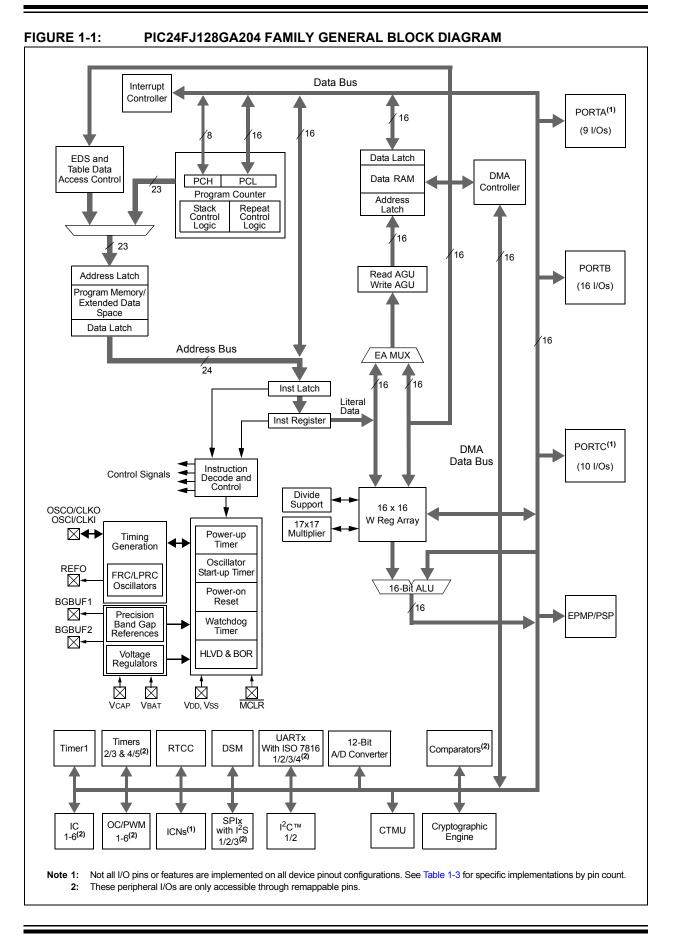


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga204-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 8-23: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0					
bit 15	•	•				•	bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	SPI1IP2	SPI1IP1	SPI1IP0	_	T3IP2	T3IP1	T3IP0					
bit 7							bit					
Legend:												
R = Readabl	le hit	W = Writable	hit	II = Unimplen	nented bit, read	l as '0'						
-n = Value at		'1' = Bit is set	5 N	'0' = Bit is cle		x = Bit is unkr	nown					
bit 15	Unimplemen	ted: Read as ')'									
bit 14-12	U1RXIP<2:0>	: UART1 Rece	iver Interrupt F	Priority bits								
	111 = Interru	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)										
	•	•										
	•											
	001 = Interrupt is Priority 1											
		000 = Interrupt source is disabled										
bit 11		ted: Read as '										
bit 10-8	SPI1TXIP<2:0>: SPI1 Transmit Interrupt Priority bits											
	 111 = Interrupt is Priority 7 (highest priority interrupt) 											
	•											
	•											
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled											
bit 7		ted: Read as '										
bit 6-4	-			tv bits								
	SPI1IP<2:0>: SPI1 General Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is Priority 1											
		pt source is dis	abled									
bit 3	Unimplemen	ted: Read as ')'									
bit 2-0	T3IP<2:0>: ⊤	imer3 Interrupt	Priority bits									
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•											
	•											
	001 = Interru											
		pt source is dis	ablad									

REGISTER	(0-24. IF 03.			CONTROL RE			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					DMA1IP2	DMA1IP1	DMA1IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0
bit 7			1				bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 10-8 bit 7 bit 6-4	111 = Interru 001 = Interru 000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru 001 = Interru	>: DMA Chann pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' A/D Interrupt F pt is Priority 7 (pt is Priority 1	(highest priority abled o' Priority bits (highest priority	/ interrupt)			
bit 3 bit 2-0	Unimplemen U1TXIP<2:0> 111 = Interru • • 001 = Interru	<pre>ipt source is dis ited: Read as 'i >: UART1 Trans ipt is Priority 7 (ipt is Priority 1 ipt source is dis</pre>	₀ ' smitter Interrup (highest priority	•			

REGISTER 8-24: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS (INTCON1<15>) control bit if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler), and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles; otherwise, the ISR will be reentered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0Eh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

If a MCLR Reset event occurs during Deep Sleep, the DSGPRx, DSCON and DSWAKE registers will remain valid, and the RELEASE bit will remain set. The state of the SOSC will also be retained. The I/O pins, however, will be reset to their MCLR Reset state. Since RELEASE is still set, changes to the SOSCEN bit (OSCCON<1>) cannot take effect until the RELEASE bit is cleared.

In all other Deep Sleep wake-up cases, application firmware must clear the RELEASE bit in order to reconfigure the I/O pins.

10.4.5 DEEP SLEEP WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (CW4<7>). The device WDT need not be enabled for the DSWDT to function. Entry into Deep Sleep modes automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (CW4<5>). The postscaler options are programmed by the DSWDTPS<4:0> Configuration bits (CW4<4:0>). The minimum time-out period that can be achieved is 1 ms and the maximum is 25.7 days. For more information on the CW4 Configuration register and DSWDT configuration options, refer to **Section 29.0 "Special Features"**.

10.4.5.1 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCLK<1:0> bits (RTCPWC<11:10>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

10.4.6 CHECKING AND CLEARING THE STATUS OF DEEP SLEEP

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, the following three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal Power-on Reset.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

10.4.7 POWER-ON RESETS (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep mode functionally looks like a POR, the technique described in Section 10.4.6 "Checking and Clearing the Status of Deep Sleep" should be used to distinguish between Deep Sleep and a true POR event. When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers, RTCC, DSWDT, etc.) is reset.

10.5 VBAT Mode

This mode represents the lowest power state that the microcontroller can achieve and still resume operation. VBAT mode is automatically triggered when the micro-controller's main power supply on VDD fails. When this happens, the microcontroller's on-chip power switch connects to a backup power source, such as a battery, supplied to the VBAT pin. This maintains a few key systems at an extremely low-power draw until VDD is restored.

The power supplied on VBAT only runs two systems: the RTCC and the Deep Sleep Semaphore registers (DSGPR0 and DSGPR1). To maintain these systems during a sudden loss of VDD, it is essential to connect a power source, other than VDD or AVDD, to the VBAT pin.

When the RTCC is enabled, it continues to operate with the same clock source (SOSC or LPRC) that was selected prior to entering VBAT mode. There is no provision to switch to a lower power clock source after the mode switch.

Since the loss of VDD is usually an unforeseen event, it is recommended that the contents of the Deep Sleep Semaphore registers be loaded with the data to be retained at an early point in code execution.

10.5.1 VBAT MODE WITH NO RTCC

By disabling RTCC operation during VBAT mode, power consumption is reduced to the lowest of all powersaving modes. In this mode, only the Deep Sleep Semaphore registers are maintained.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		MDC2R5	MDC2R4	MDC2R3	MDC2R2	MDC2R1	MDC2R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—		MDC1R5	MDC1R4	MDC1R3	MDC1R2	MDC21R1	MDC1R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

REGISTER 11-22: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

bit 15-14 Unimplemented: Read as '0'

bit 13-8 MDC2R<5:0>: Assign TX Carrier 2 Input (MDCIN2) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 MDC1R<5:0>: Assign TX Carrier 1 Input (MDCIN1) to Corresponding RPn or RPIn Pin bits

13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Timers"** (DS39704). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 can each operate in three modes:

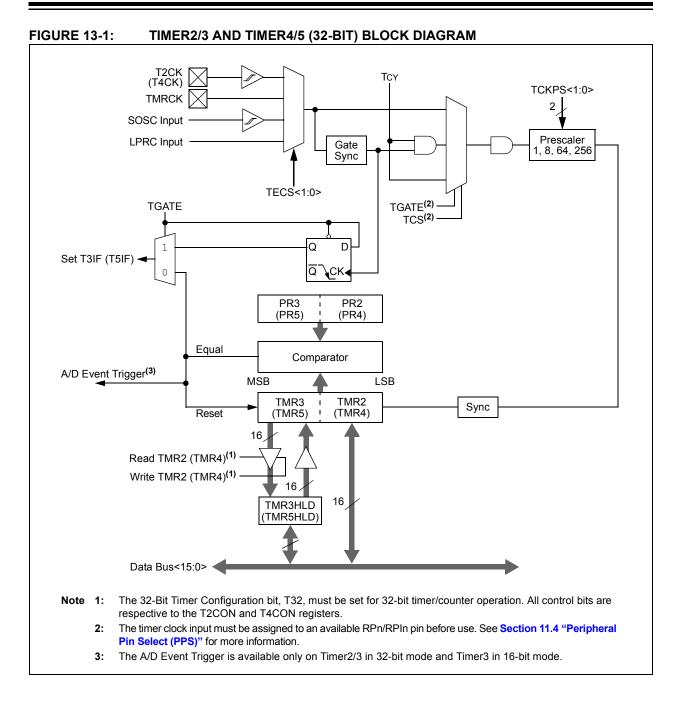
- Two Independent 16-Bit Timers with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D Event Trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1; T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word; Timer3 and Timer5 are the most significant word of the 32-bit timers.


Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 or Timer5 interrupt flags. To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 or T45 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word (msw) of the value, while PR2 (or PR4) contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0>, to set the interrupt priority. Note that while Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2> (or TMR<5:4>). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70000195). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated CircuitTM (I^2C^{TM}) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent master and slave logic
- · 7-bit and 10-bit device addresses
- General call address as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- · Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 17-1.

17.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communication protocols for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

REGISTER 20-9: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PMPTTL
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	ented bit, read	as '0'	

'0' = Bit is cleared

bit 15-1 Unimplemented: Read as '0'

-n = Value at POR

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

'1' = Bit is set

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

x = Bit is unknown

21.3.2 RTCVAL REGISTER MAPPINGS

REGISTER 21-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

| U-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| — | — | — | — | — | — | — | — |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-x |
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.

bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

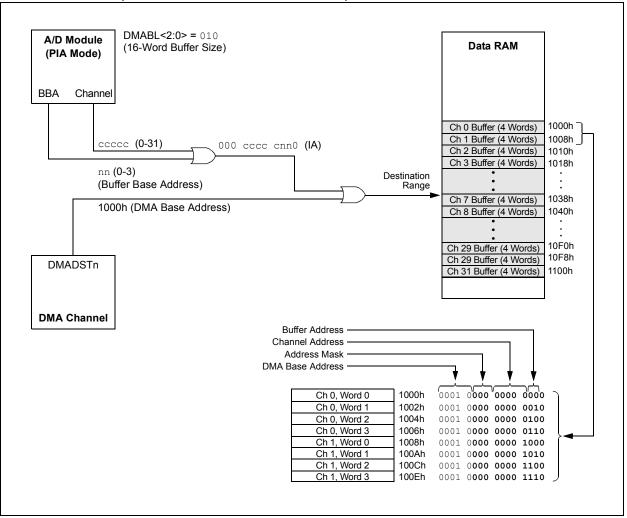
bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
_	—	_	_	_	WDAY2	WDAY1	WDAY0	
bit 15							bit 8	
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown	
bit 15-11	Unimplemen	ted: Read as '	0'					
bit 10-8	WDAY<2:0>:	Binary Coded	Decimal Value	of Weekday Di	igit bits			
	Contains a va	alue from 0 to 6						

- bit 7-6Unimplemented: Read as '0'bit 5-4HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.


