

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2014110	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga202-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FJ128GA204 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

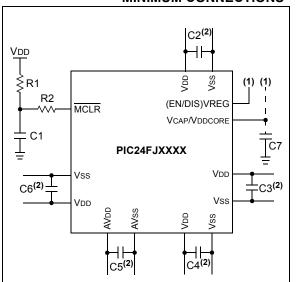
The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")
- ENVREG/DISVREG and VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")


Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 $\mu\text{F},$ 6.3V or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100 Ω to 470 Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (ENVREG/DISVREG and VCAP/VDDCORE)" for explanation of the ENVREG/DISVREG pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

TABLE 4-10: UART REGISTER MAP

IABLE 4	-10:	UARIF	KEGIS I															_
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0500	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0502	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0504	LAST	_	_	_	—	_	_				U1T	XREG<8:0>	•				XXXX
U1RXREG	0506	_	_	_		_	_					U1R	XREG<8:0>	•				0000
U1BRG	0508								U1BRG	<15:0>								0000
U1ADMD	050A	ADMMASK<7:0>										ADMADDR	R<7:0>				0000	
U1SCCON	050C	_	_	_	_	_	_	_	_	_	_	TXRPT1	TXRPT0	CONV	T0PD	PTRCL	SCEN	0000
U1SCINT	050E	_	_	RXRPTIF	TXRPTIF	—	_	WTCIF	GTCIF	_	PARIE	RXRPTIE	TXRPTIE	_	_	WTCIE	GTCIE	0000
U1GTC	0510	_	_	_	_	—	_	_				G	TC<8:0>					0000
U1WTCL	0512								WTC<	15:0>								0000
U1WTCH	0514	_	_	_	_	_	_	_	_				WTC<23	:16>				0000
U2MODE	0516	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0518	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	051A	LAST U2TXREG<8:0>							XXXX									
U2RXREG	051C	U2RXREG<8:0>							0000									
U2BRG	051E								U2BRG	<15:0>								0000
U2ADMD	0520				ADMMAS	SK<7:0>				ADMADDR<7:0>				0000				
U2SCCON	0522	—	—	—	_	_		_		—	_	TXRPT1	TXRPT0	CONV	T0PD	PTRCL	SCEN	0000
U2SCINT	0524	—	—	RXRPTIF	TXRPTIF	_		WTCIF	GTCIF	—	PARIE	RXRPTIE	TXROTIE	-	—	WTCIE	GTCIE	0000
U2GTC	0526	—	—	—	_	_		_				G	TC<8:0>					0000
U2WTCL	0528								WTC<	15:0>								0000
U2WTCH	052A	—	—	—	_	_		_					WTC<23	:16>				0000
U3MODE	052C	UARTEN	—	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	052E	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0530	LAST	—	—	_	_		_				U3T2	XREG<8:0>	•				XXXX
U3RXREG	0532	—	—	—	_	_		_				U3R	XREG<8:0>	•				0000
U3BRG	0534								U3BRG	<15:0>								0000
U3ADMD	0536				ADMMAS	SK<7:0>							ADMADDR	8<7:0>				0000
U4MODE	0538	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	053A	UTXISEL1	UTXINV	UTXISEL0	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	053C	LAST	—	—	_	—	-	_				U4T	XREG<8:0>	•				XXXX
U4RXREG	053E	_	—	—	—	—	-	_				U4R	XREG<8:0>	•				0000
U4BRG	0540								U4BRG	<15:0>								0000
U4ADMD	0542				ADMMAS	SK<7:0>							ADMADDR	R<7:0>				0000

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

PIC24FJ128GA204 FAMILY

REGISTER 8-2: CORCON: CPU CORE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0	r-1	U-0	U-0
—	—	—	—	IPL3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:	r = Reserved bit	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 Reserved: Read as PSV bit

bit 1-0 Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-2 for bit description.

