

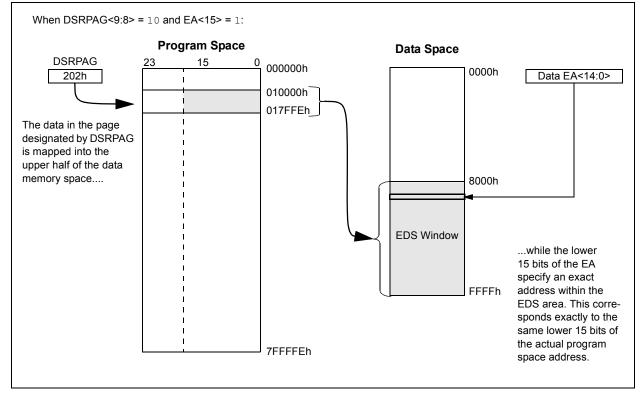
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

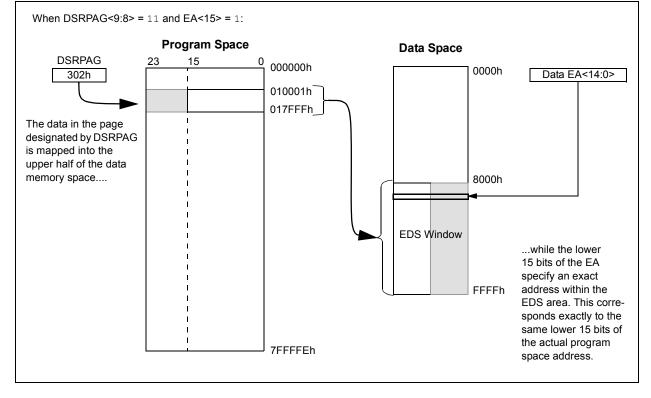
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga204-e-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-10: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS LOWER WORD

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0		SPI3IP2	SPI3IP1	SPI3IP0				
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	U4TXIP2	U4TXIP1	U4TXIP0		U4RXIP2	U4RXIP1	U4RXIP0				
bit 7	0117412	O TIXE T	0 TIXII 0		0 notin 2	O HOULT	bit				
Legend:											
R = Readabl		W = Writable			mented bit, reac						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN				
bit 15	Unimplement	ted: Read as ')'								
bit 14-12	-	>: SPI3 Trans		riority bits							
	111 = Interrup	ot is Priority 7 (highest priority	/ interrupt)							
	•	•									
	•										
	001 = Interrupt is Priority 1										
	-	ot source is dis									
bit 11	-	ted: Read as '									
bit 10-8	SPI3IP<2:0>: SPI3 General Interrupt Priority bits										
	 111 = Interrupt is Priority 7 (highest priority interrupt) 										
	•										
	•	at in Driamity 1									
	001 = Interrup	ot is Phonity 1	abled								
bit 7	-	ted: Read as '									
bit 6-4	-	: UART4 Trans		t Priority bits							
	111 = Interrup	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interrup										
	-	ot source is dis									
bit 3	Unimplemented: Read as '0'										
bit 2-0	U4RXIP<2:0>: UART4 Receiver Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)										
	•		nighest phonty	interrupt)							
	•										
	• 001 = Interrup	t is Driority 1									

REGISTER 8-42: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

R/W-0	U-0	R/W-0	R/W-0	R-0	R/W-0	R-0	R/W-0	
STEN	—	STSIDL	STSRC ⁽¹⁾	STLOCK	STLPOL	STOR	STORPOL	
bit 15							bit	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	-	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	
bit 7							bit	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown	
bit 15	1 = FRC sel	Self-Tune Enat f-tuning is enabl f-tuning is disab	ed; TUNx bits a			bits		
bit 14	Unimpleme	nted: Read as '	0'					
bit 13	STSIDL: FR	C Self-Tune Sto	p in Idle bit					
		ng stops during ng continues du						
bit 12	STSRC: FR	C Self-Tune Ret	ference Clock S	Source bit ⁽¹⁾				
		1 = Reserved 0 = FRC is tuned to approximately match the 32.768 kHz SOSC tolerance						
bit 11	STLOCK: F	RC Self-Tune Lo	ock Status bit					
		 1 = FRC accuracy is currently within ±0.2% of the STSRC reference accuracy 0 = FRC accuracy may not be within ±0.2% of the STSRC reference accuracy 						
bit 10	STLPOL: FI	RC Self-Tune Lo	ock Interrupt Po	larity bit				
		ne lock interrup						
bit 9	STOR: FRC	Self-Tune Out	of Range Status	s bit				
		reference clock reference clock					med	
bit 8	STORPOL:	FRC Self-Tune	Out of Range li	nterrupt Polarity	y bit			
		ne out of range ne out of range						
bit 7-6	Unimpleme	nted: Read as '	0'					
bit 5-0	TUN<5:0>:	FRC Oscillator	Funing bits					
		laximum freque	ncy deviation					
	011110 =							
	•							
	•							
	000001 = 000000 = C 111111 =	enter frequency	, oscillator is ru	nning at factory	v calibrated free	quency		
	•							
	•							
	100001 =							
	100000 = M	linimum frequen	cv deviation					

Note 1: Use of either clock recovery source has specific application requirements. For more information, see Section 9.5 "FRC Self-Tuning".

