

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga204t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-10: UART REGISTER MAP

IABLE 4	-10:	UARIF	KEGIS I															_
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0500	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0502	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0504	LAST	_	_	_	—	_	_				U1T	XREG<8:0>	•				XXXX
U1RXREG	0506	_	_	_		_	_					U1R	XREG<8:0>	•				0000
U1BRG	0508								U1BRG	<15:0>								0000
U1ADMD	050A				ADMMAS	SK<7:0>							ADMADDR	R<7:0>				0000
U1SCCON	050C	_	_	_	_	_	_	_	_	_	_	TXRPT1	TXRPT0	CONV	T0PD	PTRCL	SCEN	0000
U1SCINT	050E	_	_	RXRPTIF	TXRPTIF	—	_	WTCIF	GTCIF	_	PARIE	RXRPTIE	TXRPTIE	_	_	WTCIE	GTCIE	0000
U1GTC	0510	_	_	_	_	—	_	_				G	TC<8:0>					0000
U1WTCL	0512								WTC<	15:0>								0000
U1WTCH	0514	_	_	_	_	_	_	_	_				WTC<23	:16>				0000
U2MODE	0516	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0518	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	051A	LAST	_	_	_	—	_	_				U2T	XREG<8:0>	•				XXXX
U2RXREG	051C	_	_	_	_	—	_	_				U2R	XREG<8:0>	>				0000
U2BRG	051E								U2BRG	<15:0>								0000
U2ADMD	0520				ADMMAS	SK<7:0>							ADMADDR	R<7:0>				0000
U2SCCON	0522	—	—	—	_	_		_		—	_	TXRPT1	TXRPT0	CONV	T0PD	PTRCL	SCEN	0000
U2SCINT	0524	—	—	RXRPTIF	TXRPTIF	_		WTCIF	GTCIF	—	PARIE	RXRPTIE	TXROTIE		—	WTCIE	GTCIE	0000
U2GTC	0526	—	—	—	_	_		_				G	TC<8:0>					0000
U2WTCL	0528								WTC<	15:0>								0000
U2WTCH	052A	—	—	—	_	_		_					WTC<23	:16>				0000
U3MODE	052C	UARTEN	—	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	052E	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0530	LAST	—	—	_	_		_				U3T2	XREG<8:0>	•				XXXX
U3RXREG	0532	—	—	—	_	_		_				U3R	XREG<8:0>	•				0000
U3BRG	0534								U3BRG	<15:0>								0000
U3ADMD	0536				ADMMAS	SK<7:0>							ADMADDR	8<7:0>				0000
U4MODE	0538	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	053A	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	053C	LAST	—	—	_	—	-	_				U4T	XREG<8:0>	•				XXXX
U4RXREG	053E	_	—	—	—	—	-	_				U4R	XREG<8:0>	•				0000
U4BRG	0540								U4BRG	<15:0>								0000
U4ADMD	0542				ADMMAS	SK<7:0>							ADMADDR	R<7:0>				0000

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

TABLE 4-11: SPI1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1CON1L	0300	SPIEN	—	SPISIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	0000
SPI1CON1H	0302	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDMOD1	AUDMOD0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0	0000
SPI1CON2L	0304	_	_	_	_	_	_	_	_	_	_	_		V	VLENGTH<4:0	>		0000
SPI1STATL	0308	_	_	-	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0028
SPI1STATH	030A	_	_	RXELM5	RXELM4 RXELM2 RXELM1 RXELM0 — TXELM5 TXELM4 TXELM2 TXELM1 TXELM0 0000													
SPI1BUFL	030C								SPI1BU	FL<15:0>								0000
SPI1BUFH	030E								SPI1BUI	=H<31:16>								0000
SPI1BRGL	0310	_	_	_						SP	11BRG<12:0>							0000
SPI1IMSKL	0314	_	_	_	FRMERREN	BUSYEN	_	_	SPITUREN	SRMTEN	SPIROVEN	SPIRBEN	_	SPITBEN	_	SPITBFEN	SPIRBFEN	0000
SPI1IMSKH	0316	RXWIEN	_	RXMSK5	RXMSK4	RXMSK3	RXMSK2	RXMSK1	RXMSK0	TXWIEN	_	TXMSK5	TXMSK4	TXMSK3	TXMSK2	TXMSK1	TXMSK0	0000
SPI1URDTL	0318								SPI1URI	DTL<15:0>								0000
SPI1URDTH	031A								SPI1URD	TH<31:16>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI2 REGISTER MAP