REGISTER 9-6: REFOTRIML: REFERENCE OSCILLATOR TRIM REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ROTR	M<15:8>				
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
ROTRIM7		—		—	—	_	_	
bit 7						·	bit 0	
Legend:								
R = Readable	e bit	W = Writable t	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-7	ROTRIM<15	:7>: Reference (Oscillator Trin	n bits				
	Provides frac	ctional additive to	the RODIVx	value for the 1/	2 period of the	REFO clock.		
		= 511/512 (0.998			•			
	111111110	= 510/512 (0.99	609375) divis	or added to RO	DIVx value			
	•							
	•							
	•							
	100000000	= 256/512 (0.50	00) divisor ad	ded to RODIVx	value			
	•							
	•							
	•							
	000000010	= 2/512 (0.0039	0625) divisor	added to RODI	Vx value			
		= 1/512 (0.0019 = 0/512 (0.0) div			IVx value			
bit 6-0	Unimpleme	nted: Read as '0	,					
	ommplemented. Read as 0							

PIC24FJ128GA204 FAMILY

REGISTER 11-16: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 11-17: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	TMRCKR5	TMRCKR4	TMRCKR3	TMRCKR2	TMRCKR1	TMRCKR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 TMRCKR<5:0>: Assign General Timer External Input (TMRCK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

$$Maximum PWM Resolution (bits) = \frac{\log_{10} \left(\frac{FCY}{FPWM \bullet (Timer Prescale Value)}\right)}{\log_{10}} bits$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
TCY = 2 * TOSC = 62.5 ns
PWM Period = $1/PWM$ Frequency = $1/52.08$ kHz = 19.2 ms
PWM Period = $(PR2 + 1) \cdot TCY \cdot (Timer2 Prescale Value)$
$19.2 \ \mu s = (PR2 + 1) \cdot 62.5 \ ns \cdot 1$
PR2 = 306
Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
PWM Resolution = $\log_{10}(FCY/FPWM)/\log_{10}2)$ bits
= $(\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2)$ bits
= 8.3 bits

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz) ⁽¹	TABLE 15-1 :	EXAMPLE PWM FREQUENCIES	AND RESOLUTIONS AT 4 MIPS	$(FCY = 4 MHz)^{(1)}$
---	---------------------	-------------------------	---------------------------	-----------------------

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

^{© 2013-2015} Microchip Technology Inc.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ128GA204 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136) which is available from the Microchip web site (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. All devices in the PIC24FJ128GA204 family include three SPI modules.

The module supports operation in two buffer modes. In Standard Buffer mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received, from 2 to 32-bits.

Note:	Do not perform Read-Modify-Write opera-
	tions (such as bit-oriented instructions) on
	the SPIxBUF register in either Standard or
	Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I²S mode
- · Left Justified
- Right Justified
- PCM/DSP

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode, \overline{SSx} is not used. In the 2-pin mode, both SDOx and \overline{SSx} are not used.

The SPI module has the ability to generate three interrupts, reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
 - RX watermark interrupt
 - SPIROV = 1
 - SPIRBF = 1
 - **SPIRBE =** 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
 - TX watermark interrupt
 - SPITUR = 1
 - SPITBF = 1
 - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
 - FRMERR = 1
 - SPIBUSY = 1
 - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

Block diagrams of the module in Standard and Enhanced modes are shown in Figure 16-1 and Figure 16-2.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1L and SPIxCON1H refer to the control registers for any of the three SPI modules.

17.2 Setting Baud Rate when Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

$$I2CxBRG = \left(\left(\frac{1}{FSCL} - PGDx \right) \times \frac{FCY}{2} \right) - 2$$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

17.3 Slave Address Masking

The I2CxMSK register (Register 17-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 17-1 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Slave Address	R/W Bit	Description
000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	х	Cbus Address
0000 01x	х	Reserved
0000 1xx	Х	HS Mode Master Code
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	Х	Reserved

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

PIC24FJ128GA204 FAMILY

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x									
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0									
bit 15		•					bit 8									
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x									
—	SECTEN2 SECTEN1 SECT		SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0									
bit 7					bit 0											
Legend:																
R = Readabl	e bit	W = Writable bit		U = Unimplem	nented bit, read	l as '0'										
-n = Value at POR '1' = Bit is se				'0' = Bit is clea	ared	x = Bit is unknown										
bit 15	Unimplement	ed: Read as '0'														
bit 14-12	MINTEN<2:0	Binary Code	d Decimal Valu	ue of Minute's T	ens Digit bits											
	Contains a va	lue from 0 to 5														
bit 11-8	MINONE<3:0	>: Binary Code	d Decimal Val	ue of Minute's (Ones Digit bits											
	Contains a va	lue from 0 to 9														
bit 7	Unimplemen	ted: Read as ')'													
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits															
	Contains a va	lue from 0 to 5														
bit 3-0	SECONE<3:0	>: Binary Code	ed Decimal Val	lue of Second's	Ones Digit bits	6										
	Contains a va	lue from 0 to 9														

REGISTER 21-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month	Day	Hours	Minutes	Seconds
0000 - Every half second 0001 - Every second						:
0010 - Every 10 seconds						s
0011 - Every minute						s s
0100 - Every 10 minutes					m	s s
0101 - Every hour					mm	s s
0110 - Every day				h h	mm	ss
0111 - Every week	d			h h	mm	ss
1000 - Every month			d d	h h	mm	ss
1001 - Every year ⁽¹⁾		m m /	d d	h h	mm	ss
Note 1: Annually, except wh	en configured fo	r February 29.				

