C X/D CAD X/D DAMAM MAR MODE12 FORM1 FORM0 SSRC3 SSRC2 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1CON1 0222 PVCFG1 PVCFG0 OFFCAL BUFREGEN	ADC1BUF6	020C						A/D	Data Buffer	6/Thresho	ld for Chan	nel 6							XXXX
ADC18UF9 0212 A/D Data Buffer 9/Threshold for Channel 9/Threshold for Channel 1 in Windowed Compare mode xxxx ADC18UF10 0214 A/D Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0216 A/D Data Buffer 11/Threshold for Channel 10/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF14 021C A/D Data Buffer 13 XXX XXXX ADC18UF15 021E A/D Data Buffer 14 XXXX ADC10N1 0220 ADON A/D AND MARN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1C0N2 0222 PVCFG0 NVCFG0 OFFCAL BUFREGEN CSCNA - - BUFS SMPI4 SMPI3 SMPI2	ADC1BUF7	020E						A/D	Data Buffer	7/Thresho	ld for Chan	nel 7							XXXX
ADC1BUF10 0214 ADD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF11 0216 A/D Data Buffer 11/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC1BUF15 021E A/D Data Buffer 12/Threshold for Channel 12 Threshold for Channel 5 xxx AD1CON1 0220 ADON ADSID DMABM MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC1 SMPI2 SMPI1 SMPI0 BUFM ALTS 000 AD1CON2 0222 PVCFG1 PVCFG0 NVCFG0	ADC1BUF8	0210				A/D	Data Buffer 8/	Threshold for	Channel 8/	Threshold	for Channe	0 in Windo	wed Comp	are mode					XXXX
ADC1BUF11 0216 ADD Data Buffer 11/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC1BUF14 021C A/D Data Buffer 13 XXX ADC1BUF15 021E A/D Data Buffer 15 XXX AD1CON1 0220 ADON ADSID DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1CON1 0220 ADON ADSID DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM MPI0 BUFM ALTS 000 AD1CON3 0224 ADCC EXTSAM PUMPEN SAMC3 SAMC2 SAMC1 SAMC0 ADCS5 ADCS5 ADCS3 ADCS2 <	ADC1BUF9	0212				A/D	Data Buffer 9/	Threshold for	Channel 9/	Threshold	for Channe	1 in Windo	wed Comp	are mode					xxxx
ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A	ADC1BUF10	0214				A/D Da	ata Buffer 10/T	hreshold for C	Channel 10/	Threshold	for Channe	l 2 in Windo	wed Comp	are mode ⁽¹)				xxxx
ADC1BUF13 021A	ADC1BUF11	0216				A/D Da	ata Buffer 11/T	hreshold for (Channel 11/	Threshold	for Channe	3 in Windo	wed Comp	are mode ⁽¹)				xxxx
ADC1BUF14 021C VACUAL	ADC1BUF12	0218				A/D Da	ata Buffer 12/T	hreshold for C	Channel 12/	Threshold	for Channe	l 4 in Windo	owed Comp	are mode ⁽¹)				xxxx
ADC1BUF15021EO210ADON—ADSIDLDMABMDMAENMODE12FORM1FORM0SSRC3SSRC2SSRC1SSRC0—ASAMSAMPDONE000AD1CON10222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA——BUFSSMPI4SMPI3SMPI2SMP11SMP10BUFMALTS000AD1CON20222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA———BUFSSMP14SMP13SMP12SMP10BUFMALTS000AD1CON30224ADRCEXTSAMPUMPENSAMC4SAMC3SAMC2SAMC1SAMC0ADC57ADC66ADC55ADC54ADC53ADC52ADC51ADC50000AD1CN30228CH0NB2CH0NB1CH0SB3CH0SB2CH0SB1CH0SB0CH0NA2CH0NA1CH0NA0CH0SA4CH0SA3CH0SA2CH0SA0000AD1CSSL022C—————————————000AD1CON4022E—————————————000AD1CON4022E————————————000AD1CON4022E————————————…000 <td>ADC1BUF13</td> <td>021A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A/D</td> <td>Data Buffe</td> <td>er 13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>xxxx</td>	ADC1BUF13	021A							A/D	Data Buffe	er 13								xxxx
