

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                        |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                           |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 32MHz                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SmartCard, SPI, UART/USART                    |
| Peripherals                | AES, Brown-out Detect/Reset, DMA, I <sup>2</sup> S, HLVD, POR, PWM, WDT       |
| Number of I/O              | 21                                                                            |
| Program Memory Size        | 64KB (64K x 8)                                                                |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 8K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                                     |
| Data Converters            | A/D 10x10b/12b                                                                |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 28-SOIC (0.295", 7.50mm Width)                                                |
| Supplier Device Package    | 28-SOIC                                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga202-i-so |
|                            |                                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| TABLE 1-2: DE | EVICE FEATURES | FOR THE PIC24F | J128GA204 FAMILY | : 28-PIN DEVICES |
|---------------|----------------|----------------|------------------|------------------|
|---------------|----------------|----------------|------------------|------------------|

| Features                                                         | PIC24FJ64GA202 PIC24FJ128GA20                                                                |                                                                                            |  |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|
| Operating Frequency                                              | DC – 32                                                                                      | 2 MHz                                                                                      |  |  |  |
| Program Memory (bytes)                                           | 64K                                                                                          | 128K                                                                                       |  |  |  |
| Program Memory (instructions)                                    | 22,016                                                                                       | 44,032                                                                                     |  |  |  |
| Data Memory (bytes)                                              | 8K                                                                                           |                                                                                            |  |  |  |
| Interrupt Sources (soft vectors/<br>NMI traps)                   | 71 (67                                                                                       | 7/4)                                                                                       |  |  |  |
| I/O Ports                                                        | Ports                                                                                        | А, В                                                                                       |  |  |  |
| Total I/O Pins                                                   | 21                                                                                           |                                                                                            |  |  |  |
| Remappable Pins                                                  | 16 (15 I/Os, 1                                                                               | Input only)                                                                                |  |  |  |
| Timers:                                                          |                                                                                              |                                                                                            |  |  |  |
| Total Number (16-bit)                                            | 5 <sup>(1</sup>                                                                              | )                                                                                          |  |  |  |
| 32-Bit (from paired 16-bit timers)                               | 2                                                                                            |                                                                                            |  |  |  |
| Input Capture w/Timer Channels                                   | 6 <sup>(1</sup>                                                                              | )                                                                                          |  |  |  |
| Output Compare/PWM Channels                                      | 6 <sup>(1</sup>                                                                              | )                                                                                          |  |  |  |
| Input Change Notification Interrupt                              |                                                                                              |                                                                                            |  |  |  |
| Serial Communications:                                           |                                                                                              |                                                                                            |  |  |  |
| UART                                                             | 4(1)                                                                                         |                                                                                            |  |  |  |
| SPI (3-wire/4-wire)                                              | 3 <sup>(1)</sup>                                                                             |                                                                                            |  |  |  |
| I <sup>2</sup> C™                                                | 2                                                                                            |                                                                                            |  |  |  |
| Digital Signal Modulator (DSM)                                   | Yes                                                                                          | 6                                                                                          |  |  |  |
| JTAG Boundary Scan                                               | Yes                                                                                          | 6                                                                                          |  |  |  |
| 12-Bit SAR Analog-to-Digital<br>Converter (A/D) (input channels) | 10                                                                                           | 10                                                                                         |  |  |  |
| Analog Comparators                                               | 3                                                                                            |                                                                                            |  |  |  |
| CTMU Interface                                                   | 10 Cha                                                                                       | nnels                                                                                      |  |  |  |
| Resets (and Delays)                                              | Core POR, VDD POR, VBAT PO<br>MCLR, WDT, Illegal Opco<br>Hardware Traps, Configu<br>(OST, PL | DR, BOR, RESET Instruction,<br>de, REPEAT Instruction,<br>uration Word Mismatch<br>L Lock) |  |  |  |
| Instruction Set                                                  | 76 Base Instructions, Multiple                                                               | Addressing Mode Variations                                                                 |  |  |  |
| Packages                                                         | 28-Pin SPDIP, SSOP                                                                           | , SOIC and QFN-S                                                                           |  |  |  |
| Cryptographic Engine                                             | Supports AES with 128, 192 and<br>True Random and Pseudora<br>On-Chip OT                     | l 256-Bit Key, DES and TDES,<br>indom Number Generator,<br>P Storage                       |  |  |  |
| RTCC                                                             | Yes                                                                                          | 3                                                                                          |  |  |  |