REGISTER 21-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8
U-0	R/W-x						
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

FIGURE 24-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ADON	—	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0				
bit 15							bit 8				
		D 444 A									
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC				
SSRC3	SSRC2	SSRC1	SSRC0		ASAM	SAMP	DONE				
bit 7							bit (
Legend:		C = Clearable	e bit	U = Unimplen	nented bit, rea	d as 'O'					
R = Readable	e bit	W = Writable	bit	HSC = Hardw	are Settable/C	learable bit					
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15		Operating Mode									
	1 = A/D Conv 0 = A/D Conv	verter module is	soperating								
bit 14		nted: Read as '	0'								
bit 13	-										
	ADSIDL: A/D Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode										
		-	ation in Idle mod								
bit 12	DMABM: Extended DMA Buffer Mode Select bit ⁽¹⁾										
	 1 = Extended Buffer mode: Buffer address is defined by the DMADSTn register 0 = PIA mode: Buffer addresses are defined by the DMA Controller and AD1CON4<2:0> 										
bit 11						AD100N4-2.02					
	DMAEN: Extended DMA/Buffer Enable bit 1 = Extended DMA and buffer features are enabled										
	0 = Extended	d features are d	lisabled								
bit 10	MODE12: 12	2-Bit Operation	Mode bit								
	1 = 12-bit A/D operation 0 = 10-bit A/D operation										
bit 9-8		•	ormat hits (see	formats follow	ina)						
DIL 9-0	FORM<1:0>: Data Output Format bits (see formats following) 11 = Fractional result, signed, left justified										
	10 = Absolute fractional result, unsigned, left justified										
	 01 = Decimal result, signed, right justified 00 = Absolute decimal result, unsigned, right justified 										
hit 7 /											
bit 7-4			Source Select I	DITS							
	1xxx = Unimplemented, do not use 0111 = Internal counter ends sampling and starts conversion (auto-convert); do not use in Auto-Scan mode										
	0110 = Unimplemented										
	0101 = TMR1										
	0100 = CTMU 0011 = TMR5										
	0011 - TMRS 0010 = TMR3										
	0001 = INTO		he cleared by	offware to star	taanvaraian						
bit 3		nted: Read as '	be cleared by s	soliware to star	t conversion						
bit 2	-	Sample Auto-Si									
		-	lart bit liately after last	conversion: SA	AMP bit is auto	-set					

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

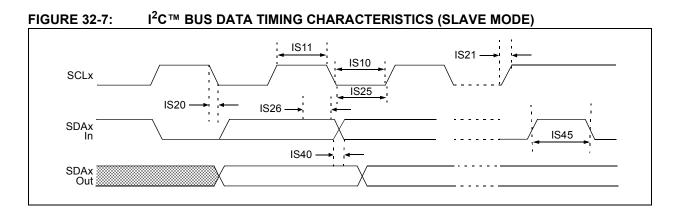
R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	
bit 15						•	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	
bit 7	I						bit (
Legend:								
R = Readab	le bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 14 bit 13 bit 12-8	 1 = RC clock 0 = Clock derived from system clock EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling PUMPEN: Charge Pump Enable bit 1 = Charge pump for switches is enabled 0 = Charge pump for switches is disabled SAMC<4:0>: Auto-Sample Time Select bits 							
bit 7-0		ND ND A/D Conversio 256 • Tcy = Tat 2•Tcy = Tad		bits				

REGISTER 24-3: AD1CON3: A/D CONTROL REGISTER 3

TABLE 32-6 :	DC CHARACTERISTICS: POWER-DOWN CURRENT ((IPD)
---------------------	--	-------

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	VDD	Conditions	
Power-Dow	/n Current (IPD) ^(5,6)					
DC60	2.9	17	μA	-40°C			
	4.3	17	μA	+25°C			
	8.3	27.5	μA	+60°C	2.0V		
	20	27.5	μA	+85°C			
	_	79	μA	+125°C		– Sleep ⁽²⁾	
	2.9	18	μA	-40°C			
	4.3	18	μA	+25°C			
	8.4	28	μA	+60°C	3.3V		
	20.5	28	μA	+85°C			
	_	80	μA	+125°C			
DC61	0.07	_	μA	-40°C	2.0V 3.3V		
	0.38	_	μA	+25°C			
	2.6	_	μA	+60°C			
	9.0	_	μA	+125°C		– Low-Voltage Sleep ⁽³⁾	
	0.09	_	μA	-40°C			
	0.42	_	μA	+25°C			
	2.75	_	μA	+60°C			
	9.0	_	μA	+125°C			
DC70	0.1	700	nA	-40°C			
	18	700	nA	+25°C			
	230	1700	nA	+60°C	2.0V		
	1.8	3.0	μA	+85°C			
	_	24	μA	+125°C		Doon Sloop	
	5	900	nA	-40°C	3.3V	– Deep Sleep	
	75	900	nA	+25°C			
	540	3450	nA	+60°C			
	1.5	6.0	μA	+85°C			
	_	48	μA	+125°C			
DC74	0.4	2.0	μA	-40°C to +125°C	0V	RTCC with VBAT mode (LPRC/SOSC) ⁽⁴⁾	

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

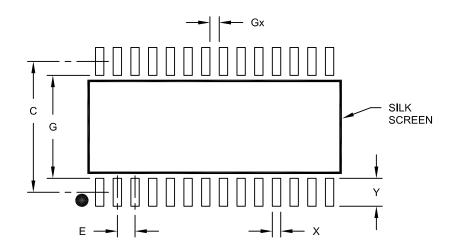

2: The retention low-voltage regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (CW1<10>) = 1.

3: The retention low-voltage regulator is enabled; RETEN (RCON<12>) = 1, <u>LPCFG</u> (CW1<10>) = 0.

4: The VBAT pin is connected to the battery and RTCC is running with VDD = 0.

5: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off.

6: These currents are measured on the device containing the most memory in this family.


TABLE 32-25: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise state)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode		Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	-	μs	Device must operate at a minimum of 10 MHz
		1 MHz mode ⁽¹⁾	0.5	_	μS		
IS20	IS20 TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns]
IS21	S21 TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	
			400 kHz mode	100		ns	
			1 MHz mode ⁽¹⁾	100	—	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0	—	ns	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	1
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before a
			400 kHz mode	1.3	—	μS	new transmission can start
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS50	Св	Bus Capacitive L	oading	—	400	pF	

Note 1: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S
Dimensi	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

NOTES:

I2CxCONL (I2Cx Control Low)240
I2CxMSK (I2Cx Slave Mode Address Mask)
I2CxSTAT (I2Cx Status)
ICxCON1 (Input Capture x Control 1)207
ICxCON2 (Input Capture x Control 2)
IEC0 (Interrupt Enable Control 0)
IEC1 (Interrupt Enable Control 1)
IEC2 (Interrupt Enable Control 2)
IEC3 (Interrupt Enable Control 3)
IEC4 (Interrupt Enable Control 4) 114
IEC5 (Interrupt Enable Control 5) 115
IEC6 (Interrupt Enable Control 6) 116
IEC7 (Interrupt Enable Control 7)116
IFS0 (Interrupt Flag Status 0)96
IFS1 (Interrupt Flag Status 1)
IFS2 (Interrupt Flag Status 2) 100
IFS3 (Interrupt Flag Status 3) 102
IFS4 (Interrupt Flag Status 4) 103
IFS5 (Interrupt Flag Status 5) 104
IFS6 (Interrupt Flag Status 6)
IFS7 (Interrupt Flag Status 7)
INTCON1 (Interrupt Control 1)
INTCON2 (Interrupt Control 2)
INTTREG (Interrupt Controller Test)
IPC0 (Interrupt Priority Control 0) 117
IPC1 (Interrupt Priority Control 1) 118
IPC10 (Interrupt Priority Control 10) 127
IPC11 (Interrupt Priority Control 11) 128
IPC12 (Interrupt Priority Control 12) 129
IPC13 (Interrupt Priority Control 13) 130
IPC14 (Interrupt Priority Control 14) 131
IPC15 (Interrupt Priority Control 15) 132
IPC16 (Interrupt Priority Control 16) 133
IPC18 (Interrupt Priority Control 18)
IPC19 (Interrupt Priority Control 19) 134
IPC2 (Interrupt Priority Control 2)
IPC20 (Interrupt Priority Control 20)
IPC21 (Interrupt Priority Control 21)
IPC22 (Interrupt Priority Control 22)
IPC26 (Interrupt Priority Control 26)
IPC29 (Interrupt Priority Control 29)
IPC3 (Interrupt Priority Control 3) 120
IPC4 (Interrupt Priority Control 4) 121
IPC5 (Interrupt Priority Control 5) 122
IPC6 (Interrupt Priority Control 6) 123
IPC7 (Interrupt Priority Control 7) 124
IPC8 (Interrupt Priority Control 8) 125
IPC9 (Interrupt Priority Control 9) 126
MDCAR (DSM Carrier Control)
MDCON (DSM Control)
MDSRC (DSM Source Control)
MINSEC (RTCC Minutes and Seconds Value)
MTHDY (RTCC Month and Day Value)
NVMCON (Flash Memory Control)
OCxCON1 (Output Compare x Control 1)
OCxCON2 (Output Compare x Control 2)
OSCCON (Oscillator Control)
OSCTUN (FRC Oscillator Tune)
PADCFG1 (Pad Configuration Control)
PMCON1 (EPMP Control 1)
PMCON2 (EPMP Control 2)267
PMCON3 (EPMP Control 3)268
PMCON4 (EPMP Control 4)269
PMCSxBS (EPMP Chip Select x Base Address) 271
PMCSxCF (EPMP Chip Select x Configuration) 270