AD1CON1 0220 ADON — ADSIDL DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 — ASAM SAMP DONE 000 AD1CON2 0222 PVCFG1 PVCFG0 NVCFG0 OFFCAL BUFREGEN CSCNA — — BUFS SMPI4 SMPI3 SMPI2 SMPI1 SMP0 BUFM ALTS 000 AD1CON3 0224 ADRC EXTSAM PUMPEN SAMC4 SAMC3 SAMC2 SAMC1 SAMC0 ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 000 AD1CHS 0228 CH0NB1 CH0NB0 CH0SB3 CH0SB3 CH0SB1 CH0SB0 CH0NA2 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SA0 CH0NA2 CH0NA1 CH0NA0 CH0SA3 CH0SA1 CH0NA2 CH0NA1 CH0SA3 CH0SA1 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SA1 CH0NA2 CH0NA1 CH0SA3 CH0SA3 CH0SA1 CH0NA1 CH0NA1 CH0SA3 CH0SA1 <td>ADC1BUF14</td> <td>021C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A/D</td> <td>Data Buffe</td> <td>er 14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>xxxx</td>	ADC1BUF14	021C							A/D	Data Buffe	er 14								xxxx
AD1CON20222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA——BUFSSMPI4SMPI3SMPI2SMPI1SMPI0BUFMALTS000AD1CON30224ADRCEXTSAMPUMPENSAMC4SAMC3SAMC2SAMC1SAMC0ADCS7ADCS6ADCS5ADCS4ADCS3ADCS2ADCS1ADCS0000AD1CHS0228CH0NB2CH0NB1CH0NB0CH0SB4CH0SB3CH0SB2CH0SB1CH0SB0CH0NA2CH0NA1CH0NA0CH0SA4CH0SA3CH0SA2CH0SA0000AD1CSH022C000AD1CON4022E000AD1CON50230ASENLPENCTMREQBGREQ000AD1CHTL0238000AD1CON50230ASENLPENCTMREQBGREQASINT1ASINT0000000AD1CON50238000000AD1CON50238ASENLPENCTMREQBGREQASINT1ASINT0	ADC1BUF15	021E							A/D	Data Buffe	r 15								XXXX
AD1CON3 0224 ADRC EXTSAM PUMPEN SAMC4 SAMC3 SAMC2 SAMC1 SAMC0 ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 000 AD1CHS 0228 CH0NB2 CH0NB1 CH0NB0 CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA2 CH0NA1 CH0NA0 CH0SA3 CH0SA2 CH0SA0 000 AD1CSSH 0220 C CSS<31:27> — — — — — — — — — — — 000 AD1CON4 0222 — — CSS<31:27> — — — — — — — — — — — — — — — — — …	AD1CON1	0220	ADON	—	ADSIDL	DMABM	DMAEN	MODE12	FORM1	FORM0	SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE	0000
AD1CHS 0228 CH0NB2 CH0NB1 CH0NB0 CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA2 CH0NA1 CH0NA0 CH0SA4 CH0SA3 CH0SA2 CH0SA1 CH0SA3 CH0SA3 CH0SA4 CH0SA3 CH0SA3 CH0SA4 CH0SA4 CH0SA3 CH0SA4	AD1CON2	0222	PVCFG1	PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA		_	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CSSH 022A CSS<31:27> - 000 AD1CSSL 022C - - - - - - - - - - 000 000 AD1CON4 022E - - - - - - - - DMABL<2:0> 000 AD1CON5 0230 ASEN LPEN CTMREQ BGREQ - - ASINT1 ASINT0 - - - - WM1 WM0 CM1 CM0 000 AD1CHITL 0234 - - - - - - - - - 000 AD1CTMENL 0238 - - <	AD1CON3	0224	ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CSSL 022C CSS<14:0>(1) <th< td=""><td>AD1CHS</td><td>0228</td><td>CH0NB2</td><td>CH0NB1</td><td>CH0NB0</td><td>CH0SB4</td><td>CH0SB3</td><td>CH0SB2</td><td>CH0SB1</td><td>CH0SB0</td><td>CH0NA2</td><td>CH0NA1</td><td>CH0NA0</td><td>CH0SA4</td><td>CH0SA3</td><td>CH0SA2</td><td>CH0SA1</td><td>CH0SA0</td><td>0000</td></th<>	AD1CHS	0228	CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CON4 022E	AD1CSSH	022A			CSS<31:2	7>		_	_	—		_	—			—	—	—	0000
AD1CON5 0230 ASEN LPEN CTMREQ BGREQ — ASINT1 ASINT0 — — — — WM1 WM0 CM1 CM0 000 AD1CHITL 0234 — — — — ASINT1 ASINT0 — — — — WM1 WM0 CM1 CM0 000 AD1CHITL 0234 — — — — — — — — W00 CM1 CM0 000 AD1CTMENL 0238 — — — — — CTMEN CTMEN CTMEN US00 US00	AD1CSSL	022C	—							CSS<1	14:0> ⁽¹⁾								0000
AD1CHITL 0234 CHH<12:0>(1) 000 AD1CTMENL 0238 CTMEN<12:0>(1) 000	AD1CON4	022E	—	—	—	—	—	—	—	—	—	—	—	—	—	[DMABL<2:0	>	0000
AD1CTMENL 0238 CTMEN<12:0> ⁽¹⁾		0230	ASEN	LPEN	CTMREQ	BGREQ	_	_	ASINT1	ASINT0	—	—	—	—	WM1	WM0	CM1	CM0	0000
	AD1CHITL	0234	—	—	—														0000
AD1DMBUF 023A A/D Conversion Data Buffer (Extended Buffer mode) xxx	AD1CTMENL	0238	—	—	—						CTMEN	<12:0> ⁽¹⁾							0000
	AD1DMBUF	023A						A/D Conv	ersion Data	a Buffer (Ex	tended Buf	fer mode)							XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