**Note 1:** Peripherals are accessible through remappable pins.

| IADLE J-I. | DINA ONAMILE INIGOLIN SOU |            |                      |
|------------|---------------------------|------------|----------------------|
| CHSEL<5:0> | Trigger (Interrupt)       | CHSEL<5:0> | Trigger (Interrupt)  |
| 000000     | (Unimplemented)           | 100000     | UART2 Transmit       |
| 000001     | SPI3 General Event        | 100001     | UART2 Receive        |
| 000010     | I2C1 Slave Event          | 100010     | External Interrupt 2 |
| 000011     | UART4 Transmit            | 100011     | Timer5               |
| 000100     | UART4 Receive             | 100100     | Timer4               |
| 000101     | UART4 Error               | 100101     | Output Compare 4     |
| 000110     | UART3 Transmit            | 100110     | Output Compare 3     |
| 000111     | UART3 Receive             | 100111     | DMA Channel 2        |
| 001000     | UART3 Error               | 101000     | I2C2 Slave Event     |
| 001001     | CTMU Event                | 101001     | External Interrupt 1 |
| 001010     | HLVD                      | 101010     | Interrupt-on-Change  |
| 001011     | CRC Done                  | 101011     | Comparators Event    |
| 001100     | UART2 Error               | 101100     | SPI3 Receive Event   |
| 001101     | UART1 Error               | 101101     | I2C1 Master Event    |
| 001110     | RTCC                      | 101110     | DMA Channel 1        |
| 001111     | DMA Channel 5             | 101111     | A/D Converter        |
| 010000     | External Interrupt 4      | 110000     | UART1 Transmit       |
| 010001     | External Interrupt 3      | 110001     | UART1 Receive        |
| 010010     | SPI2 Receive Event        | 110010     | SPI1 Transmit Event  |
| 010011     | I2C2 Master Event         | 110011     | SPI1 General Event   |
| 010100     | DMA Channel 4             | 110100     | Timer3               |
| 010101     | EPMP                      | 110101     | Timer2               |
| 010110     | SPI1 Receive Event        | 110110     | Output Compare 2     |
| 010111     | Output Compare 6          | 110111     | Input Capture 2      |
| 011000     | Output Compare 5          | 111000     | DMA Channel 0        |
| 011001     | Input Capture 6           | 111001     | Timer1               |
| 011010     | Input Capture 5           | 111010     | Output Compare 1     |
| 011011     | Input Capture 4           | 111011     | Input Capture 1      |
| 011100     | Input Capture 3           | 111100     | External Interrupt 0 |
| 011101     | DMA Channel 3             | 111101     | Reserved             |
| 011110     | SPI2 Transmit Event       | 111110     | SPI3 Transmit Event  |
| 011111     | SPI2 General Event        | 111111     | Cryptographic Done   |
|            |                           |            |                      |

## TABLE 5-1: DMA CHANNEL TRIGGER SOURCES

#### REGISTER 7-1: RCON: RESET CONTROL REGISTER (CONTINUED)

| bit 5   | <b>SWDTEN:</b> Software Enable/Disable of WDT bit <sup>(4)</sup><br>1 = WDT is enabled<br>0 = WDT is disabled                            |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| bit 4   | WDTO: Watchdog Timer Time-out Flag bit <sup>(1)</sup><br>1 = WDT time-out has occurred<br>0 = WDT time-out has not occurred              |
| bit 3   | SLEEP: Wake from Sleep Flag bit <sup>(1)</sup>                                                                                           |
|         | <ul><li>1 = Device has been in Sleep mode</li><li>0 = Device has not been in Sleep mode</li></ul>                                        |
| bit 2   | IDLE: Wake from Idle Flag bit <sup>(1)</sup>                                                                                             |
|         | <ul><li>1 = Device has been in Idle mode</li><li>0 = Device has not been in Idle mode</li></ul>                                          |
| bit 1   | BOR: Brown-out Reset Flag bit <sup>(1)</sup>                                                                                             |
|         | <ul> <li>1 = A Brown-out Reset has occurred (also set after a Power-on Reset)</li> <li>0 = A Brown-out Reset has not occurred</li> </ul> |
| bit 0   | <b>POR:</b> Power-on Reset Flag bit <sup>(1)</sup>                                                                                       |
|         | <ul><li>1 = A Power-on Reset has occurred</li><li>0 = A Power-on Reset has not occurred</li></ul>                                        |
| Noto 1: | All of the Reset status hits may be set or cleared in software. Setting one of                                                           |

- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
  - 2: If the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect.
  - **3:** Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
  - 4: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

| R/W-0        | R-0, HSC                       | U-0                        | U-0              | U-0               | U-0              | U-0             | U-0    |
|--------------|--------------------------------|----------------------------|------------------|-------------------|------------------|-----------------|--------|
| ALTIVT       | DISI                           | _                          | —                | _                 | _                | —               |        |
| bit 15       |                                |                            |                  | -                 | -                |                 | bit 8  |
|              |                                |                            |                  |                   |                  |                 |        |
| U-0          | U-0                            | U-0                        | R/W-0            | R/W-0             | R/W-0            | R/W-0           | R/W-0  |
|              |                                |                            | INT4EP           | INT3EP            | INT2EP           | INT1EP          | INT0EP |
| bit 7        |                                |                            |                  |                   |                  |                 | bit 0  |
|              |                                |                            |                  |                   |                  |                 |        |
| Legend:      |                                | HSC = Hardw                | are Settable/C   | learable bit      |                  |                 |        |
| R = Readab   | le bit                         | W = Writable               | bit              | U = Unimplen      | nented bit, read | l as '0'        |        |
| -n = Value a | It POR                         | '1' = Bit is set           |                  | '0' = Bit is clea | ared             | x = Bit is unkn | iown   |
| bit 15       | AI TIVT: Engl                  | ole Alternate Ini          | terrupt Vector 7 | Table bit         |                  |                 |        |
| DIL 15       |                                | ernate Interrunt           | Vector Table     |                   |                  |                 |        |
|              | 0 = Uses star                  | ndard (default)            | Interrupt Vector | r Table           |                  |                 |        |
| bit 14       | DISI: DISI In                  | struction Statu            | s bit            |                   |                  |                 |        |
|              | 1 <b>=</b> DISI <b>inst</b>    | ruction is active          | e                |                   |                  |                 |        |
|              | 0 = DISI <b>inst</b>           | ruction is not a           | ctive            |                   |                  |                 |        |
| bit 13-5     | Unimplemen                     | Unimplemented: Read as '0' |                  |                   |                  |                 |        |
| bit 4        | INT4EP: Exte                   | ernal Interrupt 4          | Edge Detect F    | Polarity Select I | bit              |                 |        |
|              | 1 = Interrupt o                | on negative ede            | ge               |                   |                  |                 |        |
| 1.11.0       | 0 = Interrupt on positive edge |                            |                  |                   |                  |                 |        |
| bit 3        | INI3EP: Exte                   | ernal Interrupt 3          | Edge Detect H    | Polarity Select I | DIT              |                 |        |
|              | $\perp = \text{Interrupt} $    | on negative edg            | je<br>P          |                   |                  |                 |        |
| bit 2        | INT2FP: Exte                   | ernal Interrupt 2          | Edge Detect F    | Polarity Select I | hit              |                 |        |
| Sit 2        | 1 = Interrupt of               | on negative ed             | ie<br>ie         |                   |                  |                 |        |
|              | 0 = Interrupt o                | on positive edg            | e                |                   |                  |                 |        |
| bit 1        | INT1EP: Exte                   | ernal Interrupt 1          | Edge Detect F    | Polarity Select I | bit              |                 |        |
|              | 1 = Interrupt o                | on negative ede            | ge               |                   |                  |                 |        |
|              | 0 = Interrupt o                | on positive edg            | e                |                   |                  |                 |        |
| bit 0        | INT0EP: Exte                   | ernal Interrupt 0          | Edge Detect F    | Polarity Select I | bit              |                 |        |
|              | 1 = Interrupt o                | on negative ede            | je               |                   |                  |                 |        |
|              | 0 = Interrupt o                | on positive edg            | е                |                   |                  |                 |        |

#### REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

#### REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
  - 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred
- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
  - 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
  - 1 = Interrupt request has occurred
  - 0 = Interrupt request has not occurred