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock- sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON,#0

9.5 FRC Self-Tuning

PIC24FJ128GA204 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses clock recovery from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that exceeds 0.25%, which is well within the requirements.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the system, causing it to recover a calibration clock from a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 0, the system uses the crystal controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	If the SOSC is to be used as the clock					
	recovery source (STSRC = 0), the SOSC					
	must always be enabled.					

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference by greater than 0.2% in either direction or whenever the frequency deviation is beyond the ability of the TUNx bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

10.4 Deep Sleep Mode

Deep Sleep mode provides the lowest levels of power consumption available from the instruction-based modes.

Deep Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Deep Sleep mode if the WDT or RTCC, with LPRC as the clock source, is enabled.
- The dedicated Deep Sleep WDT and BOR systems, if enabled, are used.
- The RTCC and its clock source continue to run, if enabled. All other peripherals are disabled.

Entry into Deep Sleep mode is completely under software control. Exiting from the Deep Sleep mode can be triggered from any of the following events:

- POR event
- MCLR event
- RTCC alarm (If the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) time-out

10.4.1 ENTERING DEEP SLEEP MODE

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE), within one instruction cycle, to minimize the chance that Deep Sleep will be spuriously entered.

If the PWRSAV command is not given within one instruction cycle, the DSEN bit will be cleared by the hardware and must be set again by the software before entering Deep Sleep mode. The DSEN bit is also automatically cleared when exiting Deep Sleep mode.

Note: To re-enter Deep Sleep after a Deep Sleep wake-up, allow a delay of at least 3 TcY after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.4.5 "Deep Sleep WDT".
- If the application requires Deep Sleep BOR, enable it by programming the DSBOREN Configuration bit (CW4<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module. For more information on RTCC, see Section 21.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).
- Note: A repeat sequence is required to set the DSEN bit. The repeat sequence (repeating the instruction twice) is required to write into any of the Deep Sleep registers (DSCON, DSWAKE, DSGPR0, DSGPR1). This is required to prevent the user from entering Deep Sleep by mistake. Any write to these registers has to be done twice to actually complete the write (see Example 10-2).
- 6. Enter Deep Sleep mode by issuing 3 NOP commands and then a PWRSAV #0 instruction.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

EXAMPLE 10-2: THE REPEAT SEQUENCE

; enable DS
; second write required to
actually write to DSCON
; enable DS (two writes required)

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ128GA204 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 25 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP25.

See Table 1-3 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I^2C^{TM} (input and output)
- Change Notification Inputs
- RTCC Alarm Output(s)
- EPMP Signals (input and output)
- Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pinselectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

REGISTER 11-10: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15	•						bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0
Legend:							

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

REGISTER 11-11: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			U3RXI	R<5:0>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7 bit 0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-12: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits

REGISTER 11-13: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON ⁽²⁾	—	TSIDL ⁽²⁾	—	_	_	TECS1 ^(2,3)	TECS0 ^{(2,3}
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	_	—	TCS ^(2,3)	_
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	TON: Timery						
	1 = Starts 16- 0 = Stops 16-						
bit 14	•	ted: Read as ')'				
bit 13	TSIDL: Timer	ry Stop in Idle M	lode bit ⁽²⁾				
		ues module ope			lle mode		
		s module opera		de			
bit 12-10	-	ted: Read as '				(2.2)	
bit 9-8		Timery Extende		-	selected when	TCS = 1) ^(2,3)	
	11 = Generic 10 = LPRC C	Timer (TMRCK	() External Inpu	ut			
		xternal Clock In	put				
	00 = SOSC		•				
bit 7	Unimplemen	ted: Read as ')'				
bit 6	TGATE: Time	ery Gated Time	Accumulation	Enable bit ⁽²⁾			
	When TCS =						
	This bit is ign When TCS =						
		<u></u> ne accumulatio	n is enabled				
	0 = Gated tin	ne accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescale	Select bits ⁽²⁾			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	01 = 1.8 00 = 1:1						
bit 3-2		ted: Read as ')'				
bit 1	-	Clock Source S					
	-	clock from pin,		sing edge)			
	0 = Internal c	lock (Fosc/2)					
bit 0	Unimplemen	ted: Read as ')'				
	Changing the value reset and is not re	-	nile the timer is	running (TON	= 1) causes th	e timer prescale	counter to
	When 32-bit oper operation; all time					ts have no effect	on Timery
	If TCS = 1 and TI available RPn/RF				• • • •	•	

NOTES:

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ128GA204 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136) which is available from the Microchip web site (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the PIC24FJ128GA204 family include three SPI modules.

