

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Betano	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga202-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
CN0	12	9	34	—		Interrupt-on-Change Inputs.
CN1	11	8	33	_	—	
CN2	2	27	19	—	—	
CN3	3	28	20	_	—	
CN4	4	1	21	_		
CN5	5	2	22	_		
CN6	6	3	23	_		
CN7	7	4	24			
CN8	_		25	_		
CN9	_		26			
CN10	—		27			
CN11	26	23	15			
CN12	25	22	14	_	_	
CN13	24	21	11	_	_	
CN14	23	20	10			
CN15	22	19	9			
CN16	21	18	8	_	_	
CN17	—		3			
CN18	—		2	_	_	
CN19	—		5	_	_	
CN20	—		4	_	—	
CN21	18	15	1	_	_	
CN22	17	14	44	—	—	
CN23	16	13	43	—	—	
CN24	15	12	42		—	
CN25	—		37		_	
CN26	—	—	38		—	
CN27	14	11	41	_	—	
CN28			36	_		
CN29	10	7	31	_		
CN30	9	6	30			
CN33	—		13	_		
CN34		_	32	_		
CN35	—	—	35	_	—	
CN36		_	12	_		
CTCMP	4	1	21	I	ANA	CTMU Comparator 2 Input (Pulse mode).

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog Input I^2C = ST with I^2C^{TM} or SMBus levels

TABLE 4-29: DEEP SLEEP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DSCON	010E	DSEN	_		_	_	—	_		-	_	_	_		r	DSBOR	RELEASE	0000(1)
DSWAKE	0110	—	—	_	_	_	_	_	DSINT0	DSFLT	_	_	DSWDT	DSRTCC	DSMCLR	_	_	0000(1)
DSGPR0	0112							Deep SI	eep Semap	hore Data 0	Register							0000 (1)
DSGPR1	0114		Deep Sleep Semaphore Data 1 Register 00												0000(1)			

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

Note 1: These registers are only reset on a VDD POR event.

TABLE 4-30: CRYPTOGRAPHIC ENGINE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRYCONL	01A4	CRYON	—	CRYSIDL	ROLLIE	DONEIE	FREEIE	—	CRYGO	OPMOD3	OPMOD2	OPMOD1	OPMOD0	CPHRSEL	CPHRMOD2	CPHRMOD1	CPHRMOD0	0000
CRYCONH	01A6		CTRSIZE6	CTRSIZE5	CTRSIZE4	CTRSIZE3	CTRSIZE2	CTRSIZE1	CTRSIZE0	SKEYSEL	KEYMOD1	KEYMOD0		KEYSRC3	KEYSRC2	KEYSRC1	KEYSRC0	0000
CRYSTAT	01A8	I	_	MODFAIL KEYFAIL PGMFAIL 000											0000			
CRYOTP	01AC	I	_	_	_	_	_	_	—	PGMTST	OTPIE	CRYREAD	KEYPG3	KEYPG2	KEYPG1	KEYPG0	CRYWR	0020
CRYTXTA	01B0							Crypt	tographic Tex	kt Register A	(128 bits wi	de)						XXXX
CRYKEY	01C0							Cryptogra	aphic Key Re	gister (256 l	oits wide, wri	te-only)						XXXX
CRYTXTB	01E0							Crypt	tographic Te	d Register E	(128 bits wi	de)						XXXX
CRYTXTC	01F0		Cryptographic Text Register C (128 bits wide)												XXXX			

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-31: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	_		_		_	ERASE	_	_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000 (1)
NVMKEY	0766	_	_	_	_	_	_	_	_			1	VMKEY R	egister<7:0	>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

5.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority based on their channel number.
- Fixed Priority: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history.

5.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with appropriate upper and lower address boundaries for data RAM operations.
- 3. Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA Addressing mode, use the base address value.
- 5. Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- 8. Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

5.3 Peripheral Module Disable

Unlike other peripheral modules, the channels of the DMA Controller cannot be individually powered down using the Peripheral Module Disable x (PMDx) registers. Instead, the channels are controlled as two groups. The DMA0MD bit (PMD7<4>) selectively controls DMACH0 through DMACH3. The DMA1MD bit (PMD7<5>) controls DMACH4 and DMACH5. Setting both bits effectively disables the DMA Controller.

5.4 Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Control Register (Register 5-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Transfer Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 5-2)
- DMAINTn: DMA Channel n Interrupt Control Register (Register 5-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n Register
- DMADSTn: DMA Data Destination Source for Channel n Register
- DMACNTn: DMA Transaction Counter for Channel n Register

For PIC24FJ128GA204 family devices, there are a total of 34 registers.

6.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 6-1):
 - a) Set the NVMOPx bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 6-3).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 6-4.

EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)

; Set up NVMCON for block erase operation MOV #0×4042, W0 MOV W0, NVMCON ; Initialize NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR), W0 ; MOV W0, TBLPAG ; Initialize Program Memory (PM) Page Boundary SFR MOV #tbloffset(PROG ADDR), W0 ; Initialize in-page EA<15:0> pointer TBLWTL WO, [WO] ; Set base address of erase block ; Block all interrupts with priority <7 DISI #5 ; for next 5 instructions MOV.B #0x55, W0 MOV WO. NVMKEY ; Write the 0x55 key MOV.B #0xAA, W1 : MOV W1, NVMKEY ; Write the OxAA key BSET NVMCON, #WR ; Start the erase sequence NOP ; Insert two NOPs after the erase NOP ; command is asserted

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

	Vector	IRQ	IVT	ΑΙΥΤ	Inte	errupt Bit Loca	tions
Interrupt Source	#	#	Address	Address	Flag	Enable	Priority
SPI1 General	17	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Transmit	18	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI1 Receive	66	58	000088h	000188h	IFS3<10>	IEC3<10>	IPC14<10:8>
SPI2 General	40	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 Transmit	41	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>
SPI2 Receive	67	59	00008Ah	00018Ah	IFS3<11>	IEC3<11>	IPC14<14:12>
SPI3 General	98	90	0000C8h	0001C8h	IFS5<10>	IEC5<10>	IPC22<10:8>
SPI3 Transmit	99	91	0000CAh	0001CAh	IFS5<11>	IEC5<11>	IPC22<14:12>
SPI3 Receive	68	60	000054h	000154h	IFS3<12>	IEC3<12>	IPC15<2:0>
Timer1	11	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	15	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	16	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	35	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	36	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	73	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	19	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	20	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	74	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	38	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	39	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
UART3 Error	89	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>
UART3 Receiver	90	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>
UART3 Transmitter	91	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>
UART4 Error	95	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>
UART4 Receiver	96	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>
UART4 Transmitter	97	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>

PIC24FJ128GA204 FAMILY

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
_	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	—	KEYSTRIF
pit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
CRYDNIF	INT4IF	INT3IF	—		MI2C2IF	SI2C2IF	—
oit 7	·	·					bit 0
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as ')'				
oit 14	-	-Time Clock/Cale		Flag Status bit			
		request has occ request has not					
oit 13	•	IA Channel 5 Int		tus bit			
	1 = Interrupt	request has occ request has not	urred				
oit 12	•	PI3 Receive Inte		us bit			
		request has occ request has not					
pit 11		PI2 Receive Inte		us bit			
		request has occ					
	0 = Interrupt	request has not	occurred				
bit 10		PI1 Receive Inte		us bit			
		request has occ request has not					
oit 9	-	nted: Read as '					
bit 8	1 = Interrupt	Cryptographic Ko request has occ request has not	urred	am Done Interro	upt Flag Status	bit	
oit 7	CRYDNIF: C	ryptographic Op	eration Done I	nterrupt Flag St	atus bit		
	•	request has occ request has not					
oit 6	-	rnal Interrupt 4					
		request has occ request has not					
bit 5	INT3IF: Exte	rnal Interrupt 3	-lag Status bit				
		request has occ request has not					
bit 4-3	Unimpleme	nted: Read as ')'				
bit 2	MI2C2IF: Ma	ster I2C2 Event	Interrupt Flag	Status bit			
		request has occ request has not					
bit 1	SI2C2IF: Sla	ve I2C2 Event Ir	terrupt Flag St	atus bit			
		request has occ request has not					
		•					

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
—	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	—	KEYSTRIE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
CRYDNIE	INT4IE ⁽¹⁾	INT3IE ⁽¹⁾		_	MI2C2IE	SI2C2IE	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
		1 Bit lo cot		Bit lo bio			
bit 15	Unimplemen	ted: Read as '	0'				
bit 14	RTCIE: Real-	Time Clock/Ca	lendar Interrup	t Enable bit			
		request is enab					
bit 13	•	request is not e		hit			
DIC 13		A Channel 5 In request is enab	-	DIL			
		request is enaction of e					
bit 12	•	PI3 Receive Int		bit			
		request is enab	•				
	0 = Interrupt i	request is not e	nabled				
bit 11		PI2 Receive Int	•	bit			
		request is enab					
bit 10	-	request is not e		h:+			
		PI1 Receive Int request is enab	•	DIL			
		request is not e					
bit 9	Unimplemen	ted: Read as '	0'				
bit 8	KEYSTRIE: (Cryptographic k	ey Store Progr	ram Done Inter	rupt Enable bit		
		request is enab					
	•	request is not e					
bit 7				Interrupt Enable	e bit		
		request is enab request is not e					
bit 6	•	nal Interrupt 4					
		request is enab					
	•	request is not e					
bit 5		mal Interrupt 3					
		request is enab					
bit 4-3	•	request is not e					
bit 2	-	ted: Read as ' ster I2C2 Even		hla hit			
		request is enab	-				
		request is not e					
Note 1: If	f an external inte	rrupt is enabled	d. the interrupt	input must also	be configured	to an available	e RPn or RPIn