21.6 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current lower power mode (Sleep, Deep Sleep, etc.).

To use this feature:

- 1. Enable the RTCC (RTCEN = 1).
- 2. Set the PWCEN bit (RTCPWC<15>).
- 3. Configure the RTCC pin to drive the PWC control signal (RTCOE = 1 and RTCOUT<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCPOL bit (RTCPWC<14>). An active-low or active-high signal may be used with the appropriate

external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

21.7 RTCC VBAT Operation

The RTCC can operate in VBAT mode when there is a power loss on the VDD pin. The RTCC will continue to operate if the VBAT pin is powered on (it is usually connected to the battery).

Note: It is recommended to connect the VBAT pin to VDD if the VBAT mode is not used (not connected to the battery).

REGISTER 22-5: CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0) REGISTER (CONTINUED)

bit 19	SKEYEN: Session Key Enable bit
	 1 = Stored Key #1 may be used only as a Key Encryption Key 0 = Stored Key #1 may be used for any operation
bit 18-11	LKYSRC<7:0>: Locked Key Source Configuration bits
	If SRCLCK = 1:
	1xxxxxxx = Key Source is as if KEYSRC<3:0> = 1111
	01xxxxxx = Key Source is as if KEYSRC<3:0> = 0111
	001xxxxx = Key Source is as if KEYSRC<3:0> = 0110
	0001xxxx = Key Source is as if KEYSRC<3:0> = 0101
	00001xxx = Key Source is as if KEYSRC<3:0> = 0100
	000001xx = Key Source is as if KEYSRC<3:0> = 0011
	0000001x = Key Source is as if KEYSRC<3:0> = 0010
	00000001 = Key Source is as if KEYSRC<3:0> = 0001
	0000000 = Key Source is as if KEYSRC<3:0> = 0000
	If SRCLCK = 0:
	These bits are ignored.
bit 10	SRCLCK: Key Source Lock bit
	1 = The key source is determined by the KEYSRC<3:0> (CRYCONH<3:0>) bits (software key selection is disabled)
	 The key source is determined by the KEYSRC<3:0> (CRYCONH<3:0>) bits (locked key selection is disabled)
bit 9-1	WRLOCK<8:0>: Write Lock Page Enable bits
	For OTP Pages 0 (CFGPAGE) through 8:
	1 = OTP Page is permanently locked and may not be programmed
	0 = OTP Page is unlocked and may be programmed
bit 0	SWKYDIS: Software Key Disable bit
	 1 = Software key (CRYKEY register) is disabled; when KEYSRC<3:0> = 0000, the KEYFAIL status bit will be set and no encryption/decryption/session key operations can be started until KEYSRC<3:0> bits are changed to a value other than '0000'
	0 = Software key (CRYKEY register) can be used as a key source when KEYSRC<3:0> = 0000

Note 1: This bit's state is mirrored by the PGMTST bit (CRYOTP<7>).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADON	—	ADSIDL	DMABM ⁽¹⁾	DMAEN	MODE12	FORM1	FORM0			
bit 15							bit 8			
		D 444 A								
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC			
SSRC3	SSRC2	SSRC1	SSRC0	—	ASAM	SAMP	DONE			
bit 7							bit (
Legend:		C = Clearable	e bit	U = Unimpler	nented bit, rea	d as 'O'				
R = Readabl	e bit	W = Writable	bit	HSC = Hardv	vare Settable/C	learable bit				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15		Operating Mode								
	1 = A/D Con 0 = A/D Con	verter module is	soperating							
bit 14		nted: Read as '	0'							
bit 13	-	D Stop in Idle M								
		•	eration when d	evice enters Id	lle mode					
		-	ation in Idle mo							
bit 12			uffer Mode Sele							
		ne DMADSTn r	egister AD1CON4<2:0							
bit 11		tended DMA/Bu				AD100N4~2.0				
	1 = Extended DMA and buffer features are enabled									
	0 = Extended	d features are d	lisabled							
bit 10	MODE12: 12	2-Bit Operation	Mode bit							
	1 = 12-bit A/I									
bit 9-8	0 = 10-bit A/l	-	ormat bits (see	formats follow	(ina)					
Dit 9-0		nal result, signe	-		ing)					
		•	ult, unsigned, le	eft justified						
		I result, signed								
bit 7 4			t, unsigned, rig	•						
bit 7-4		nplemented, do	Source Select	DIIS						
				tarts conversio	n (auto-convert)	; do not use in Aı	uto-Scan mod			
	0111 = Internal counter ends sampling and starts conversion (auto-convert); do not use in Auto-Scan mode 0110 = Unimplemented									
	0101 = TMR1									
	0100 = CTMU 0011 = TMR5									
	0010 = TMR									
	0001 = INTC		he cleared by	offwara ta ata	rt conversion					
bit 3		nted: Read as '	be cleared by s	soltware to sta	rt conversion					
bit 2	-	Sample Auto-Si								
		-	lart bit liately after last	conversion: SA	AMP bit is auto	-set				
			SAMP bit is mai							
		vailable when F								