Note 1: The CSS<12:10>, CHH<12:10> and CTMEN<12:10> bits are unimplemented in 28-pin devices, read as '0'.

TABLE 4-29: DEEP SLEEP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DSCON	010E	DSEN	_		_	_	—	_		-	_	_	_		r	DSBOR	RELEASE	0000(1)
DSWAKE	0110	—	—	_	_	_	_	_	DSINT0	DSFLT	_	_	DSWDT	DSRTCC	DSMCLR	_	_	0000(1)
DSGPR0	0112							Deep SI	eep Semap	hore Data 0	Register							0000 (1)
DSGPR1	0114							Deep SI	eep Semap	hore Data 1	Register							0000(1)

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: These registers are only reset on a VDD POR event.

TABLE 4-30: CRYPTOGRAPHIC ENGINE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRYCONL	01A4	CRYON	—	CRYSIDL	ROLLIE	DONEIE	FREEIE	—	CRYGO	OPMOD3	OPMOD2	OPMOD1	OPMOD0	CPHRSEL	CPHRMOD2	CPHRMOD1	CPHRMOD0	0000
CRYCONH	01A6		CTRSIZE6	CTRSIZE5	CTRSIZE4	CTRSIZE3	CTRSIZE2	CTRSIZE1	CTRSIZE0	SKEYSEL	KEYMOD1	KEYMOD0		KEYSRC3	KEYSRC2	KEYSRC1	KEYSRC0	0000
CRYSTAT	01A8	I	_	_	_	_	_	_	—	CRYBSY	TXTABSY	CRYABRT	ROLLOVR		MODFAIL	KEYFAIL	PGMFAIL	0000
CRYOTP	01AC	I	_	_	_	_	_	_	—	PGMTST	OTPIE	CRYREAD	KEYPG3	KEYPG2	KEYPG1	KEYPG0	CRYWR	0020
CRYTXTA	01B0							Crypt	tographic Tex	kt Register A	(128 bits wi	de)						XXXX
CRYKEY	01C0							Cryptogra	aphic Key Re	gister (256 l	oits wide, wri	te-only)						XXXX
CRYTXTB	01E0							Crypt	tographic Te	d Register E	(128 bits wi	de)						XXXX
CRYTXTC	01F0										XXXX							