File	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
Name	Auui	Dit 10	Dit 14	Dit 10	DICIZ	DICH	Dit IV	Dity	Ditto	Diti	Diro	Dito	Dit 4	Ditto	Dit 2	Dit i	Ditt	Resets
SPI2CON1L	031C	SPIEN	_	SPISIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	DISSCK	MCLKEN	SPIFE	ENHBUF	0000
SPI2CON1H	031E	AUDEN	SPISGNEXT	IGNROV	IGNTUR	AUDMONO	URDTEN	AUDMOD1	AUDMOD0	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FRMCNT2	FRMCNT1	FRMCNT0	0000
SPI2CON2L	0320	_	_	_	_	_	_	_	_	_	_	-		۷	VLENGTH<4:0	>		0000
SPI2STATL	0324	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	0028
SPI2STATH	0326	_	_	RXELM5	RXELM4	RXELM3	RXELM2	RXELM1	RXELM0	_	_	TXELM5	TXELM4	TXELM3	TXELM2	TXELM1	TXELM0	0000
SPI2BUFL	0328					SPI2BUFL<15:0> 0000												
SPI2BUFH	032A								SPI2BL	IFH<31:16>								0000
SPI2BRGL	032C	_	_	_						S	PI2BRG<12:0	>						0000
SPI2IMSKL	0330		_	_	FRMERREN	BUSYEN	_	_	SPITUREN	SRMTEN	SPIROVEN	SPIRBEN	_	SPITBEN	_	SPITBFEN	SPIRBFEN	0000
SPI2IMSKH	0332	RXWIEN	_	RXMSK5	RXMSK4	RXMSK3	RXMSK2	RXMSK1	RXMSK0	TXWIEN	_	TXMSK5	TXMSK4	TXMSK3	TXMSK2	TXMSK1	TXMSK0	0000
SPI2URDTL	0334								SPI2UF	RDTL<15:0>								0000
SPI2URDTH	0336								SPI2UR	DTH<31:16>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through the Enhanced Parallel Master Port (EPMP).

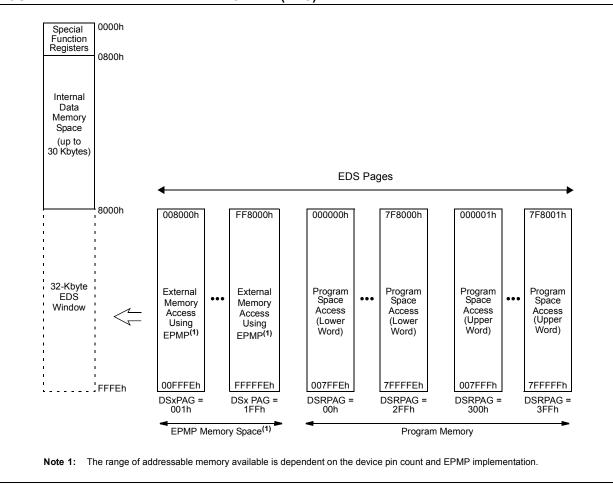

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".

Figure 4-4 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read register (DSRPAG) or Data Space Write register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). The data addressing range of PIC24FJ128GA204 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is, in turn, a function of device pin count. Table 4-33 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to the "*dsPIC33/PIC24 Family Reference Manual*", "Enhanced Parallel Master Port (EPMP)" (DS39730).

TABLE 4-33:	TOTAL ACCESSIBLE DATA
	MEMORY

Family	Internal RAM	External RAM Access Using EPMP
PIC24FJXXXGA204	8K	Up to 16 Mbytes
PIC24FJXXXGA202	8K	Up to 64K

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).