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1

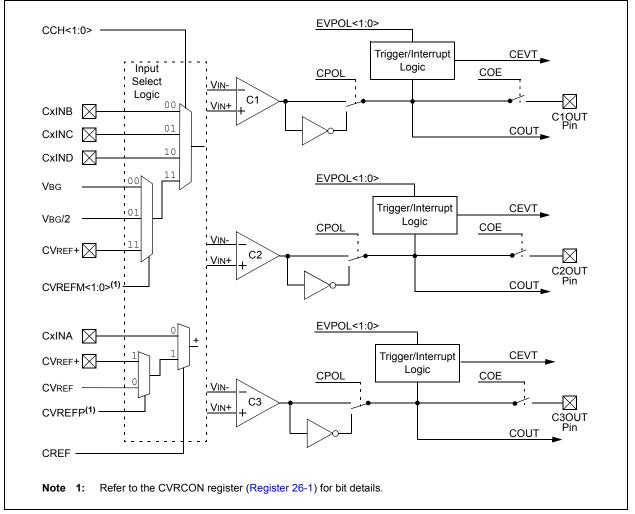
Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)

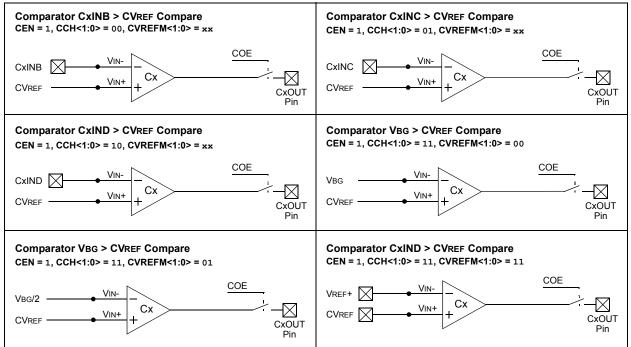
- bit 1 SAMP: A/D Sample Enable bit 1 = A/D Sample-and-Hold amplifiers are sampling 0 = A/D Sample-and-Hold amplifiers are holding
- bit 0 **DONE:** A/D Conversion Status bit 1 = A/D conversion cycle has completed
 - 0 = A/D conversion cycle has not started or is in progress
- Note 1: This bit is only available when Extended DMA/Buffer features are available (DMAEN = 1).

25.0 TRIPLE COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Scalable Comparator Module" (DS39734). The information in this data sheet supersedes the information in the FRM.


The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and VREF+) and a

voltage reference input from one of the internal band gap references or the comparator voltage reference generator (VBG, VBG/2 and CVREF).


The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module in shown in Figure 25-1. Diagrams of the possible individual comparator configurations are shown in Figure 25-2.

Each comparator has its own control register, CMxCON (Register 25-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 25-2).