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-31: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_		_		_	ERASE	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000 (1)
NVMKEY	0766	_	_	_	_	_	_	_	_			1	VMKEY R	egister<7:0	>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

REGISTER 7-2: RCON2: RESET AND SYSTEM CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_			_			_	_
bit 15							bit 8
U-0	U-0	U-0	r-0	R/CO-1	R/CO-1	R/CO-1	R/CO-0
	_	_		VDDBOR ⁽¹⁾	VDDPOR ^(1,2)	VBPOR ^(1,3)	VBAT ⁽¹⁾
bit 7				·			bit C
Legend:		CO = Clearab	le Only bit	r = Reserved	bit		
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-5	Unimpleme	ented: Read as '	0'				
bit 4	Reserved:	Maintain as '0'					
bit 3	VDDBOR: V	VDD Brown-out F	Reset Flag bit ⁽¹)			
		Brown-out Reset Brown-out Reset			e)		
bit 2	VDDPOR: \	VDD Power-on R	eset Flag bit ^{(1,}	2)			
		Power-on Reset Power-on Reset	· · · · · · · · · · · · · · · · · · ·		:)		
bit 1	VBPOR: VE	3POR Flag bit ^{(1,:}	3)				
	Sleep S	POR has occur Semaphore regis POR has not oc	ter retention le			VBAT power be	elow the Deep
bit 0	VBAT: VBAT	г Flag bit ⁽¹⁾					
		exit has occurre exit from VBAT h			he VBAT pin (se	t by hardware)	
Note 1: T	This bit is set ir	hardware only;	it can only be	cleared in softw	are.		

- 2: This bit indicates a VDD Power-on Reset. Setting the POR bit (RCON<0>) indicates a VCORE Power-on Reset.
- **3:** This bit is set when the device is originally powered up, even if power is present on VBAT.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	CLRWDT, PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #0 Instruction	POR
DPSLP (RCON<10>)	PWRSAV #0 Instruction while DSEN bit is Set	POR
IDLE (RCON<2>)	PWRSAV #1 Instruction	POR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	_

TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	DMA4IE	PMPIE	_		OC6IE	OC5IE	IC6IE
pit 15	·	•		÷			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IE	IC4IE	IC3IE	DMA3IE	CRYROLLIE	CRYFREEIE	SPI2TXIE	SPI2IE
bit 7						I	bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
oit 15	Unimplemen	ted: Read as '	0'				
oit 14	DMA4IE: DM	A Channel 4 Ir	iterrupt Enable	e bit			
		request is enat request is not e					
oit 13	PMPIE: Para	Ilel Master Port	Interrupt Enal	ble bit			
		request is enab request is not e					
oit 12-11	Unimplemen	ted: Read as '	0'				
oit 10	OC6IE: Output	ut Compare Ch	annel 6 Interru	upt Enable bit			
		request is enab request is not e					
oit 9	OC5IE: Output	ut Compare Ch	annel 5 Interru	upt Enable bit			
		request is enab request is not e					
oit 8	IC6IE: Input (Capture Chann	el 6 Interrupt E	Enable bit			
	•	request is enab					
oit 7	•	request is not e Capture Chann		ablo bit			
JIL 7	•	request is enab	•				
		request is not e					
bit 6	IC4IE: Input (Capture Chann	el 4 Interrupt E	Enable bit			
		request is enab request is not e					
bit 5	IC3IE: Input (Capture Chann	el 3 Interrupt E	Enable bit			
	•	request is enat request is not e					
oit 4	-	A Channel 3 Ir		e bit			
		request is enat request is not e					
oit 3	•	•		rupt Enable bit			
		request is enab					
	-	request is not e					
bit 2				nterrupt Enable	bit		
		request is enab					
	0 = interrupt	request is not e	napieu				