FIGURE 4-4: EXTENDED DATA SPACE (EDS)

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS
--

Interrupt Source	Vector	IRQ	IVT	ΑΙΥΤ	Inte	errupt Bit Locat	tions
Interrupt Source	#	#	Address	Address	Flag	Enable	Priority
ADC1 Interrupt	21	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	26	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	75	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
CTMU Event	85	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>
Cryptographic Operation Done	63	55	000082h	000182h	IFS3<7>	IEC3<7>	IPC13<14:12>
Cryptographic Key Store Program Done	64	56	000084h	000184h	IFS3<8>	IEC3<8>	IPC14<2:0>
Cryptographic Buffer Ready	42	34	000058h	000158h	IFS2<2>	IEC2<2>	IPC8<10:8>
Cryptographic Rollover	43	35	00005Ah	00015Ah	IFS2<3>	IEC2<3>	IPC8<14:12>
DMA Channel 0	12	4	00001Ch	00011Ch	IFS0<4>	IEC0<4>	IPC1<2:0>
DMA Channel 1	22	14	000030h	000130h	IFS0<14>	IEC0<14>	IPC3<10:8>
DMA Channel 2	32	24	000044h	000144h	IFS1<8>	IEC1<8>	IPC6<2:0>
DMA Channel 3	44	36	00005Ch	00015Ch	IFS2<4>	IEC2<4>	IPC9<2:0>
DMA Channel 4	54	46	000070h	000170h	IFS2<14>	IEC2<14>	IPC11<10:8>
DMA Channel 5	69	61	00008Eh	00018Eh	IFS3<13>	IEC3<13>	IPC15<6:4>
External Interrupt 0	8	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	28	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	37	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
External Interrupt 3	61	53	00007Eh	00017Eh	IFS3<5>	IEC3<5>	IPC13<6:4>
External Interrupt 4	62	54	000080h	000180h	IFS3<6>	IEC3<6>	IPC13<10:8>
FRC Self-Tune	114	106	0000E8h	0001E8h	IFS6<10>	IEC6<10>	IPC26<10:8>
I2C1 Master Event	25	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	24	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
I2C1 Bus Collision	92	84	0000BC	0001BC	IFS5<4>	IEC5<4>	IPC21<2:0>
I2C2 Master Event	58	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>
I2C2 Slave Event	57	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>
I2C2 Bus Collision.	93	85	0000BE	0001BE	IFS5<5>	IEC5<5>	IPC21<6:4>
Input Capture 1	9	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Capture 2	13	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>
Input Capture 3	45	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>
Input Capture 4	46	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>
Input Capture 5	47	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>
Input Capture 6	48	40	000064h	000164h	IFS2<8>	IEC2<8>	IPC10<2:0>
JTAG	125	117	0000FEh	0001FEh	IFS7<5>	IEC7<5>	IPC29<6:4>
Input Change Notification (ICN)	27	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
High/Low-Voltage Detect (HLVD)	80	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>
Output Compare 1	10	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Output Compare 2	14	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>
Output Compare 3	33	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>
Output Compare 4	34	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>
Output Compare 5	49	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>
Output Compare 6	50	42	000068h	000168h	IFS2<10>	IEC2<10>	IPC10<10:8>
Enhanced Parallel Master Port (EPMP)	53	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>
Real-Time Clock and Calendar (RTCC)	70	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>

REGISTER 8-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

- bit 2 CMIE: Comparator Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 1 MI2C1IE: Master I2C1 Event Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 SI2C1IE: Slave I2C1 Event Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 10-1: DSCON: DEEP SLEEP CONTROL REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
DSEN	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	r-0	R/W-0	R/C-0, HS
		<u> </u>		<u> </u>	<u> </u>	DSBOR ⁽²⁾	RELEASE
bit 7							bit 0
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	as '0'	
R = Readabl	le bit	W = Writable	bit	HS = Hardwa	re Settable bit	r = Reserved	bit
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	DSEN: Deep	Sleep Enable b	bit				
		ep Sleep on ex					
		rmal Sleep on		WRSAV #0			
bit 14-3	•	ted: Read as '	כ'				
bit 2	Reserved: Ma						
bit 1	DSBOR: Dee	p Sleep BOR E	Event bit ⁽²⁾				
	1 = The DSB0	OR was active	and a BOR eve	ent was detecte	ed during Deep	Sleep	
	0 = The DSB0	OR was not act	ive, or was act	ive, but did not	t detect a BOR	event during D	eep Sleep
bit 0	RELEASE: 1/0	O Pin State Re	lease bit				
					ir states previou		· ·
		bits to control		ious io Deep S	leep entry and		

- **Note 1:** All register bits are reset only in the case of a POR event outside of Deep Sleep mode.
 - **2:** Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this re-arms the POR.

11.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

11.4.3.4 Mapping Exceptions for PIC24FJ128GA204 Family Devices

Although the PPS registers theoretically allow for up to 24 remappable I/O pins, not all of these are implemented in all devices. For PIC24FJ128GA204 family devices, the maximum number of remappable pins available is 24, which includes one input only pin. The differences in available remappable pins are summarized in Table 11-5.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it.
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented; writing to these fields will have no effect.

11.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit remapping lock

11.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

11.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

11.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW4<15>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.


In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

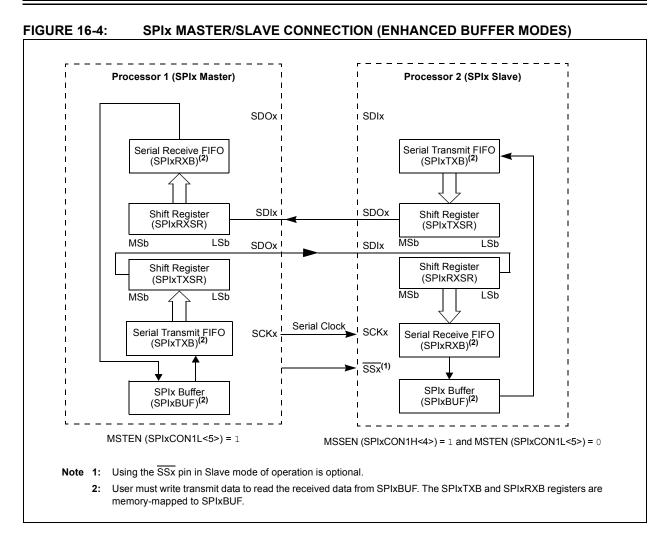
TABLE 11-5: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ128GA204 FAMILY DEVICES

Device		RPn Pins (I/O)		RPIn Pins
Device	Total	Unimplemented	Total	Unimplemented
PIC24FJXXXGA202	14	RP4, RP12	1	—
PIC24FJXXXGA204	24	RP4, RP12	1	—

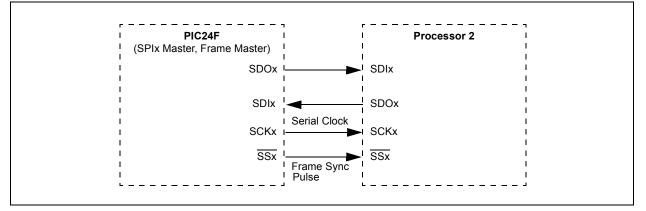
REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
 - 1111x = Reserved
 - 11101 = Reserved
 - 11100 = CTMU⁽¹⁾
 - 11011 = A/D⁽¹⁾
 - $11010 = \text{Comparator 3}^{(1)}$
 - 11001 = Comparator 2⁽¹⁾
 - 11000 = Comparator 1⁽¹⁾
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Input Capture $6^{(2)}$
 - 10100 = Input Capture 5⁽²⁾ 10011 = Input Capture 4⁽²⁾
 - $10011 = \text{Input Capture 4}^{(1)}$ $10010 = \text{Input Capture 3}^{(2)}$
 - 10010 = Input Capture 3(*)10001 = Input Capture 2(2)
 - $10001 = \text{Input Capture 2}^{(7)}$ $10000 = \text{Input Capture 1}^{(2)}$
 - 01111 = Timer5
 - 01110 = Timer3
 - 01101 = Timer3
 - 01100 = Timer3
 - 01011 = Timer1
 - 01010 = **Reserved**
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = **Reserved**
 - 00110 = Output Compare 6
 - 00101 = Output Compare 5
 - 00100 = Output Compare 4
 - 00011 = Output Compare 3
 - 00010 = Output Compare 2
 - 00001 = Output Compare 1
 - 00000 = Not synchronized to any other module
- Note 1: Use these inputs as trigger sources only and never as sync sources.
 - 2: Never use an ICx module as its own trigger source by selecting this mode.

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)


15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.


To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation ('0xx').
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

FIGURE 16-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
MDEN		MDSIDL			_	_	_			
bit 15							bit 8			
U-0	R/W-0	R/W-1	R/W-0	U-0	U-0	U-0	R/W-0			
_	MDOE	MDSLR	MDOPOL	_	_	_	MDBIT ⁽¹⁾			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value a	It POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unk	nown			
bit 14 bit 13	Unimplemen MDSIDL: DS 1 = Discontin	ted: Read as ' M Stop in Idle I ues module op	Mode bit eration when d	evice enters Id	lle mode					
bit 12-7		s module opera i ted: Read as '	ation in Idle mo	ae						
bit 6	MDOE: DSM 1 = Modulato		utput Enable bit enabled	t						
bit 5	1 = MDOUT p	oin slew rate lir	Rate Limiting b niting is enable niting is disable	d						
bit 4	1 = Modulato	SM Output Pola r output signal r output signal	is inverted							
bit 3-1	Unimplemen	ted: Read as '	0'							
bit 0	1 = Carrier is	Unimplemented: Read as '0' MDBIT: Manual Modulation Input bit ⁽¹⁾ 1 = Carrier is modulated 0 = Carrier is not modulated								

Note 1: The MDBIT must be selected as the modulation source (MDSRC<3:0> = 0000).

REGISTER 19-2: MDSRC: DATA SIGNAL MODULATOR SOURCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_				_	_						
bit 15		·				·	bit 8					
R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x					
SODIS ⁽¹⁾) _	_		MS3 ⁽²⁾	MS2 ⁽²⁾	MS1 ⁽²⁾	MS0 ⁽²⁾					
bit 7	L						bit 0					
Legend:												
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 6-4	Unimpleme	nted: Read as ')'	· · · ·	,	,						
bit 15-8 bit 7	-	nted: Read as ' M Source Output										
		signal driving the signal driving the										
bit 6-4	Unimpleme	nted: Read as 'o)'									
bit 3-0		SM Source Selec	ction bits ⁽²⁾									
	1111 = Unin											
		3 module output out Compare/PW		utout								
		out Compare/PW										
		out Compare/PW										
		out Compare/PW										
		out Compare/PW										
		out Compare/PW	/M Module 1 o	utput								
		RT4 TX output										
		RT3 TX output										
		RT2 TX output RT1 TX output										
		2 module output	(SD02)									
			· /									
	0010 = SPI1 module output (SDO1) 0001 = Input on MDMIN pin											
			(0201)									
	0001 = Inpu		. ,	MDCON<0>)								
Note 1:	0001 = Inpu 0000 = Man	t on MDMIN pin	ising MDBIT (I	MDCON<0>)								

2: These bits are not affected by a POR.

REGISTER 20-9: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	—	—	_	—		
bit 15		·					bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—		—	PMPTTL	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

bit 15-1 Unimplemented: Read as '0'

-n = Value at POR

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

'1' = Bit is set

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

x = Bit is unknown

22.4.2 OPERATION DURING IDLE MODE

When the CRYSIDL bit (CRYCONL<13>) is '0', the engine will continue any ongoing operations without interruption when the device enters Idle mode.

When CRYSIDL is '1', the module behaves as in Sleep modes.

22.5 Specific Cryptographic Operations

This section provides the step-wise details for each operation type that is available with the Cryptographic Engine.

22.6 Encrypting Data

- 1. If not already set, set the CRYON bit.
- Configure the CPHRSEL, CPHRMODx, KEYMODx and KEYSRCx bits as desired to select the proper mode and key length.
- 3. Set OPMOD<3:0> to '0000'.
- If a software key is being used, write it to the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused CRYKEY bits are ignored.
- 5. Read the KEYFAIL bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will NOT be performed.
- 6. Write the data to be encrypted to the appropriate CRYTXT register. For a single DES encrypt operation, it is only necessary to write the lowest 64 bits. However, for data less than the block size (64 bits for DES, 128 bits for AES), it is the responsibility of the software to properly pad the upper bits within the block.
- 7. Set the CRYGO bit.
- In ECB and CBC modes, set the FREEIE bit (CRYCONL<10>) to enable the optional CRYTXTA interrupt to indicate when the next plaintext block can be loaded.
- Poll the CRYGO bit until it is cleared or wait for the CRYDNIF module interrupt (DONEIE must be set). If other Cryptographic Engine interrupts are enabled, it will be necessary to poll the CRYGO bit to verify the interrupt source.
- 10. Read the encrypted block from the appropriate CRYTXT register.
- 11. Repeat Steps 5 through 8 to encrypt further blocks in the message with the same key.

22.7 Decrypting Data

- 1. If not already set, set the CRYON bit.
- Configure the CPHRSEL, CPHRMODx, KEYMODx and KEYSRCx bits as desired to select the proper mode and key length.
- 3. Set OPMOD<3:0> to '0001'.
- 4. If a software key is being used, write the CRYKEY register. It is only necessary to write the lowest *n* bits of CRYKEY for a key length of *n*, as all unused CRYKEY bits are ignored.
- 5. If an AES-ECB or AES-CBC mode decryption is being performed, you must first perform an AES decryption key expansion operation.
- 6. Read the KEYFAIL status bit. If this bit is '1', an illegal configuration has been selected and the encrypt operation will not be performed.
- Write the data to be decrypted into the appropriate text/data register. For a DES decrypt operation, it is only necessary to write the lowest 64 bits of CRYTXTB.
- 8. Set the CRYGO bit.
- 9. If this is the first decrypt operation after a Reset, or if a key storage program operation was performed after the last decrypt operation, or if the KEYMODx or KEYSRCx fields are changed, the engine will perform a new key expansion operation. This will result in extra clock cycles for the decrypt operation, but will otherwise be transparent to the application (i.e., the CRYGO bit will be cleared only after the key expansion and the decrypt operation have completed).
- In ECB and CBC modes, set the FREEIE bit (CRYCONL<10>) to enable the optional CRYTXTA interrupt to indicate when the next plaintext block can be loaded.
- 11. Poll the CRYGO bit until it is cleared or wait for the CRYDNIF module interrupt (DONEIE must be set). If other Cryptographic Engine interrupts are enabled, it will be necessary to poll the CRYGO bit to verify the interrupt source.
- 12. Read the decrypted block out of the appropriate text/data register.
- 13. Repeat Steps 6 through 10 to encrypt further blocks in the message with the same key.

REGISTER 24-4: AD1CON4: A/D CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	_	—	—	—	DMABL<2:0> ⁽¹⁾					
bit 7							bit 0			
Legend:										

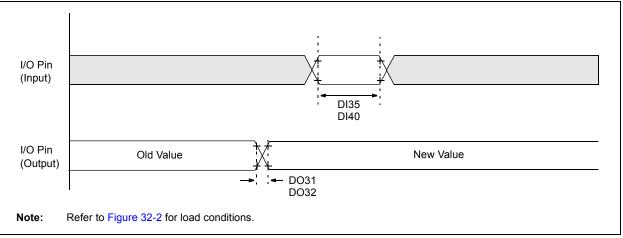
Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 DMABL<2:0>: DMA Buffer Size Select bits⁽¹⁾
 - 111 = Allocates 128 words of buffer to each analog input
 - 110 = Allocates 64 words of buffer to each analog input
 - 101 = Allocates 32 words of buffer to each analog input
 - 100 = Allocates 16 words of buffer to each analog input
 - 011 = Allocates 8 words of buffer to each analog input
 - 010 = Allocates 4 words of buffer to each analog input
 - 001 = Allocates 2 words of buffer to each analog input
 - 000 = Allocates 1 word of buffer to each analog input
- **Note 1:** The DMABL<2:0> bits are only used when AD1CON1<11> = 1 and AD1CON1<12> = 0; otherwise, their value is ignored.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CHONAO	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 12-8	011 = Unimp 010 = AN1 001 = Unimp 000 = VREF-/	lemented			h. 14-		
bit 7-5	11111 VBA 11101 AVE 11101 AVE 11100 Bar 11011 VBC 01101 CTI 01101 CTI 01101 ANE 01011 ANE 01010 ANE 01001 ANE 01000 ANE 00111 ANE 00101 ANE 00101 ANE 00101 ANE 00101 ANE 00101 ANE 00011 ANE 00011 ANE 00011 ANE 000011 ANE 000011 ANE 000011 ANE 000011 ANE 000001 ANE 000001 ANE 000001 ANE	AT/2 ⁽¹⁾ DD ⁽¹⁾ DD ⁽¹⁾ DD ⁽¹⁾ DD ⁽¹⁾ DD ⁽¹⁾ AT/2 ⁽¹⁾ MU MU temperature 12 ⁽²⁾ 11 ⁽²⁾ 10 ⁽²⁾ 9 8 7 6 5 4 3 2 1 0	(VBG) referend	ce ⁽¹⁾ (does not requi	re AD1CTMEN	IL<12> to be se	et)
UIL 7-3	Same definiti	Sample A Choose as for CHO	NB<2:0>.	ve Input Select			
bit 4-0							