PMCSxMD (EPMP Chip Select x Mode) PMSTAT (EPMP Status, Slave Mode)	
RCFGCAL (RTCC Calibration	
and Configuration)	277
RCON (Reset Control)	
RCON2 (Reset and System Control 2)	84, 164
REFOCONH (Reference Oscillator	
Control High)	151
REFOCONL (Reference Oscillator	
Control Low)	150
REFOTRIML (Reference Oscillator Trim)	
RPINR0 (PPS Input 0)	
RPINR1 (PPS Input 1)	
RPINR11 (PPS Input 11)	
RPINR17 (PPS Input 17)	
RPINR18 (PPS Input 18)	181
RPINR19 (PPS Input 19)	181
RPINR2 (PPS Input 2)	
RPINR20 (PPS Input 20)	
RPINR21 (PPS Input 21)	182
RPINR22 (PPS Input 22)	183
RPINR23 (PPS Input 23)	
RPINR27 (PPS Input 27)	
RPINR28 (PPS Input 28)	
RPINR29 (PPS Input 29)	
RPINR30 (PPS Input 30)	
RPINR31 (PPS Input 31)	
RPINR7 (PPS Input 7)	
RPINR8 (PPS Input 8)	
RPINR9 (PPS Input 9)	
RPOR0 (PPS Output 0)	
RPOR1 (PPS Output 1)	
RPOR10 (PPS Output 10)	192
RPOR11 (PPS Output 11)	192
RPOR12 (PPS Output 12)	
RPOR2 (PPS Output 2)	
RPOR3 (PPS Output 3)	
RPOR4 (PPS Output 4)	
RPOR5 (PPS Output 5)	
RPOR6 (PPS Output 6)	
RPOR7 (PPS Output 7)	100
RPOR8 (PPS Output 8)	
RPOR9 (PPS Output 9)	191
RTCCSWT (RTCC Power Control and	
Sample Window Timer)	
RTCPWC (RTCC Power Control)	279
SPIxCON1H (SPIx Control 1 High)	
SPIxCON1L (SPIx Control 1 Low)	224
SPIxCON2L (SPIx Control 2 Low)	228
SPIxIMSKH (SPIx Interrupt Mask High)	
SPIxIMSKL (SPIx Interrupt Mask Low)	
SPIxSTATH (SPIx Status High)	231
SPIxSTATL (SPIx Status Low)	
SR (ALU STATUS)	
T1CON (Timer1 Control)	
TxCON (Timer 2/4 Control)	
TXCON (Timer2/4 Control)	202
TyCON (Timer3/5 Control)	
UxADMD (UARTx Address Match Detect)	254
UxMODE (UARTx Mode)	
UxSCCON (UARTx Smart Card Control)	
UxSCINT (UARTx Smart Card Interrupt)	
UxSTA (UARTx Status and Control)	
UxTXREG (UARTx Transmit)	
WKDYHR (RTCC Weekday and Hours Value)	
YEAR (RTCC Year Value)	281