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0
bit 15			·	·		·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemer	ted: Read as '	0'				
bit 14-12	T2IP<2:0>: ⊺	imer2 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
		pt is Priority 1					
		ipt source is dis					
oit 11	•	ted: Read as '					
bit 10-8		: Output Compa		-	ty bits		
	•	pt is Priority 7 (ingnest priori	ty interrupt)			
	•						
	• 001 - Interru	unt in Driarity 1					
		ipt is Priority 1 ipt source is dis	abled				
bit 7							
bit 7 bit 6-4	-	∙ ited: Read as 'i Input Capture 0	0'	rrupt Priority bi	ts		
	IC2IP<2:0>:	ted: Read as '	o' Channel 2 Inte		ts		
	IC2IP<2:0>:	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts		
	IC2IP<2:0>:	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts		
	IC2IP<2:0>: 111 = Interru	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts		
	IC2IP<2:0>: 111 = Interru	nted: Read as f Input Capture C upt is Priority 7 (upt is Priority 1 upt source is dis	₀ , Channel 2 Inte (highest priorit sabled		ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu	nted: Read as f Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as f	^{0'} Channel 2 Inte (highest priorit sabled	ty interrupt)	ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts		
	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as f Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as f	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA0IP<2:0 111 = Interru	nted: Read as f Input Capture C upt is Priority 7 (upt is Priority 1 upt source is dis nted: Read as f >: DMA Chann upt is Priority 7 (0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA0IP<2:0 111 = Interru 001 = Interru	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorif sabled 0' el 0 Interrupt I (highest priorif	ty interrupt) Priority bits	ts		

10.1.2 HARDWARE-BASED POWER-SAVING MODE

The hardware-based VBAT mode does not require any action by the user during code development. Instead, it is a hardware design feature that allows the micro-controller to retain critical data (using the DSGPRx registers) and maintain the RTCC when VDD is removed from the application. This is accomplished by supplying a backup power source to a specific power pin. VBAT mode is described in more detail in Section 10.5 "VBAT Mode".

10.1.3 LOW-VOLTAGE/RETENTION REGULATOR

PIC24FJ128GA204 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

The low-voltage/retention regulator is only available when Sleep mode is invoked. It is controlled by the LPCFG Configuration bit (CW1<10>) and in firmware by the RETEN bit (RCON<12>). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

10.2 Idle Mode

Idle mode includes these features:

- · The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.8 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

10.3 Sleep Mode

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC, with LPRC as the clock source, is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

10.3.1 LOW-VOLTAGE/RETENTION SLEEP MODE

Low-Voltage/Retention Sleep mode functions as Sleep mode with the same features and wake-up triggers. The difference is that the low-voltage/retention regulator allows core digital logic voltage (VCORE) to drop to 1.2V nominal. This permits an incremental reduction of power consumption over what would be required if VCORE was maintained at a 1.8V (minimum) level.

Low-Voltage Sleep mode requires a longer wake-up time than Sleep mode, due to the additional time required to bring VCORE back to 1.8V (known as TREG). In addition, the use of the low-voltage/retention regulator limits the amount of current that can be sourced to any active peripherals, such as the RTCC, etc.

NOTES:

REGISTER 11-31: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15	-	-			•		bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

—	_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP17R<5:0>: RP17 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP17 (see Table 11-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP16R<5:0>: RP16 Output Pin Mapping bits
	Peripheral Output Number n is assigned to pin, RP16 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