2: These channels are unimplemented in 28-pin devices.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—		—	_	—	—		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	oit	U = Unimplem	nented bit, rea	d as '0'			
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
<pre>011111 = Maximum positive change from nominal current 011110</pre>									
bit 9-8 bit 7-0	IRNG<1:0>: Current Source Range Select bits 11 = 100 × Base Current 10 = 10 × Base Current 01 = Base current level (0.55 μA nominal) 00 = 1000 x Base Current Unimplemented: Read as '0'								

REGISTER 27-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

TABLE 32-26: RC OSCILLATOR START-UP TIME

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteristic		Min	Тур	Max	Units	Conditions	
FR0	TFRC	FRC Oscillator Start-up Time		15		μS	
FR1	TLPRC	Low-Power RC Oscillator Start-up Time	—	50	—	μS	

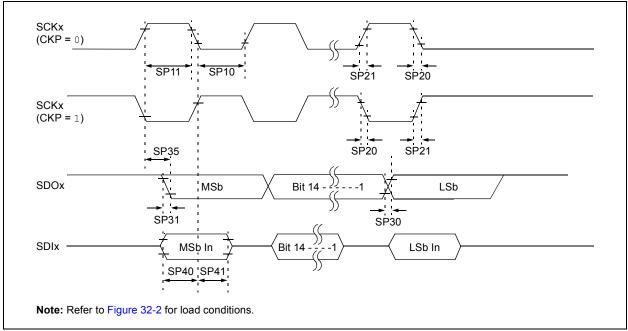

FIGURE 32-8: CLKO AND I/O TIMING CHARACTERISTICS

TABLE 32-27: CLKO AND I/O TIMING REQUIREMENTS

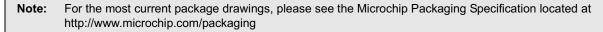
			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic			Typ ⁽¹⁾	Мах	Units	Conditions	
DO31	TIOR	Port Output Rise Time	—	10	25	ns		
DO32	TIOF	Port Output Fall Time	—	10	25	ns		
DI35	Tinp	INTx Pin High or Low Time (input)	20	—	_	ns		
DI40	Trbp	CNxx High or Low Time (input)	2	—	—	Тсү		

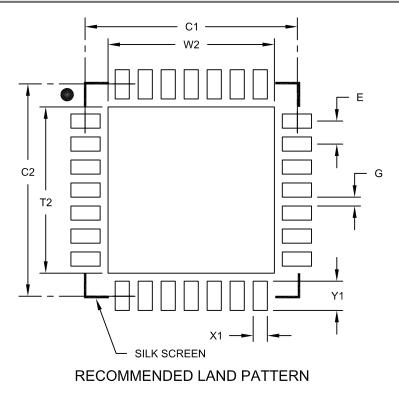
Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 32-13: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 32-35: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions
SP10	TscL	SCKx Output Low Time	Tcy/2	_	_	ns	(Note 3)
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	(Note 3)
SP20	TscF	SCKx Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	


Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

	MILLIMETERS					
Dimensio	Dimension Limits					
Contact Pitch	E		0.65 BSC			
Optional Center Pad Width	W2			4.70		
Optional Center Pad Length	T2			4.70		
Contact Pad Spacing	C1		6.00			
Contact Pad Spacing	C2		6.00			
Contact Pad Width (X28)	X1			0.40		
Contact Pad Length (X28)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A