The module supports operation in two buffer modes. In Standard Buffer mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received, from 2 to 32-bits.

Note:	Do not perform Read-Modify-Write opera-
	tions (such as bit-oriented instructions) on
	the SPIxBUF register in either Standard or
	Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- · Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

The SPI module has the ability to generate three interrupts, reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - **SPIRBE =** 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

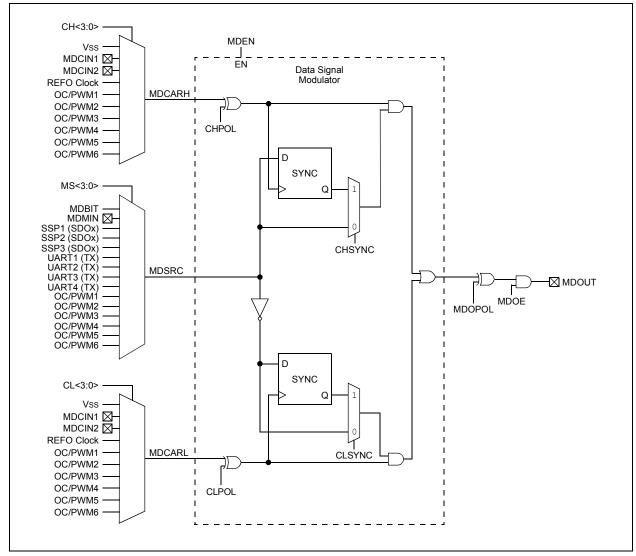
provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

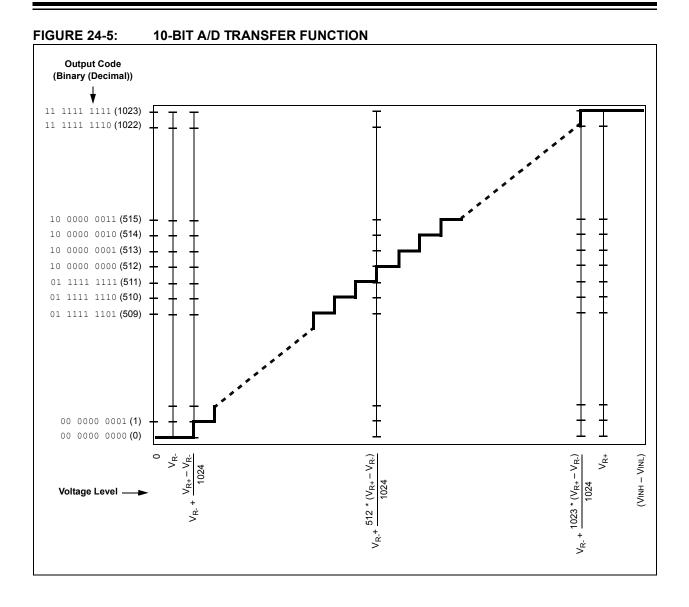
provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 16-1 and Figure 16-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1L and SPIxCON1H refer to the control registers for any of the three SPI modules.


19.0 DATA SIGNAL MODULATOR (DSM)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Signal Modulator (DSM)" (DS39744). The information in this data sheet supersedes the information in the FRM.


The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the "modulator signal") with a carrier signal to produce a modulated output. Both the carrier and the modulator signals are supplied to the DSM module, either internally from the output of a peripheral, or externally through an input pin. The modulated output signal is generated by performing a logical AND operation of both the carrier and modulator signals, and then it is provided to the MDOUT pin. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Figure 19-1 shows a simplified block diagram of the Data Signal Modulator peripheral.

REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC			
CON	COE	CPOL	—	—	—	CEVT	COUT			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
EVPOL1 ⁽¹⁾	EVPOL0 ⁽¹⁾	<u> </u>	CREF		—	CCH1	CCH0			
bit 7							bit (
Legend:		HS = Hardware			vare Settable/0					
R = Readable		W = Writable b	it	•	mented bit, rea					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	-	rator Enable bit								
	1 = Comparat	tor is disabled								
bit 14	•	rator Output En	able bit							
		tor output is pres		OUT pin						
		tor output is inte								
bit 13	CPOL: Comparator Output Polarity Select bit									
	1 = Comparator output is inverted									
	0 = Comparat	tor output is not	inverted							
bit 12-10	Unimplemen	ted: Read as '0	3							
bit 9	CEVT: Compa	arator Event bit								
	•	tor event that is bled until the bit	•	OL<1:0> has c	occurred; subs	equent triggers	and interrupt			
	0 = Compara	ator event has no	ot occurred							
bit 8	COUT: Comp	arator Output bi	t							
	When CPOL									
	1 = VIN+ > VII 0 = VIN+ < VII									
	When CPOL									
	1 = VIN + < VII									
	0 = VIN+ > VII	N-								
bit 7-6	EVPOL<1:0>	: Trigger/Event/	Interrupt Polarit	y Select bits ⁽¹⁾						
		event/interrupt is								
		event/interrupt is								
		event/interrupt is event/interrupt g	•	•	i transition of t	ne comparator	ουιρυι			
bit 5		ted: Read as '0								
bit 4	-	arator Referenc		n-invertina inn	ut)					
~		rting input conne	-		-					
		rting input conne			<u> </u>					
bit 3-2	Unimplemen	ted: Read as '0	3							
Note de 161	-)> hits are set to		hen (00) the "						
MUTO 1' IT I	UB EVPUI <11		a value otner t	nan nn thá ti						

Note 1: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

REGISTER 29-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1						
—	JTAGEN	GCP	GWRP	DEBUG	LPCFG	ICS1	ICS0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN1	FWDTEN0	WINDIS	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7 bit 0							

Legend:	r = Reserved bit	PO = Program Once bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are not allowed
bit 11	DEBUG: Background Debugger Enable bit
	 1 = Device resets into Operational mode 0 = Device resets into Debug mode
bit 10	LPCFG: Low-Voltage/Retention Regulator Configuration bit
	 1 = Low-voltage/retention regulator is always disabled 0 = Low-power, low-voltage/retention regulator is enabled and controlled in firmware by the RETEN bit
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7-6	FWDTEN<1:0>: Watchdog Timer Configuration bits
	 11 = WDT is always enabled; the SWDTEN bit has no effect 10 = WDT is enabled and controlled in firmware by the SWDTEN bit 01 = WDT is enabled only in Run mode and disabled in Sleep modes; SWDTEN bit is disabled 00 = WDT is disabled; the SWDTEN bit is disabled
bit 5	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled (FWDTEN<1:0> must not be '00')
bit 4	FWPSA: WDT Prescaler Ratio Select bit
	 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32

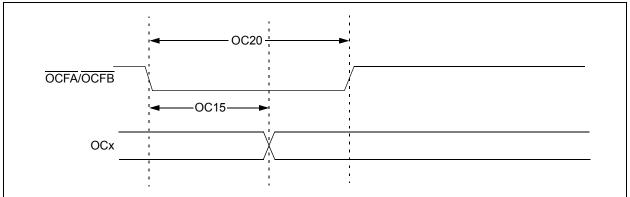
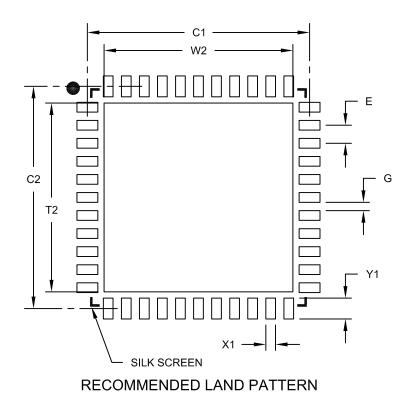

Assembly Mnemonic	Assembly Syntax GOTO Expr		Description	# of Words	# of Cycles 2	Status Flags Affected
GOTO			Go to Address	2		None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws, Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
1120	NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
			$Wd = \overline{Ws} + 1$			
NOD	NEG	Ws,Wd	No Operation	1	1	C, DC, N, OV, Z
NOP	NOP			1	1	None
DOD	NOPR	£	No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S	-	Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 31-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse Width (Low)	2	_	_	μs	
SY12	TPOR	Power-on Reset Delay		2	_	μs	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	Lesser of: (3 Tcy + 2) or 700		(3 Tcy + 2)	μS	
SY25	TBOR	Brown-out Reset Pulse Width	1		—	μS	$VDD \leq VBOR$
SY45	TRST	Internal State Reset Time	—	50		μs	
SY70	Toswu	Deep Sleep Wake-up Time	—	200	—	μS	VCAP is fully discharged before wake-up
SY71	Трм	Program Memory Wake-up Time	—	20	—	μS	Sleep wake-up with VREGS = 0
			_	1	_	μS	Sleep wake-up with VREGS = 1
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	—	90	—	μS	Sleep wake-up with VREGS = 0
			—	70	—	μS	Sleep wake-up with VREGS = 1

TABLE 32-28: RESET AND BROWN-OUT RESET REQUIREMENTS

FIGURE 32-12: OCx/PWM MODULE TIMING CHARACTERISTICS


TABLE 32-34: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_		50	ns	
OC20	TFLT	Fault Input Pulse Width	50	_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

PIC24FJ FAMILY

NOTES: