

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                             |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP/PSP, SmartCard, SPI, UART/USART             |
| Peripherals                | AES, Brown-out Detect/Reset, DMA, I <sup>2</sup> S, HLVD, POR, PWM, WDT         |
| Number of I/O              | 35                                                                              |
| Program Memory Size        | 128KB (43K x 24)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 8K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                       |
| Data Converters            | A/D 13x10b/12b                                                                  |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 44-TQFP                                                                         |
| Supplier Device Package    | 44-TQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128ga204t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 1.2 DMA Controller

PIC24FJ128GA204 family devices also add a Direct Memory Access (DMA) Controller to the existing PIC24F architecture. The DMA acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Six independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

### 1.3 Cryptographic Engine

The Cryptographic Engine provides a new set of data security options. Using its own free-standing state machines, the engine can independently perform NIST standard encryption and decryption of data, independently of the CPU.

Support for True Random Number Generation (TRNG) and Pseudorandom Number Generation (PRNG); NIST SP800-90 compliant.

#### 1.4 Other Special Features

- Peripheral Pin Select (PPS): The Peripheral Pin Select feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- Communications: The PIC24FJ128GA204 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are two independent I<sup>2</sup>C<sup>™</sup> modules that support both Master and Slave modes of operation. Devices also have, through the PPS feature, four independent UARTs with built-in IrDA<sup>®</sup> encoders/decoders, ISO 7816 Smart Card support (UART1 and UART2 only), and three SPI modules with I<sup>2</sup>S and variable data width support.
- Analog Features: All members of the PIC24FJ128GA204 family include a 12-bit A/D Converter module and a triple comparator module. The A/D module incorporates a range of new features that allows the converter to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- **CTMU Interface:** In addition to their other analog features, members of the PIC24FJ128GA204 family include the CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Enhanced Parallel Master/Parallel Slave Port: This module allows rapid and transparent access to the microcontroller data bus, and enables the CPU to directly address external data memory. The parallel port can function in Master or Slave mode, accommodating data widths of 4, 8 or 16 bits, and address widths of up to 23 bits in Master modes.
- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- Data Signal Modulator (DSM): The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the "modulator signal") with a carrier signal to produce a modulated output.

#### 1.5 Details on Individual Family Members

Devices in the PIC24FJ128GA204 family are available in 28-pin and 44-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in six ways:

- Flash program memory (64 Kbytes for PIC24FJ64GA2XX devices and 128 Kbytes for PIC24FJ128GA2XX devices).
- 2. Available I/O pins and ports (21 pins on two ports for 28-pin devices, 35 pins on three ports for 44-pin devices).
- 3. Available Input Change Notification (ICN) inputs (20 on 28-pin devices and 34 on 44-pin devices).
- 4. Available remappable pins (14 pins on 28-pin devices and 24 pins on 44-pin devices).
- Analog input channels for the A/D Converter (12 channels for 44-pin devices and 9 channels for 28-pin devices).

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FJ128GA204 family devices, sorted by function, is shown in Table 1-3. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.



#### TABLE 4-21: DMA REGISTER MAP

| File<br>Name | Addr | Bit 15 | Bit 14                                        | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9   | Bit 8       | Bit 7         | Bit 6        | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1 | Bit 0  | All<br>Resets |
|--------------|------|--------|-----------------------------------------------|--------|--------|--------|--------|---------|-------------|---------------|--------------|---------|---------|---------|---------|-------|--------|---------------|
| DMACON       | 0450 | DMAEN  | _                                             | —      | —      | _      | _      | _       | _           | _             | _            | _       | _       |         |         |       | PRSSEL | 0000          |
| DMABUF       | 0452 |        | DMA Transfer Data Buffer 00                   |        |        |        |        |         |             |               |              | 0000    |         |         |         |       |        |               |
| DMAL         | 0454 |        | DMA High Address Limit Register               |        |        |        |        |         |             |               |              | 0000    |         |         |         |       |        |               |
| DMAH         | 0456 |        |                                               |        |        |        |        | DN      | IA Low Add  | ress Limit Re | gister       |         |         |         |         |       |        | 0000          |
| DMACH0       | 0458 | —      |                                               | —      | r      | —      | NULLW  | RELOAD  | CHREQ       | SAMODE1       | SAMODE0      | DAMODE1 | DAMODE0 | TRMODE1 | TRMODE0 | SIZE  | CHEN   | 0000          |
| DMAINT0      | 045A | DBUFWF |                                               | CHSEL5 | CHSEL4 | CHSEL3 | CHSEL2 | CHSEL1  | CHSEL0      | HIGHIF        | LOWIF        | DONEIF  | HALFIF  | OVRUNIF | —       |       | HALFEN | 0000          |
| DMASRC0      | 045C |        |                                               |        |        |        |        | DMA C   | hannel 0 Sc | urce Addres   | s Register   |         |         |         |         |       |        | 0000          |
| DMADST0      | 045E |        |                                               |        |        |        |        | DMA Cha | nnel 0 Dest | ination Addre | ess Register |         |         |         |         |       |        | 0000          |
| DMACNT0      | 0460 |        |                                               |        |        |        |        | DMA Ch  | annel 0 Tra | nsaction Cou  | nt Register  |         |         |         |         |       |        | 0001          |
| DMACH1       | 0462 | —      | -                                             | —      | r      | —      | NULLW  | RELOAD  | CHREQ       | SAMODE1       | SAMODE0      | DAMODE1 | DAMODE0 | TRMODE1 | TRMODE0 | SIZE  | CHEN   | 0000          |
| DMAINT1      | 0464 | DBUFWF |                                               | CHSEL5 | CHSEL4 | CHSEL3 | CHSEL2 | CHSEL1  | CHSEL0      | HIGHIF        | LOWIF        | DONEIF  | HALFIF  | OVRUNIF | —       | _     | HALFEN | 0000          |
| DMASRC1      | 0466 |        | DMA Channel 1 Source Address Register 0000    |        |        |        |        |         |             | 0000          |              |         |         |         |         |       |        |               |
| DMADST1      | 0468 |        | DMA Channel 1 Destination Address Register 00 |        |        |        |        |         |             | 0000          |              |         |         |         |         |       |        |               |
| DMACNT1      | 046A |        | DMA Channel 1 Transaction Count Register 00   |        |        |        |        |         |             | 0001          |              |         |         |         |         |       |        |               |
| DMACH2       | 046C | _      |                                               | _      | r      | —      | NULLW  | RELOAD  | CHREQ       | SAMODE1       | SAMODE0      | DAMODE1 | DAMODE0 | TRMODE1 | TRMODE0 | SIZE  | CHEN   | 0000          |
| DMAINT2      | 046E | DBUFWF |                                               | CHSEL5 | CHSEL4 | CHSEL3 | CHSEL2 | CHSEL1  | CHSEL0      | HIGHIF        | LOWIF        | DONEIF  | HALFIF  | OVRUNIF | —       |       | HALFEN | 0000          |
| DMASRC2      | 0470 |        |                                               |        |        |        |        | DMA C   | hannel 2 Sc | urce Addres   | s Register   |         |         |         |         |       |        | 0000          |
| DMADST2      | 0472 |        |                                               |        |        |        |        | DMA Cha | nnel 2 Dest | ination Addre | ess Register |         |         |         |         |       |        | 0000          |
| DMACNT2      | 0474 |        |                                               |        |        |        |        | DMA Ch  | annel 2 Tra | nsaction Cou  | nt Register  |         |         |         |         |       |        | 0001          |
| DMACH3       | 0476 | —      | -                                             | —      | r      | —      | NULLW  | RELOAD  | CHREQ       | SAMODE1       | SAMODE0      | DAMODE1 | DAMODE0 | TRMODE1 | TRMODE0 | SIZE  | CHEN   | 0000          |
| DMAINT3      | 0478 | DBUFWF | -                                             | CHSEL5 | CHSEL4 | CHSEL3 | CHSEL2 | CHSEL1  | CHSEL0      | HIGHIF        | LOWIF        | DONEIF  | HALFIF  | OVRUNIF | —       | —     | HALFEN | 0000          |
| DMASRC3      | 047A |        |                                               |        |        |        |        | DMA C   | hannel 3 Sc | urce Addres   | s Register   |         |         |         |         |       |        | 0000          |
| DMADST3      | 047C |        |                                               |        |        |        |        | DMA Cha | nnel 3 Dest | ination Addre | ess Register |         |         |         |         |       |        | 0000          |
| DMACNT3      | 047E |        |                                               |        |        |        |        | DMA Ch  | annel 3 Tra | nsaction Cou  | nt Register  |         |         |         |         |       |        | 0001          |
| DMACH4       | 0480 | —      | -                                             | —      | r      | —      | NULLW  | RELOAD  | CHREQ       | SAMODE1       | SAMODE0      | DAMODE1 | DAMODE0 | TRMODE1 | TRMODE0 | SIZE  | CHEN   | 0000          |
| DMAINT4      | 0482 | DBUFWF | -                                             | CHSEL5 | CHSEL4 | CHSEL3 | CHSEL2 | CHSEL1  | CHSEL0      | HIGHIF        | LOWIF        | DONEIF  | HALFIF  | OVRUNIF | —       | —     | HALFEN | 0000          |
| DMASRC4      | 0484 |        | DMA Channel 4 Source Address Register 000     |        |        |        |        |         | 0000        |               |              |         |         |         |         |       |        |               |
| DMADST4      | 0486 |        | DMA Channel 4 Destination Address Register 00 |        |        |        |        |         |             | 0000          |              |         |         |         |         |       |        |               |
| DMACNT4      | 0488 |        | DMA Channel 4 Transaction Count Register 00   |        |        |        |        |         |             | 0001          |              |         |         |         |         |       |        |               |
| DMACH5       | 048A | —      | -                                             | —      | r      | —      | NULLW  | RELOAD  | CHREQ       | SAMODE1       | SAMODE0      | DAMODE1 | DAMODE0 | TRMODE1 | TRMODE0 | SIZE  | CHEN   | 0000          |
| DMAINT5      | 048C | DBUFWF | -                                             | CHSEL5 | CHSEL4 | CHSEL3 | CHSEL2 | CHSEL1  | CHSEL0      | HIGHIF        | LOWIF        | DONEIF  | HALFIF  | OVRUNIF | —       | —     | HALFEN | 0000          |
| DMASRC5      | 048E |        |                                               |        |        |        |        | DMA C   | hannel 5 Sc | urce Addres   | s Register   |         |         |         |         |       |        | 0000          |
| DMADST5      | 0490 |        |                                               |        |        |        |        | DMA Cha | nnel 5 Dest | ination Addre | ess Register |         |         |         |         |       |        | 0000          |
| DMACNT5      | 0492 |        |                                               |        |        |        |        | DMA Ch  | annel 5 Tra | nsaction Cou  | nt Register  |         |         |         |         |       |        | 0001          |

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

|                  |                                    | DAMO                             |                          | DANO             |                  | DANO            | DANO   |
|------------------|------------------------------------|----------------------------------|--------------------------|------------------|------------------|-----------------|--------|
| 0-0              | R/W-0                              | R/W-0                            | R/W-0                    | R/W-0            | R/W-0            | R/W-0           | R/W-0  |
|                  | DMATIF                             | ADTIF                            | UTTXIF                   | UTRAIF           | SPITIXIE         | SPITIF          |        |
| DIL 15           |                                    |                                  |                          |                  |                  |                 | DIL 8  |
| R/W-0            | R/W-0                              | R/W-0                            | R/W-0                    | R/W-0            | R/W-0            | R/W-0           | R/W-0  |
| T2IF             | OC2IF                              | IC2IF                            | DMA0IF                   | T1IF             | OC1IF            | IC1IF           | INTOIF |
| bit 7            |                                    |                                  |                          |                  |                  |                 | bit 0  |
|                  |                                    |                                  |                          |                  |                  |                 |        |
| Legend:          |                                    |                                  |                          |                  |                  |                 |        |
| R = Readable     | e bit                              | W = Writable                     | oit                      | U = Unimpler     | mented bit, read | 1 as '0'        |        |
| -n = Value at    | POR                                | '1' = Bit is set                 |                          | '0' = Bit is cle | ared             | x = Bit is unkr | nown   |
| h:+ 45           |                                    | tad. Daad as W                   | <b>,</b>                 |                  |                  |                 |        |
| DIL 15<br>bit 14 |                                    | Channel 1 Int                    | )<br>forrunt Elag St     | atus hit         |                  |                 |        |
| DIL 14           | 1 = Interrupt r                    | equest has occ                   | urred                    |                  |                  |                 |        |
|                  | 0 = Interrupt r                    | equest has not                   | occurred                 |                  |                  |                 |        |
| bit 13           | AD1IF: A/D E                       | vent Interrupt F                 | lag Status bit           |                  |                  |                 |        |
|                  | 1 = Interrupt r                    | equest has occ                   | curred                   |                  |                  |                 |        |
| hit 12           |                                    | equest has not                   | occurred                 | Status bit       |                  |                 |        |
| DIL 12           | 1 = Interrupt r                    | request has occ                  | urred                    | Status bit       |                  |                 |        |
|                  | 0 = Interrupt r                    | equest has not                   | occurred                 |                  |                  |                 |        |
| bit 11           | U1RXIF: UAR                        | RT1 Receiver In                  | terrupt Flag S           | tatus bit        |                  |                 |        |
|                  | 1 = Interrupt r                    | equest has occ                   | curred                   |                  |                  |                 |        |
| hit 10           |                                    | equest has not                   | occurred                 | atua hit         |                  |                 |        |
|                  | 1 = Interrupt r                    | rri Transmit mi                  | enupt Flag Sta<br>surred | alus dil         |                  |                 |        |
|                  | 0 = Interrupt r                    | equest has not                   | occurred                 |                  |                  |                 |        |
| bit 9            | SPI1IF: SPI1                       | General Interru                  | pt Flag Status           | bit              |                  |                 |        |
|                  | 1 = Interrupt r                    | equest has occ                   | curred                   |                  |                  |                 |        |
| bit 8            | T3IF: Timer3                       | Interrupt Flag S                 | Status bit               |                  |                  |                 |        |
|                  | 1 = Interrupt r                    | equest has occ                   | curred                   |                  |                  |                 |        |
| hit 7            | T2IF: Timer2                       | Interrunt Flag S                 | Status hit               |                  |                  |                 |        |
|                  | 1 = Interrupt request has occurred |                                  |                          |                  |                  |                 |        |
|                  | 0 = Interrupt r                    | equest has not                   | occurred                 |                  |                  |                 |        |
| bit 6            | OC2IF: Outpu                       | ut Compare Cha                   | annel 2 Interru          | pt Flag Status   | bit              |                 |        |
|                  | 1 = Interrupt r<br>0 = Interrupt r | equest has occ<br>equest has not | curred<br>occurred       |                  |                  |                 |        |
| bit 5            | IC2IF: Input C                     | Capture Channe                   | el 2 Interrupt F         | lag Status bit   |                  |                 |        |
|                  | 1 = Interrupt r                    | equest has occ                   | urred                    |                  |                  |                 |        |
| 1.11.A           | 0 = Interrupt r                    | equest has not                   | occurred                 |                  |                  |                 |        |
| DIT 4            | 1 = Interrunt r                    | A Channel U Ini                  | errupt Flag St           | atus dit         |                  |                 |        |
|                  | 0 = Interrupt r                    | equest has not                   | occurred                 |                  |                  |                 |        |
| bit 3            | T1IF: Timer1                       | Interrupt Flag S                 | Status bit               |                  |                  |                 |        |
|                  | 1 = Interrupt r<br>0 = Interrupt r | equest has occ<br>equest has not | curred<br>occurred       |                  |                  |                 |        |

#### REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
  - 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
  - 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
  - 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred

#### REGISTER 8-18: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

| U-0           | U-0                        | U-0               | U-0             | R/W-0             | R/W-0           | R/W-0           | R/W-0  |
|---------------|----------------------------|-------------------|-----------------|-------------------|-----------------|-----------------|--------|
|               | —                          | —                 |                 | SPI3TXIE          | SPI3IE          | U4TXIE          | U4RXIE |
| bit 15        |                            |                   |                 |                   |                 |                 | bit 8  |
|               |                            |                   |                 |                   |                 |                 |        |
| R/W-0         | U-0                        | R/W-0             | R/W-0           | R/W-0             | R/W-0           | R/W-0           | U-0    |
| U4ERIE        | —                          | I2C2BCIE          | I2C1BCIE        | U3TXIE            | U3RXIE          | U3ERIE          | —      |
| bit 7         |                            |                   |                 |                   |                 |                 | bit 0  |
|               |                            |                   |                 |                   |                 |                 |        |
| Legend:       |                            |                   |                 |                   |                 |                 |        |
| R = Readabl   | e bit                      | W = Writable      | Dit             |                   | nented bit, rea | d as '0'        |        |
| -n = Value at | POR                        | '1' = Bit is set  |                 | 0' = Bit is clear | ared            | x = Bit is unkn | nown   |
| bit 15 12     | Unimplomor                 | tod: Pood as '    | ,               |                   |                 |                 |        |
| bit 11        |                            | DI3 Transmit Int  | orrunt Enable   | hit               |                 |                 |        |
|               | 1 = Interrunt              | request is enab   |                 | Dit               |                 |                 |        |
|               | 0 = Interrupt              | request is not e  | nabled          |                   |                 |                 |        |
| bit 10        | SPI3IE: SPI3               | B General Interru | pt Enable bit   |                   |                 |                 |        |
|               | 1 = Interrupt              | request is enab   | ed              |                   |                 |                 |        |
|               | 0 = Interrupt              | request is not e  | nabled          |                   |                 |                 |        |
| bit 9         | U4TXIE: UAF                | RT4 Transmitter   | Interrupt Enal  | ble bit           |                 |                 |        |
|               | 1 = Interrupt              | request is enab   | ed<br>applied   |                   |                 |                 |        |
| hit 8         |                            | RT4 Receiver Ir   | iterrunt Enable | a bit             |                 |                 |        |
| bit 0         | 1 = Interrupt              | request is enab   | ed              |                   |                 |                 |        |
|               | 0 = Interrupt              | request is not e  | nabled          |                   |                 |                 |        |
| bit 7         | U4ERIE: UAI                | RT4 Error Interr  | upt Enable bit  |                   |                 |                 |        |
|               | 1 = Interrupt              | request is enab   | ed              |                   |                 |                 |        |
|               | 0 = Interrupt              | request is not e  | nabled          |                   |                 |                 |        |
| bit 6         | Unimplemen                 | ted: Read as '    | )'              |                   |                 |                 |        |
| bit 5         | 1 = Interrupt              | 2C2 Bus Collisio  | n Interrupt En  | able bit          |                 |                 |        |
|               | 0 = Interrupt              | request is enab   | nabled          |                   |                 |                 |        |
| bit 4         | 12C1BCIE: 12               | 2C1 Bus Collisio  | n Interrupt En  | able bit          |                 |                 |        |
|               | 1 = Interrupt              | request is enab   | ed              |                   |                 |                 |        |
|               | 0 = Interrupt              | request is not e  | nabled          |                   |                 |                 |        |
| bit 3         | U3TXIE: UAF                | RT3 Transmitter   | Interrupt Enal  | ble bit           |                 |                 |        |
|               | 1 = Interrupt              | request is enab   | ed<br>applied   |                   |                 |                 |        |
| hit 2         |                            | RT3 Receiver Ir   | iterrunt Enable | a bit             |                 |                 |        |
|               |                            | request is enab   | led             |                   |                 |                 |        |
|               | 0 = Interrupt              | request is not e  | nabled          |                   |                 |                 |        |
| bit 1         | U3ERIE: UAI                | RT3 Error Interr  | upt Enable bit  |                   |                 |                 |        |
|               | 1 = Interrupt              | request is enab   | ed              |                   |                 |                 |        |
|               | 0 = Interrupt              | request is not e  | nabled          |                   |                 |                 |        |
| bit 0         | Unimplemented: Read as '0' |                   |                 |                   |                 |                 |        |

| U-0           | R/W-1          | R/W-0              | R/W-0            | U-0              | R/W-1             | R/W-0           | R/W-0     |
|---------------|----------------|--------------------|------------------|------------------|-------------------|-----------------|-----------|
| —             | SPI2RXIP2      | SPI2RXIP1          | SPI2RXIPO        | —                | SPI1RXIP2         | SPI1RXIP1       | SPI1RXIPO |
| bit 15        |                |                    |                  |                  |                   |                 | bit 8     |
|               |                |                    |                  |                  |                   |                 |           |
| U-0           | U-0            | U-0                | U-0              | U-0              | R/W-1             | R/W-0           | R/W-0     |
|               | <u> </u>       | <u> </u>           | <u> </u>         |                  | KEYSTRIP2         | KEYSTRIP1       | KEYSTRIP0 |
| bit 7         |                |                    |                  |                  |                   |                 | bit 0     |
|               |                |                    |                  |                  |                   |                 |           |
| Legend:       |                |                    |                  |                  |                   |                 |           |
| R = Readable  | e bit          | W = Writable       | bit              | U = Unimplen     | nented bit, read  | l as '0'        |           |
| -n = Value at | POR            | '1' = Bit is set   |                  | '0' = Bit is cle | ared              | x = Bit is unkr | nown      |
|               |                |                    |                  |                  |                   |                 |           |
| bit 15        | Unimplemen     | ted: Read as '     | כ'               |                  |                   |                 |           |
| bit 14-12     | SPI2RXIP<2:    | 0>: SPI2 Rece      | ive Interrupt Pr | iority bits      |                   |                 |           |
|               | 111 = Interru  | pt is Priority 7 ( | highest priority | interrupt)       |                   |                 |           |
|               | •              |                    |                  |                  |                   |                 |           |
|               | •              |                    |                  |                  |                   |                 |           |
|               | 001 = Interru  | pt is Priority 1   |                  |                  |                   |                 |           |
|               | 000 = Interrup | ot source is dis   | abled            |                  |                   |                 |           |
| bit 11        | Unimplemen     | ted: Read as '     | כ'               |                  |                   |                 |           |
| bit 10-8      | SPI1RXIP<2:    | 0>: SPI1 Rece      | ive Interrupt Pr | iority bits      |                   |                 |           |
|               | 111 = Interru  | pt is Priority 7 ( | highest priority | interrupt)       |                   |                 |           |
|               | •              |                    |                  |                  |                   |                 |           |
|               | •              |                    |                  |                  |                   |                 |           |
|               | 001 = Interru  | pt is Priority 1   |                  |                  |                   |                 |           |
|               | 000 = Interrup | ot source is dis   | abled            |                  |                   |                 |           |
| bit 7-3       | Unimplemen     | ted: Read as '     | ) <b>'</b>       |                  |                   |                 |           |
| bit 2-0       | KEYSTRIP<2     | ::0>: Cryptogra    | phic Key Store   | Program Done     | e Interrupt Prior | ity bits        |           |
|               | 111 = Interru  | pt is Priority 7 ( | highest priority | r interrupt)     |                   |                 |           |
|               | •              |                    |                  |                  |                   |                 |           |
|               | •              |                    |                  |                  |                   |                 |           |
|               | 001 = Interru  | pt is Priority 1   |                  |                  |                   |                 |           |
|               | 000 = Interru  | pt source is dis   | abled            |                  |                   |                 |           |
|               |                |                    |                  |                  |                   |                 |           |

#### REGISTER 8-35: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

| U-0           | R/W-1              | R/W-0                                | R/W-0                  | U-0                       | R/W-1            | R/W-0           | R/W-0   |
|---------------|--------------------|--------------------------------------|------------------------|---------------------------|------------------|-----------------|---------|
|               | SPI3TXIP2          | SPI3TXIP1                            | SPI3TXIP0              |                           | SPI3IP2          | SPI3IP1         | SPI3IP0 |
| bit 15        |                    |                                      |                        |                           |                  |                 | bit 8   |
|               |                    |                                      |                        |                           |                  |                 |         |
| U-0           | R/W-1              | R/W-0                                | R/W-0                  | U-0                       | R/W-1            | R/W-0           | R/W-0   |
| —             | U4TXIP2            | U4TXIP1                              | U4TXIP0                | —                         | U4RXIP2          | U4RXIP1         | U4RXIP0 |
| bit 7         |                    |                                      |                        |                           |                  |                 | bit 0   |
| · ·           |                    |                                      |                        |                           |                  |                 |         |
| Legend:       |                    |                                      | L :1                   |                           |                  |                 |         |
| R = Readable  |                    |                                      | DIT                    |                           | hented bit, read |                 |         |
| -n = value at | POR                | "1" = Bit is set                     |                        | $0^{\circ} = Bit is clea$ | ared             | x = Bit is unkr | IOWN    |
| bit 15        | Unimplomon         | tod: Dood op 'r                      | <i>.</i> ،             |                           |                  |                 |         |
| bit 14-12     |                    | Neau as t                            | mit Interrunt P        | riority bite              |                  |                 |         |
| 51(14-12      | 111 = Interru      | pt is Priority 7 (                   | highest priority       | (interrupt)               |                  |                 |         |
|               | •                  |                                      |                        |                           |                  |                 |         |
|               | •                  |                                      |                        |                           |                  |                 |         |
|               | •<br>001 = Interru | nt is Priority 1                     |                        |                           |                  |                 |         |
|               | 000 = Interrup     | pt source is dis                     | abled                  |                           |                  |                 |         |
| bit 11        | Unimplemen         | ted: Read as '                       | כ'                     |                           |                  |                 |         |
| bit 10-8      | SPI3IP<2:0>:       | SPI3 General                         | Interrupt Priori       | ty bits                   |                  |                 |         |
|               | 111 = Interru      | pt is Priority 7 (                   | highest priority       | interrupt)                |                  |                 |         |
|               | •                  |                                      |                        |                           |                  |                 |         |
|               | •                  |                                      |                        |                           |                  |                 |         |
|               | 001 = Interru      | pt is Priority 1                     |                        |                           |                  |                 |         |
|               | 000 = Interrup     | ot source is dis                     | abled                  |                           |                  |                 |         |
| bit 7         | Unimplemen         | ted: Read as '                       | )'                     |                           |                  |                 |         |
| bit 6-4       | U4TXIP<2:0>        | : UARI4 Irans                        | smitter Interrup       | t Priority bits           |                  |                 |         |
|               | •                  | puis Phonity 7 (                     | nignest priority       | interrupt)                |                  |                 |         |
|               | •                  |                                      |                        |                           |                  |                 |         |
|               | •                  |                                      |                        |                           |                  |                 |         |
|               | 001 = Interrup     | ot is Priority 1<br>ot source is dis | abled                  |                           |                  |                 |         |
| bit 3         | Unimplemen         | ted: Read as '                       | )'                     |                           |                  |                 |         |
| bit 2-0       | U4RXIP<2:0>        | : UART4 Rece                         | -<br>eiver Interrupt F | Priority bits             |                  |                 |         |
|               | 111 = Interrup     | ot is Priority 7 (                   | highest priority       | interrupt)                |                  |                 |         |
|               | •                  |                                      |                        |                           |                  |                 |         |
|               | •                  |                                      |                        |                           |                  |                 |         |
|               | 001 = Interrur     | ot is Priority 1                     |                        |                           |                  |                 |         |
|               | 000 = Interrup     | ot source is dis                     | abled                  |                           |                  |                 |         |
|               |                    |                                      |                        |                           |                  |                 |         |

#### REGISTER 8-42: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

#### REGISTER 8-45: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

| R-0    | r-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|--------|-----|-------|-----|-------|-------|-------|-------|
| CPUIRQ | —   | VHOLD | —   | ILR3  | ILR2  | ILR1  | ILR0  |
| bit 15 |     |       |     |       |       |       | bit 8 |

| R/W-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| VECNUM7 | VECNUM6 | VECNUM5 | VECNUM4 | VECNUM3 | VECNUM2 | VECNUM1 | VECNUM0 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           | r = Reserved bit |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| that has |
|----------|
| that has |
| that has |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock- sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

#### EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

| ;Place the new oscillator selection in WO |
|-------------------------------------------|
| ;OSCCONH (high byte) Unlock Sequence      |
| MOV #OSCCONH, w1                          |
| MOV #0x78, w2                             |
| MOV #0x9A, w3                             |
| MOV.b w2, [w1]                            |
| MOV.b w3, [w1]                            |
| ;Set new oscillator selection             |
| MOV.b WREG, OSCCONH                       |
| ;OSCCONL (low byte) unlock sequence       |
| MOV #OSCCONL, w1                          |
| MOV #0x46, w2                             |
| MOV #0x57, w3                             |
| MOV.b w2, [w1]                            |
| MOV.b w3, [w1]                            |
| ;Start oscillator switch operation        |
| BSET OSCCON, #0                           |

## 9.5 FRC Self-Tuning

PIC24FJ128GA204 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses clock recovery from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that exceeds 0.25%, which is well within the requirements.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the system, causing it to recover a calibration clock from a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 0, the system uses the crystal controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

| Note: | If the SOSC is to be used as the clock |
|-------|----------------------------------------|
|       | recovery source (STSRC = 0), the SOSC  |
|       | must always be enabled.                |

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference by greater than 0.2% in either direction or whenever the frequency deviation is beyond the ability of the TUNx bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

#### REGISTER 11-10: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

| U-0     | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|---------|-----|--------|--------|--------|--------|--------|--------|
| —       | —   | OCFBR5 | OCFBR4 | OCFBR3 | OCFBR2 | OCFBR1 | OCFBR0 |
| bit 15  |     | -      |        |        | •      |        | bit 8  |
|         |     |        |        |        |        |        |        |
| U-0     | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|         | —   | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7   |     |        |        |        |        |        | bit 0  |
|         |     |        |        |        |        |        |        |
| Logondy |     |        |        |        |        |        |        |

| Legenu.           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as 'O'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                             |
|-----------|----------------------------------------------------------------------------------------|
| bit 13-8  | OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                             |
| bit 5-0   | OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits |

#### REGISTER 11-11: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

| U-0    | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1  | R/W-1 | R/W-1 |
|--------|-----|-------|-------|-------|--------|-------|-------|
| _      |     |       |       | U3RXI | R<5:0> |       |       |
| bit 15 |     |       |       |       |        |       | bit 8 |

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|-------|-----|-----|-----|-----|-----|-----|-------|
| —     | —   | —   | —   | —   | —   | —   | —     |
| bit 7 |     |     |     |     |     |     | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

NOTES:

## 15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ128GA204 family all feature six independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable trigger/sync sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

#### 15.1 General Operating Modes

#### 15.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs. In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the sync/trigger source.

#### 15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Output Compare x (OCx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Output Compare y (OCy), provides the Most Significant 16 bits. Wrap arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more information on cascading, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Output Compare with Dedicated Timer"** (DS70005159).

#### REGISTER 16-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

| U-0          | U-0                          | U-0                       | U-0                | U-0              | U-0              | U-0             | U-0   |
|--------------|------------------------------|---------------------------|--------------------|------------------|------------------|-----------------|-------|
| _            | —                            | _                         | _                  |                  |                  |                 |       |
| bit 15       |                              | ·                         |                    |                  |                  |                 | bit 8 |
|              |                              |                           |                    |                  |                  |                 |       |
| U-0          | U-0                          | U-0                       | R/W-0              | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
|              | _                            | _                         | _                  | WI               | ENGTH<4.0>       | (1,2)           | -     |
| bit 7        |                              |                           |                    |                  |                  |                 | bit 0 |
| bit I        |                              |                           |                    |                  |                  |                 | bit 0 |
| Legend:      |                              |                           |                    |                  |                  |                 |       |
| R = Readab   | ole bit                      | W = Writable              | bit                | U = Unimplen     | nented bit, read | 1 as '0'        |       |
| -n = Value a | at POR                       | '1' = Rit is set          |                    | ·0' = Bit is cle | ared             | x = Bit is unkn | own   |
|              |                              |                           |                    |                  | area             |                 | lowin |
| bit 15 5     | Unimplomon                   | tod: Dood as '            | <i>.</i> ،         |                  |                  |                 |       |
| bit 4 0      |                              |                           | )<br>Nord Longth b | :to(1.2)         |                  |                 |       |
| DIT 4-0      | WLENGIH<4                    | <b>:U&gt;:</b> variable v | vora Length b      |                  |                  |                 |       |
|              | 11111 = 32-0<br>11110 = 31-b | ni uala<br>vit data       |                    |                  |                  |                 |       |
|              | 11110 = 31-b<br>11101 = 30-b | nit data                  |                    |                  |                  |                 |       |
|              | 11100 <b>= 29-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 11011 <b>= 28-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 11010 <b>= 27-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 11001 <b>= 26-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 11000 <b>= 25-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 10111 <b>= 24-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 10110 = 23-b                 | oit data                  |                    |                  |                  |                 |       |
|              | 10101 = 22-D                 | lit data                  |                    |                  |                  |                 |       |
|              | 10100 - 21-b<br>10011 = 20-b | ni uala<br>hit data       |                    |                  |                  |                 |       |
|              | 10010 = <b>19-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 10001 <b>= 18-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 10000 <b>= 17-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 01111 <b>= 16-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 01110 <b>= 15-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 01101 <b>= 14-b</b>          | it data                   |                    |                  |                  |                 |       |
|              | 01100 = 13-D                 | lit data                  |                    |                  |                  |                 |       |
|              | 01011 = 12-0<br>01010 = 11-b | it data                   |                    |                  |                  |                 |       |
|              | 01010 = 11-b                 | it data                   |                    |                  |                  |                 |       |
|              | 01000 <b>= 9-bit</b>         | data                      |                    |                  |                  |                 |       |
|              | 00111 = 8-bit                | data                      |                    |                  |                  |                 |       |
|              | 00110 <b>= 7-bit</b>         | data                      |                    |                  |                  |                 |       |
|              | 00101 <b>= 6-bit</b>         | data                      |                    |                  |                  |                 |       |
|              | 00100 <b>= 5-bit</b>         | data                      |                    |                  |                  |                 |       |
|              | 00011 <b>= 4-bit</b>         | data                      |                    |                  |                  |                 |       |
|              | 00010 = <b>3-bit</b>         | data                      |                    |                  |                  |                 |       |
|              | 00001 = 2-bit                |                           | 165 bits in ST     |                  | 05               |                 |       |
|              | 00000 <b>= See</b>           | INCDES32                  |                    |                  | 0-               |                 |       |

- **Note 1:** These bits are effective when AUDEN = 0 only.
  - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

#### REGISTER 16-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

| R/W-0  | U-0 | R/W-0                 | R/W-0                   | R/W-0                   | R/W-0                   | R/W-0                 | R/W-0                 |
|--------|-----|-----------------------|-------------------------|-------------------------|-------------------------|-----------------------|-----------------------|
| RXWIEN | —   | RXMSK5 <sup>(1)</sup> | RXMSK4 <sup>(1,4)</sup> | RXMSK3 <sup>(1,3)</sup> | RXMSK2 <sup>(1,2)</sup> | RXMSK1 <sup>(1)</sup> | RXMSK0 <sup>(1)</sup> |
| bit 15 |     |                       |                         |                         |                         |                       | bit 8                 |

| R/W-0  | U-0 | R/W-0                 | R/W-0                   | R/W-0                   | R/W-0                   | R/W-0                 | R/W-0                 |
|--------|-----|-----------------------|-------------------------|-------------------------|-------------------------|-----------------------|-----------------------|
| TXWIEN | —   | TXMSK5 <sup>(1)</sup> | TXMSK4 <sup>(1,4)</sup> | TXMSK3 <sup>(1,3)</sup> | TXMSK2 <sup>(1,2)</sup> | TXMSK1 <sup>(1)</sup> | TXMSK0 <sup>(1)</sup> |
| bit 7  |     |                       |                         |                         |                         |                       | bit 0                 |

| Legend:           |                  |                          |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, I | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

| bit 15   | <b>RXWIEN:</b> Receive Watermark Interrupt Enable bit<br>1 = Triggers receive buffer element watermark interrupt when RXMSK<5:0> < RXELM<5:0>                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 0 = Disables receive buffer element watermark interrupt                                                                                                                                 |
| bit 14   | Unimplemented: Read as '0'                                                                                                                                                              |
| bit 13-8 | RXMSK<5:0>: RX Buffer Mask bits <sup>(1,2,3,4)</sup>                                                                                                                                    |
|          | RX mask bits; used in conjunction with the RXWIEN bit.                                                                                                                                  |
| bit 7    | TXWIEN: Transmit Watermark Interrupt Enable bit                                                                                                                                         |
|          | <ul> <li>1 = Triggers transmit buffer element watermark interrupt when TXMSK&lt;5:0&gt; = TXELM&lt;5:0&gt;</li> <li>0 = Disables transmit buffer element watermark interrupt</li> </ul> |
| bit 6    | Unimplemented: Read as '0'                                                                                                                                                              |
| bit 5-0  | TXMSK<5:0>: TX Buffer Mask bits <sup>(1,2,3,4)</sup>                                                                                                                                    |
|          | TX mask bits; used in conjunction with the TXWIEN bit.                                                                                                                                  |
| Note 1:  | Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in this case.                                                                        |

- 2: RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.
- 3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.
- 4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

#### REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

| bit 7-6 | URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits                                                                                                                                                                                                                                                                                                                                                  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters)</li> <li>10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)</li> <li>0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters</li> </ul> |
| bit 5   | <b>ADDEN:</b> Address Character Detect bit (bit 8 of received data = 1)                                                                                                                                                                                                                                                                                                                                    |
|         | <ul> <li>1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)</li> <li>0 = Address Detect mode is disabled</li> </ul>                                                                                                                                                                                                                                             |
| bit 4   | RIDLE: Receiver Idle bit (read-only)                                                                                                                                                                                                                                                                                                                                                                       |
|         | <ul><li>1 = Receiver is Idle</li><li>0 = Receiver is active</li></ul>                                                                                                                                                                                                                                                                                                                                      |
| bit 3   | PERR: Parity Error Status bit (read-only)                                                                                                                                                                                                                                                                                                                                                                  |
|         | <ul> <li>1 = Parity error has been detected for the current character (the character at the top of the receive FIFO)</li> <li>0 = Parity error has not been detected</li> </ul>                                                                                                                                                                                                                            |
| bit 2   | FERR: Framing Error Status bit (read-only)                                                                                                                                                                                                                                                                                                                                                                 |
|         | <ul> <li>1 = Framing error has been detected for the current character (the character at the top of the receive<br/>FIFO)</li> <li>2 = Framing error has not been detected</li> </ul>                                                                                                                                                                                                                      |
|         | 0 = Framing error has not been detected                                                                                                                                                                                                                                                                                                                                                                    |
| bit 1   | OERR: Receive Buffer Overrun Error Status bit (clear/read-only)                                                                                                                                                                                                                                                                                                                                            |
|         | <ul> <li>1 = Receive buffer has overflowed</li> <li>0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition); will reset the receive buffer and the RSR to the empty state)</li> </ul>                                                                                                                                                                                 |
| bit 0   | URXDA: UARTx Receive Buffer Data Available bit (read-only)                                                                                                                                                                                                                                                                                                                                                 |
|         | <ul> <li>1 = Receive buffer has data, at least one more character can be read</li> <li>0 = Receive buffer is empty</li> </ul>                                                                                                                                                                                                                                                                              |
| Note 1  | : The value of this bit only affects the transmit properties of the module when the IrDA <sup>®</sup> encoder is enabled (IREN = 1).                                                                                                                                                                                                                                                                       |

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

NOTES:

#### 22.13 Programming CFGPAGE (Page 0) Configuration Bits

- 1. If not already set, set the CRYON bit. Set KEYPG<3:0> to '0000'.
- 2. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- Write the data to be programmed into the Configuration Page into CRYTXTC<31:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 4. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 5. Once all programming has completed, set the CRYREAD bit to reload the values from the onchip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status with performing a read operation on the array.
- **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

### 22.14 Programming Keys

- 1. If not already set, set the CRYON bit.
- Configure KEYPG<3:0> to the page you want to program.
- 3. Read the PGMFAIL status bit. If this bit is '1', an illegal configuration has been selected and the programming operation will not be performed.
- 4. Write the data to be programmed into the Configuration Page into CRYTXTC<63:0>. Any bits that are set ('1') will be permanently programmed, while any bits that are cleared ('0') will not be programmed and may be programmed at a later time.
- 5. Set the CRYWR bit. Poll the bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- 6. Repeat Steps 2 through 5 for each OTP array page to be programmed.
- 7. Once all programming has completed, set the CRYREAD bit to reload the values from the onchip storage. A read operation must be performed to complete programming.
- Note: Do not clear the CRYON bit while the CRYREAD bit is set; this will result in an incomplete read operation and unavailable key data. To recover, set CRYON and CRYREAD, and allow the read operation to fully complete.
- 8. Poll the CRYREAD bit until it is cleared; alternatively, set the OTPIE bit (CRYOTP<6>) to enable the optional OTP done interrupt.
- For production programming, the TSTPGM bit can be set to indicate a successful programming operation. When TSTPGM is set, the PGMTST bit (CRYOTP<7>) will also be set, allowing users to see the OTP array status with performing a read operation on the array.
  - **Note:** If the device enters Sleep mode during OTP programming, the contents of the OTP array may become corrupted. This is not a recoverable error. Users must ensure that entry into power-saving modes is disabled before OTP programming is performed.

# 22.15 Verifying Programmed Keys

To maintain key security, the secure OTP array has no provision to read back its data to any user-accessible memory space in any operating mode. Therefore, there is no way to directly verify programmed data. The only method for verifying that they have been programmed correctly is to perform an encryption operation with a known plaintext/ciphertext pair for each programmed key.

#### REGISTER 23-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

| L 11 7            |  |                  | X<7:1> |                                    |  |                    | —     |  |
|-------------------|--|------------------|--------|------------------------------------|--|--------------------|-------|--|
| bit 7             |  |                  |        |                                    |  |                    | bit 0 |  |
| bit 7             |  |                  |        |                                    |  |                    | bit 0 |  |
|                   |  |                  |        |                                    |  |                    |       |  |
| Lagandi           |  |                  |        |                                    |  |                    |       |  |
| Legend:           |  |                  |        |                                    |  |                    |       |  |
| R = Readable bit  |  | W = Writable bit |        | U = Unimplemented bit, read as '0' |  |                    |       |  |
|                   |  |                  |        | 0 – Onimpiementeu bit, reau as 0   |  |                    |       |  |
| -n = Value at POR |  | '1' = Bit is set |        | '0' = Bit is cleared               |  | x = Bit is unknown |       |  |

bit 15-1 X<15:1>: XOR of Polynomial Term x<sup>n</sup> Enable bits

bit 0 Unimplemented: Read as '0'

#### REGISTER 23-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

| R/W-0             | R/W-0 | R/W-0            | R/W-0 | R/W-0                              | R/W-0 | R/W-0              | R/W-0 |  |
|-------------------|-------|------------------|-------|------------------------------------|-------|--------------------|-------|--|
|                   |       |                  | Χ<    | 31:24>                             |       |                    |       |  |
| bit 15            |       |                  |       |                                    |       |                    | bit 8 |  |
|                   |       |                  |       |                                    |       |                    |       |  |
| R/W-0             | R/W-0 | R/W-0            | R/W-0 | R/W-0                              | R/W-0 | R/W-0              | R/W-0 |  |
|                   |       |                  | X<    | 23:16>                             |       |                    |       |  |
| bit 7             |       |                  |       |                                    |       |                    | bit 0 |  |
|                   |       |                  |       |                                    |       |                    |       |  |
| Legend:           |       |                  |       |                                    |       |                    |       |  |
| R = Readable bit  |       | W = Writable bit |       | U = Unimplemented bit, read as '0' |       |                    |       |  |
| -n = Value at POR |       | '1' = Bit is set |       | '0' = Bit is cleared               |       | x = Bit is unknown |       |  |
| L                 |       |                  |       |                                    |       |                    |       |  |

bit 15-0 X<31:16>: XOR of Polynomial Term x<sup>n</sup> Enable bits

# THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

## CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

## **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support