REGISTER 11-32: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15	·			-			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON ⁽²⁾	—	TSIDL ⁽²⁾	—	_	_	TECS1 ^(2,3)	TECS0 ^{(2,3}
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	—	—	TCS ^(2,3)	_
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	TON: Timery						
	1 = Starts 16- 0 = Stops 16-						
bit 14	Unimplemen	ted: Read as ')'				
bit 13	TSIDL: Timer	ry Stop in Idle M	lode bit ⁽²⁾				
		ues module ope			lle mode		
		s module opera		de			
bit 12-10	-	ted: Read as '				(2.2)	
bit 9-8		Timery Extende		-	selected when	TCS = 1) ^(2,3)	
	11 = Generic 10 = LPRC C	Timer (TMRCK	() External Inpu	ut			
		xternal Clock In	put				
	00 = SOSC		•				
bit 7	Unimplemen	ted: Read as ')'				
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽²⁾			
	When TCS =						
	This bit is ign When TCS =						
		<u></u> ne accumulatio	n is enabled				
	0 = Gated tin	ne accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescale	Select bits ⁽²⁾			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	01 = 1.8 00 = 1:1						
bit 3-2		ted: Read as ')'				
bit 1	-	Clock Source S					
	-	clock from pin,		sing edge)			
	0 = Internal c	lock (Fosc/2)					
bit 0	Unimplemen	ted: Read as ')'				
	Changing the value reset and is not re	-	nile the timer is	running (TON	= 1) causes th	e timer prescale	counter to
	When 32-bit oper operation; all time					ts have no effect	on Timery
	If TCS = 1 and TI available RPn/RF				• • • •	•	

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, *"Input Capture with Dedicated Timer"* (DS39722). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ128GA204 family contain six independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

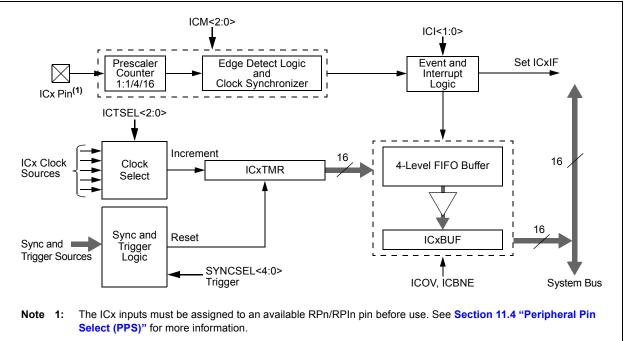
Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation with up to 30 user-selectable sync/trigger sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate, internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES


When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL<4:0> bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

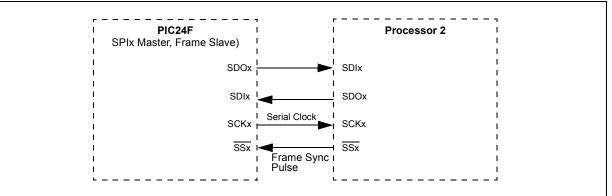
For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8>) and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

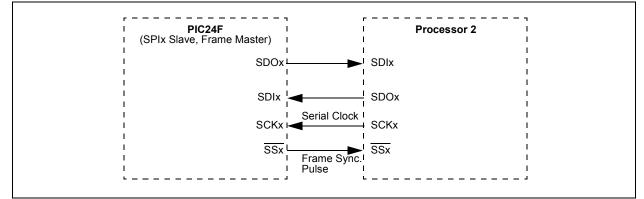
Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

15.3 Pulse-Width Modulation (PWM) Mode


In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are doublebuffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:


- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing '0x1F' to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

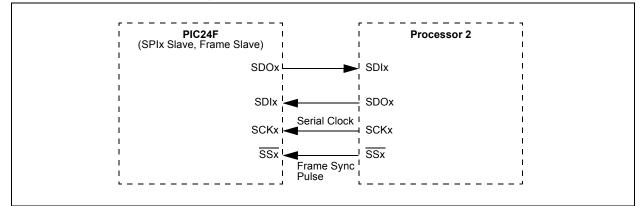

FIGURE 16-6: SPIx MASTER, FRAME SLAVE CONNECTION DIAGRAM

FIGURE 16-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 16-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

$$Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$$
Where:
FPB is the Peripheral Bus Clock Frequency.