REGISTER 8-16: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0						
_	_	CTMUIE	_	—	—	_	HLVDIE						
oit 15							bit 8						
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0						
—		—	—	CRCIE	U2ERIE	U1ERIE	—						
bit 7							bit C						
Legend:													
R = Readat		W = Writable b	oit	•	nented bit, rea								
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown						
oit 15-14	•	nted: Read as '0											
oit 13		CTMUIE: CTMU Interrupt Enable bit											
		request is enable request is not en											
bit 12-9	•	nted: Read as '0											
bit 8	•	h/Low-Voltage D		ot Enable bit									
	•	request is enable											
		request is not en											
bit 7-4	Unimpleme	nted: Read as '0	3										
bit 3	CRCIE: CRC	Generator Inter	rupt Enable b	bit									
		request is enable											
	0 = Interrupt	request is not en	abled										
bit 2	U2ERIE: UA	RT2 Error Interru	ipt Enable bit										
		request is enable											
	•	request is not en											
bit 1		RT1 Error Interru											
	•	request is enable request is not en											
bit 0	•	nted: Read as '0											
	Simplemen												

REGISTER 8-17: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **T32:** 32-Bit Timer Mode Select bit⁽³⁾
 - 1 = Timerx and Timery form a single 32-bit timer
 - 0 = Timerx and Timery act as two 16-bit timers
 - In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS**: Timerx Clock Source Select bit⁽²⁾
 - 1 = Timer source is selected by TECS<1:0>0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
 - 2: If TCS = 1 and TECS<1:0> = x1, the selected external timer input (TMRCK or TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - **3:** In T4CON, the T45 bit is implemented instead of T32 to select 32-bit mode. In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
 - 1111x = Reserved
 - 11101 = Reserved
 - 11100 = CTMU⁽¹⁾
 - 11011 = A/D⁽¹⁾
 - $11010 = \text{Comparator 3}^{(1)}$
 - 11001 = Comparator 2⁽¹⁾
 - 11000 = Comparator 1⁽¹⁾
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Input Capture $6^{(2)}$
 - 10100 = Input Capture 5⁽²⁾ 10011 = Input Capture 4⁽²⁾
 - $10011 = \text{Input Capture 4}^{(1)}$ $10010 = \text{Input Capture 3}^{(2)}$
 - 10010 = Input Capture 3(*)10001 = Input Capture 2(2)
 - $10001 = \text{Input Capture 2}^{(7)}$ $10000 = \text{Input Capture 1}^{(2)}$
 - 01111 = Timer5
 - 01110 = Timer3
 - 01101 = Timer3
 - 01100 = Timer3
 - 01011 = Timer1
 - 01010 = **Reserved**
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = **Reserved**
 - 00110 = Output Compare 6
 - 00101 = Output Compare 5
 - 00100 = Output Compare 4
 - 00011 = Output Compare 3
 - 00010 = Output Compare 2
 - 00001 = Output Compare 1
 - 00000 = Not synchronized to any other module
- Note 1: Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ128GA204 family all feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

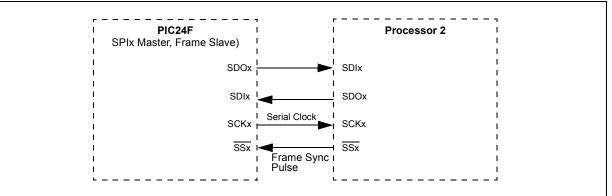
- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable trigger/sync sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

15.1 General Operating Modes

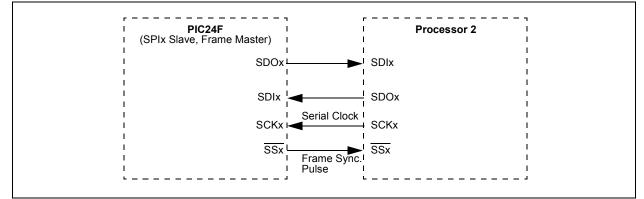
15.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs. In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.