FIGURE 25-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM

FIGURE 25-3: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 0

PIC24FJ128GA204 FAMILY

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	f = f	1	1	N, Z
	COM	f,WREG	WREG = \overline{f}	1	1	N, Z
	COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CPO	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
010	CPO	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, Z
			$(Wb - Ws - \overline{C})$			-,, -, -, -, -
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW.B	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f-1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No. Typical ⁽¹⁾ Max		Units Operating Temperature		Vdd	Conditions			
Incremental	Current Bro	wn-out Res	et (∆BOR) ⁽²⁾					
DC25	3.1	5.0	μA	-40°C to +125°C	2.0V	∆BOR ⁽²⁾		
	4.3	6.0	μA	-40°C to +125°C	3.3V			
Incremental	Current Wat	chdog Time	er (AWDT) ⁽²⁾			•		
DC71	0.8	1.5	μA	-40°C to +125°C	2.0V			
	0.8	1.5	μA	-40°C to +125°C	3.3V			
Incremental	Current Hig	h/Low-Volta	ge Detect (A	HLVD) ⁽²⁾		•		
DC75	4.2	15	μA	-40°C to +125°C	2.0V			
	4.2	15	μA	-40°C to +125°C	3.3V			
Incremental	Current Rea	I-Time Cloc	k and Calen	dar (∆RTCC) ⁽²⁾				
DC77	0.3	1.0	μA	-40°C to +125°C	2.0V	∆RTCC (with SOSC) ⁽²⁾		
	0.35	1.0	μA	-40°C to +125°C	3.3V			
DC77A	0.3	1.0	μA	-40°C to +125°C	2.0V	_ ∆RTCC (with LPRC) ⁽²⁾		
	0.35	1.0	μA	-40°C to +125°C	3.3V			
Incremental	Current Dee	p Sleep BO) ⁽²⁾				
DC81	0.11	0.40	μA	-40°C to +125°C	2.0V	△Deep Sleep BOR ⁽²⁾		
	0.12	0.40	μA	-40°C to +125°C	3.3V			
Incremental	Current Dee	p Sleep Wa	tchdog Time	er Reset (∆DSWD	Г) ⁽²⁾			
DC80	0.24	0.40	μA	-40°C to +125°C	2.0V	– ∆Deep Sleep WDT ⁽²⁾		
	0.24	0.40	μA	-40°C to +125°C	3.3V			
VBAT A/D Mo	onitor ⁽³⁾	-						
DC91	1.5		μA	-40°C to +125°C	3.3V	VBAT = 2V		
	4	—	μA	-40°C to +125°C	3.3V	VBAT = 3.3V		

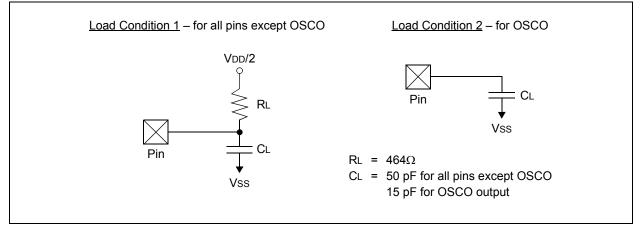
TABLE 32-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, DSBOR, DSWDT)⁽⁴⁾

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.


32.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ128GA204 family AC characteristics and timing parameters.

TABLE 32-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
	Operating voltage VDD range as described in Section 32.1 "DC Characteristics".				

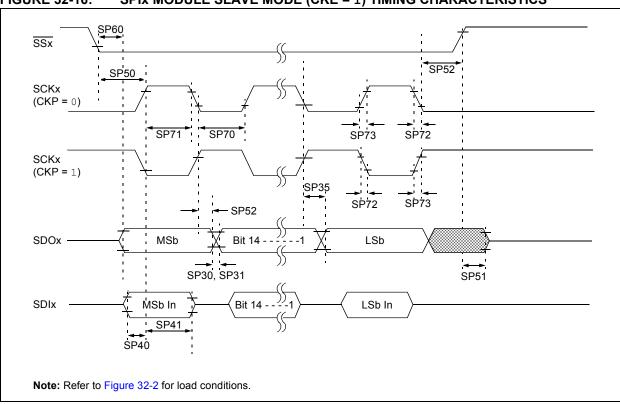

FIGURE 32-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 32-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosco	OSCO/CLKO Pin	_	—	15		In XT and HS modes when external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In l ² C™ mode

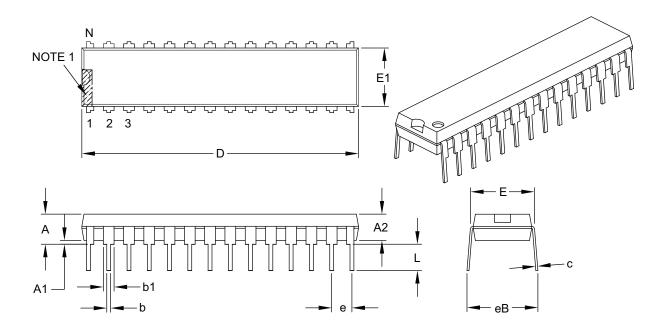

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 32-16: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
Dir	Dimension Limits			MAX
Number of Pins	N		28	
Pitch	е	.100 BSC		
Top to Seating Plane	A	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B