REGISTER 20-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER⁽²⁾

R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾
		BASE	<23:16>			
						bit 8
U-0	<u>U-0</u>	U-0	R/W(")	U-0	<u>U-0</u>	U-0
	—	—	BASE11		—	
						bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			own
	U-0 —	U-0 U-0 — — —	U-0 U-0 U-0 — — — bit W = Writable bit W	BASE<23:16> U-0 U-0 R/W ⁽¹⁾ — — BASE11 Dit W = Writable bit U = Unimplem	BASE<23:16> U-0 U-0 R/W ⁽¹⁾ U-0 — — BASE11 — bit W = Writable bit U = Unimplemented bit, read	BASE<23:16> U-0 U-0 R/W ⁽¹⁾ U-0 U-0 — — — BASE11 — — bit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-7 BASE<23:15>: Chip Select x Base Address bits⁽¹⁾

bit 6-4 Unimplemented: Read as '0'

bit 3 **BASE11:** Chip Select x Base Address bit⁽¹⁾

bit 2-0 Unimplemented: Read as '0'

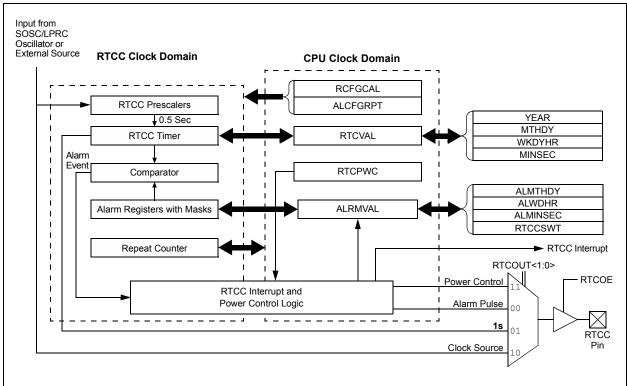
Note 1: The value at POR is 0080h for PMCS1BS and 0880h for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for Chip Select 1 will be FFFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with External Power Control" (DS39745).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- Operates in Deep Sleep mode
- Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- · Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- · Optimized for long-term battery operation
- User calibration of the 32.768 kHz clock crystal/ 32K INTRC frequency with periodic auto-adjust
- Optimized for long-term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices
 without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- Runs from any one of the following:
 - External Real-Time Clock (RTC) of 32.768 kHz
 - Internal 31.25 kHz LPRC clock
 - 50 Hz or 60 Hz external input

21.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/ 60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 21-1: RTCC BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0 R/W-0 R/W-0 R/W-0				U-0	U-0			
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15		dge 1 Edge-Se	ensitive Select	bit						
	1 = Input is ec									
	0 = Input is lev									
bit 14		dge 1 Polarity S								
	•	programmed for programmed for	•	•						
bit 13-10	-	0>: Edge 1 Sou	-							
		•								
	1111 = Edge 1 source is Comparator 3 output1110 = Edge 1 source is Comparator 2 output									
	1101 = Edge 1 source is Comparator 1 output									
	1100 = Edge 1 source is IC3 1011 = Edge 1 source is IC2									
		1 source is IC2 1 source is IC1								
	•	1 source is CTI								
		1 source is CT								
		1 source is CT								
		1 source is CTI 1 source is CTI								
	•	1 source is CTI								
		1 source is CT								
		1 source is CTI								
		1 source is OC 1 source is Tim								
hit Q	•									
bit 9		-	bit 9 EDG2STAT: Edge 2 Status bit							
	Indicates the status of Edge 2 and can be written to control current source. 1 = Edge 2 has occurred									
			2 and can be w	ritten to contro	l current sourc	е.				
	1 = Edge 2 ha		2 and can be w	ritten to contro	l current sourc	е.				
bit 8	1 = Edge 2 ha 0 = Edge 2 ha	is occurred		ritten to contro	I current sourc	e.				
bit 8	1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s	is occurred is not occurred Edge 1 Status b status of Edge	it							
bit 8	1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha	is occurred is not occurred dge 1 Status b status of Edge is occurred	it							
	1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Edge 1 ha	is occurred is not occurred Edge 1 Status b status of Edge is occurred is not occurred	it 1 and can be w	ritten to contro						
bit 8 bit 7	1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Edge 1 ha EDG2MOD: E	as occurred is not occurred Edge 1 Status b status of Edge is occurred is not occurred Edge 2 Edge-Se	it 1 and can be w	ritten to contro						
	1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Edge 1 ha EDG2MOD: E 1 = Input is ec	as occurred is not occurred Edge 1 Status b status of Edge is occurred is not occurred Edge 2 Edge-Se Ige-sensitive	it 1 and can be w	ritten to contro						
bit 7	1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Edge 1 ha EDG2MOD: E 1 = Input is ec 0 = Input is lev	as occurred as not occurred adge 1 Status b status of Edge as occurred as not occurred adge 2 Edge-Se age-sensitive vel-sensitive	it 1 and can be w ensitive Select	ritten to contro						
	1 = Edge 2 ha 0 = Edge 2 ha EDG1STAT: E Indicates the s 1 = Edge 1 ha 0 = Edge 1 ha EDG2MOD: E 1 = Input is ec 0 = Input is lev	as occurred is not occurred Edge 1 Status b status of Edge is occurred is not occurred Edge 2 Edge-Se Ige-sensitive	it 1 and can be w ensitive Select Select bit	vritten to contro						

REGISTER 27-2: CTMUCON2: CTMU CONTROL REGISTER 2

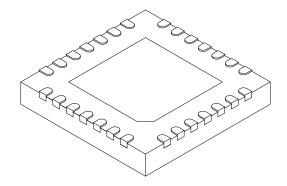
Note 1: Edge source, CTED7, is not available in 28-pin packages.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	f = f	1	1	N, Z
	COM	f,WREG	WREG = \overline{f}	1	1	N, Z
	СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CPO	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
010	CPO	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, Z
	012		$(Wb - Ws - \overline{C})$			
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f - 1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f-1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACTERISTICS			Standard Operat Operating tempe	ditions: 2.0V to 3.6V (unless otherwise states $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbo I	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽³⁾					
DI10		I/O Pins with ST Buffer	Vss		0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss		0.15 VDD	V	
DI15		MCLR	Vss		0.2 VDD	V	
DI16		OSCI (XT mode)	Vss		0.2 VDD	V	
DI17		OSCI (HS mode)	Vss		0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer	Vss		0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer	Vss		0.8	V	SMBus enabled
	Vih	Input High Voltage ⁽³⁾					
DI20		I/O Pins with ST Buffer: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	—	Vdd 5.5	V V	
DI21		I/O Pins with TTL Buffer: with Analog Functions Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8		VDD 5.5	V V	
DI25		MCLR	0.8 VDD		Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd		Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		VDD 5.5	V V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions Digital Only	2.1 2.1		VDD 5.5	V V	$2.5V \le V\text{PIN} \le V\text{DD}$
DI30	ICNPU	CNxx Pull-up Current	150	340	550	μA	VDD = 3.3V, VPIN = VSS
DI30A	ICNPD	CNxx Pull-Down Current	150	310	550	μA	VDD = 3.3V, VPIN = VDD
	lı∟	Input Leakage Current ⁽²⁾					
DI50		I/O Ports	_	—	±1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI51		Analog Input Pins	_	—	±1	μΑ	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI55		MCLR	—	—	±1	μA	$VSS \leq VPIN \leq VDD$
DI56		OSCI/CLKI	_	_	±1	μA	VSS \leq VPIN \leq VDD, EC, XT and HS modes

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS


Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-3 for I/O pin buffer types.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units					
Dimensior	Limits	MIN	NOM	MAX		
Number of Pins	Ν		28			
Pitch	е		0.65 BSC			
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3		0.20 REF			
Overall Width	Е		6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.70		
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70		
Terminal Width	b	0.23	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2