15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Output Compare x (OCx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Output Compare y (OCy), provides the Most Significant 16 bits. Wrap arounds of the OCx registers cause an increment of their corresponding OCy registers.


Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more information on cascading, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Output Compare with Dedicated Timer"** (DS70005159).

PIC24FJ128GA204 FAMILY

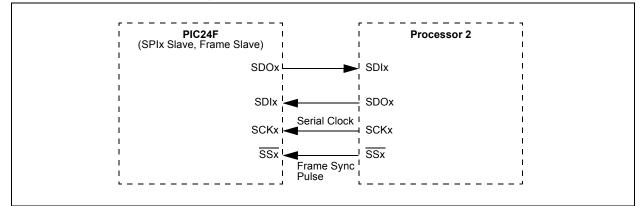

FIGURE 16-6: SPIx MASTER, FRAME SLAVE CONNECTION DIAGRAM

FIGURE 16-7: SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM

FIGURE 16-8: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM

EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

$$Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$$
Where:
FPB is the Peripheral Bus Clock Frequency.

18.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 shows the formula for computation of the baud rate when BRGH = 0.

EQUATION 18-1: UARTx BAUD RATE WITH BRGH = $0^{(1,2)}$

$$Baud Rate = \frac{FCY}{16 \cdot (UxBRG + 1)}$$
$$UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$$
Note 1: FCY denotes the instruction cycle clock frequency (FOSC/2).
2: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 18-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 18-2 shows the formula for computation of the baud rate when BRGH = 1.

EQUATION 18-2: UARTX BAUD RATE WITH BRGH = $1^{(1,2)}$

$$Baud Rate = \frac{FCY}{4 \cdot (UxBRG + 1)}$$
$$UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$$

- **Note 1:** FCY denotes the instruction cycle clock frequency.
 - **2:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate = FCY/(16 (UxBRG + 1))Solving for UxBRG Value: **UxBRG** = ((FCY/Desired Baud Rate)/16) - 1**UxBRG** = ((400000/9600)/16) - 1UxBRG = 25 Calculated Baud Rate = 4000000/(16(25+1))= 9615 Error = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 - 9600)/9600 = 0.16% Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

21.3.2 RTCVAL REGISTER MAPPINGS

REGISTER 21-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

| U-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| — | — | — | — | — | — | — | — |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-x |
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.

bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

PIC24FJ128GA204 FAMILY

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	
bit 15						•	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	
bit 7	I						bit (
Legend:								
R = Readab	le bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 14 bit 13 bit 12-8	 1 = RC clock 0 = Clock derived from system clock EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling PUMPEN: Charge Pump Enable bit 1 = Charge pump for switches is enabled 0 = Charge pump for switches is disabled SAMC<4:0>: Auto-Sample Time Select bits 							
bit 7-0		ND ND A/D Conversio 256 • Tcy = Tat 2•Tcy = Tad		bits				

REGISTER 24-3: AD1CON3: A/D CONTROL REGISTER 3

REGISTER 24-9: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
		CSS<31:27>				_	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'1' = Bit is set		'0' = Bit is cleared x		x = Bit is unkr	κ = Bit is unknown	

1 = Includes corresponding channel for input scan
 0 = Skips channel for input scan

bit 10-0 Unimplemented: Read as '0'

REGISTER 24-10: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CSS<14:8> ⁽¹⁾						
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	CSS<7:0>										
bit 7											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-0 CSS<14:0>: A/D Input Scan Selection bits⁽¹⁾

1 = Includes corresponding channel for input scan

0 = Skips channel for input scan

Note 1: The CSS<12:10> bits are unimplemented in 28-pin devices, read as '0'.

REGISTER 26-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	—	—	_	—	CVREFP	CVREFM1	CVREFM0				
bit 15							bit 8				
	5444					5444.0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 CVR0				
CVREN	CVROE CVRSS CVR4 CVR3 CVR2 CVR1										
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-11	Unimplemen	ted: Read as ')'								
bit 10	CVREFP: Co	mparator Voltag	ge Reference S	Select bit (valid	only when CR	EF is '1')					
		used as a refer (4-bit DAC) wit	•	•		ge to the comp	arators				
bit 9-8		D>: Comparator en CCH<1:0> :		Gap Reference	e Source Selec	et bits					
	01 = Band ga 10 = Reserve	ip voltage, divic	ed by two, is p	 00 = Band gap voltage is provided as an input to the comparators 01 = Band gap voltage, divided by two, is provided as an input to the comparators 10 = Reserved 							
b :4 7	11 = VREF+ pin is provided as an input to the comparators										
nur /	CVREN: Com	-	-	-							
bit 7	1 = CVREF cir	nparator Voltage cuit is powered	e Reference Er on	-							
bit 6	1 = CVREF cir 0 = CVREF cir	nparator Voltage cuit is powered cuit is powered	e Reference Er on down	able bit							
	1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo	nparator Voltage cuit is powered	e Reference Er on down Dutput Enable b utput on the CV	nable bit bit /REF pin							
	1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo	nparator Voltage cuit is powered cuit is powered nparator VREF C Itage level is ou Itage level is di	e Reference Er on down Dutput Enable b itput on the CV sconnected fro	nable bit bit 'REF pin m the CVREF p							
bit 6	1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo CVRSS: Com 1 = Comparat	nparator Voltage cuit is powered cuit is powered nparator VREF C Itage level is ou	e Reference Er on down Dutput Enable b utput on the CV sconnected fro ource Selectio ource, CVRSRC	hable bit fref pin m the CVREF p n bit = VREF+ – VRE	in F-						
bit 6	1 = CVREF cir 0 = CVREF cir CVROE: Com 1 = CVREF vo 0 = CVREF vo CVRSS: Com 1 = Comparat 0 = Comparat	nparator Voltage cuit is powered cuit is powered nparator VREF O Itage level is ou Itage level is di nparator VREF S tor reference so	e Reference Er on down Dutput Enable to itput on the CV sconnected fro ource Selection ource, CVRSRC ource, CVRSRC	nable bit verify the contract of the contract	in F-						

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
DVB01	Vbt	Operating Voltage	1.6	_	3.6	V	Battery connected to the VBAT pin
DVB10	VBTADC	VBAT A/D Monitoring Voltage Specification ⁽¹⁾	1.6	—	3.6		A/D monitoring the VBAT pin using the internal A/D channel

TABLE 32-15: VBAT OPERATING VOLTAGE SPECIFICATIONS

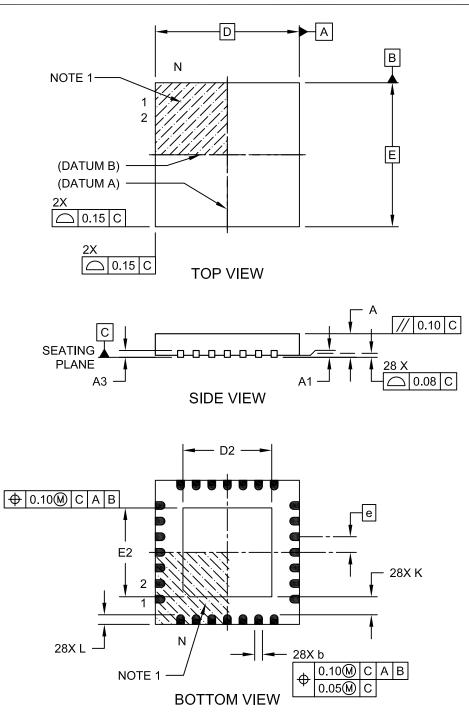
Note 1: Measuring the A/D value using the A/D is represented by the equation: Measured Voltage = ((VBAT/2)/VDD) * 4096) for 12-bit A/D

TABLE 32-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CH	ARACT	ERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					al
Param No.	Svm Characteristic		Min	Typ ⁽¹⁾	Max ⁽³⁾	Units	Comments	Conditions
DCT10	IOUT1	CTMU Current Source, Base Range	208	550	797	nA	CTMUICON<9:8> = 00	
DCT11	IOUT2	CTMU Current Source, 10x Range	3.32	5.5	7.67	μΑ	CTMUICON<9:8> = 01	2.5V < VDD < VDDMAX
DCT12	Ιουτ3	CTMU Current Source, 100x Range	32.22	55	77.78	μΑ	CTMUICON<9:8> = 10	2.5V < VDD < VDDMAX
DCT13	IOUT4	CTMU Current Source, 1000x Range	322	550	777	μA	CTMUICON<9:8> = 11 ⁽²⁾	
DCT21	VΔ	Temperature Diode Voltage Change per Degree Celsius	—	-3	—	mV/°C		

Note 1: Nominal value at the center point of the current trim range (CTMUICON<15:10> = 000000).

2: Do not use this current range with a temperature sensing diode.


3: Maximum values are tested at +85°C.

33.2 Package Details

The following sections give the technical details of the packages.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820