| U-0           | R/W-1                                                  | R/W-0                                | R/W-0            | U-0                       | R/W-1            | R/W-0           | R/W-0   |
|---------------|--------------------------------------------------------|--------------------------------------|------------------|---------------------------|------------------|-----------------|---------|
|               | SPI3TXIP2                                              | SPI3TXIP1                            | SPI3TXIP0        |                           | SPI3IP2          | SPI3IP1         | SPI3IP0 |
| bit 15        |                                                        |                                      |                  |                           |                  |                 | bit 8   |
|               |                                                        |                                      |                  |                           |                  |                 |         |
| U-0           | R/W-1                                                  | R/W-0                                | R/W-0            | U-0                       | R/W-1            | R/W-0           | R/W-0   |
| —             | U4TXIP2                                                | U4TXIP1                              | U4TXIP0          | —                         | U4RXIP2          | U4RXIP1         | U4RXIP0 |
| bit 7         |                                                        |                                      |                  |                           |                  |                 | bit 0   |
| · ·           |                                                        |                                      |                  |                           |                  |                 |         |
| Legend:       |                                                        |                                      | L :1             |                           |                  |                 |         |
| R = Readable  |                                                        |                                      | DIT              |                           | hented bit, read |                 |         |
| -n = value at | POR                                                    | "1" = Bit is set                     |                  | $0^{\circ} = Bit is clea$ | ared             | x = Bit is unkr | IOWN    |
| bit 15        | Unimplomon                                             | tod: Dood op 'r                      | <i>.</i> ،       |                           |                  |                 |         |
| bit 14-12     |                                                        | Neau as t                            | mit Interrunt P  | riority bite              |                  |                 |         |
| 51(14-12      | 111 = Interru                                          | pt is Priority 7 (                   | highest priority | (interrupt)               |                  |                 |         |
|               | •                                                      |                                      |                  |                           |                  |                 |         |
|               | •                                                      |                                      |                  |                           |                  |                 |         |
|               | •<br>001 = Interru                                     | nt is Priority 1                     |                  |                           |                  |                 |         |
|               | 000 = Interrup                                         | pt source is dis                     | abled            |                           |                  |                 |         |
| bit 11        | Unimplemen                                             | ted: Read as '                       | כ'               |                           |                  |                 |         |
| bit 10-8      | SPI3IP<2:0>:                                           | SPI3 General                         | Interrupt Priori | ty bits                   |                  |                 |         |
|               | 111 = Interru                                          | pt is Priority 7 (                   | highest priority | interrupt)                |                  |                 |         |
|               |                                                        |                                      |                  |                           |                  |                 |         |
|               | •                                                      |                                      |                  |                           |                  |                 |         |
|               | 001 = Interru                                          | pt is Priority 1                     |                  |                           |                  |                 |         |
|               | 000 = Interrupt source is disabled                     |                                      |                  |                           |                  |                 |         |
| bit 7         | Unimplemented: Read as '0'                             |                                      |                  |                           |                  |                 |         |
| bit 6-4       | U4TXIP<2:0>: UART4 Transmitter Interrupt Priority bits |                                      |                  |                           |                  |                 |         |
|               | •                                                      | puis Phonity 7 (                     | nignest priority | interrupt)                |                  |                 |         |
|               | •                                                      |                                      |                  |                           |                  |                 |         |
|               | •                                                      |                                      |                  |                           |                  |                 |         |
|               | 001 = Interrup                                         | ot is Priority 1<br>ot source is dis | abled            |                           |                  |                 |         |
| bit 3         | Unimplemen                                             | ted: Read as '                       | )'               |                           |                  |                 |         |
| bit 2-0       | IJ4RXIP<2:0>: UART4 Receiver Interrupt Priority bits   |                                      |                  |                           |                  |                 |         |
|               | 111 = Interrup                                         | ot is Priority 7 (                   | highest priority | interrupt)                |                  |                 |         |
|               | •                                                      |                                      |                  |                           |                  |                 |         |
|               | •                                                      |                                      |                  |                           |                  |                 |         |
|               | 001 = Interrur                                         | ot is Priority 1                     |                  |                           |                  |                 |         |
|               | 000 = Interrup                                         | ot source is dis                     | abled            |                           |                  |                 |         |
|               |                                                        |                                      |                  |                           |                  |                 |         |

#### REGISTER 8-42: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

#### 10.5.2 WAKE-UP FROM VBAT MODES

When VDD is restored to a device in VBAT mode, it automatically wakes. Wake-up occurs with a POR, after which, the device starts executing code from the Reset vector. All SFRs, except the Deep Sleep Semaphores, are reset to their POR values. If the RTCC was not configured to run during VBAT mode, it will remain disabled and RTCC will not run. Wake-up timing is similar to that for a normal POR.

To differentiate a wake-up from VBAT mode from other POR states, check the VBAT status bit (RCON2<0>). If this bit is set while the device is starting to execute the code from the Reset vector, it indicates that there has been an exit from VBAT mode. The application must clear the VBAT bit to ensure that future VBAT wake-up events are captured.

If a POR occurs without a power source connected to the VBAT pin, the VBPOR bit (RCON2<1>) is set. If this bit is set on a Power-on Reset, it indicates that a battery needs to be connected to the VBAT pin.

In addition, if the VBAT power source falls below the level needed for Deep Sleep Semaphore operation while in VBAT mode (e.g., the battery has been drained), the VBPOR bit will be set. VBPOR is also set when the microcontroller is powered up the very first time, even if power is supplied to VBAT.

#### 10.5.3 I/O PINS DURING VBAT MODES

All I/O pins switch to Input mode during VBAT mode. The only exceptions are the SOSCI and SOSCO pins, which maintain their states if the Secondary Oscillator is being used as the RTCC clock source. It is the user's responsibility to restore the I/O pins to their proper states, using the TRISx and LATx bits, once VDD has been restored.

#### 10.5.4 SAVING CONTEXT DATA WITH THE DSGPRx REGISTERS

As with Deep Sleep mode (i.e., without the low-voltage/ retention regulator), all SFRs are reset to their POR values after VDD has been restored. Only the Deep Sleep Semaphore registers are preserved. Applications which require critical data to be saved should save it in DSGPR0 and DSGPR1.

| Note: | If the VBAT mode is not used, it is |
|-------|-------------------------------------|
|       | recommended to connect the VBAT pin |
|       | to VDD.                             |

The POR should be enabled for the reliable operation of the VBAT.

#### REGISTER 11-12: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| U-0    | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |
|--------|-----|---------|---------|---------|---------|---------|---------|
| _      | —   | U1CTSR5 | U1CTSR4 | U1CTSR3 | U1CTSR2 | U1CTSR1 | U1CTSR0 |
| bit 15 |     |         |         |         |         |         | bit 8   |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as 'O'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                            |
|-----------|---------------------------------------------------------------------------------------|
| bit 13-8  | U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                            |
| bit 5-0   | U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits         |

#### REGISTER 11-13: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

| U-0    | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |
|--------|-----|---------|---------|---------|---------|---------|---------|
| _      | —   | U2CTSR5 | U2CTSR4 | U2CTSR3 | U2CTSR2 | U2CTSR1 | U2CTSR0 |
| bit 15 |     |         |         |         |         |         | bit 8   |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | U2RXR5 | U2RXR4 | U2RXR3 | U2RXR2 | U2RXR1 | U2RXR0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

| U-0          | U-0           | R/W-0            | R/W-0          | R/W-0             | R/W-0            | R/W-0           | R/W-0          |
|--------------|---------------|------------------|----------------|-------------------|------------------|-----------------|----------------|
|              |               | RP25R5           | RP25R4         | RP25R3            | RP25R2           | RP25R1          | RP25R0         |
| bit 15       |               |                  |                |                   |                  |                 | bit 8          |
|              |               |                  |                |                   |                  |                 |                |
| U-0          | U-0           | R/W-0            | R/W-0          | R/W-0             | R/W-0            | R/W-0           | R/W-0          |
| _            | —             | RP24R5           | RP24R4         | RP24R3            | RP24R2           | RP24R1          | RP24R0         |
| bit 7        |               |                  |                |                   |                  |                 | bit 0          |
|              |               |                  |                |                   |                  |                 |                |
| Legend:      |               |                  |                |                   |                  |                 |                |
| R = Readab   | ole bit       | W = Writable     | bit            | U = Unimplem      | nented bit, read | l as '0'        |                |
| -n = Value a | at POR        | '1' = Bit is set |                | '0' = Bit is clea | ared             | x = Bit is unkn | iown           |
|              |               |                  |                |                   |                  |                 |                |
| bit 15-14    | Unimplemen    | ted: Read as '   | 0'             |                   |                  |                 |                |
| bit 13-8     | RP25R<5:0>:   | RP25 Output      | Pin Mapping b  | its               |                  |                 |                |
|              | Peripheral Ou | itput Number n   | is assigned to | pin, RP25 (see    | Table 11-4 for   | peripheral func | tion numbers). |
| bit 7-6      | Unimplemen    | ted: Read as '   | 0'             |                   |                  |                 |                |
| bit 5-0      | RP24R<5:0>:   | RP24 Output      | Pin Mapping b  | its               |                  |                 |                |

Peripheral Output Number n is assigned to pin, RP24 (see Table 11-4 for peripheral function numbers).

### REGISTER 11-35: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12<sup>(1)</sup>

**Note 1:** These pins are not available in 28-pin devices.



#### FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

### 15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
  - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
  - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
  - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation ('0xx').
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

### 16.5 Audio Mode

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
  - a) Clear the interrupt flag bits in the respective IFSx register.
  - b) Set the interrupt enable bits in the respective IECx register.
  - a) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

## 16.6 Registers

The SPI module consists of the following Special Function Registers (SFRs):

- SPIxCON1L, SPIxCON1H and SPIxCON2L: SPIx Control Registers (Register 16-1, Register 16-2 and Register 16-3)
- SPIxSTATL and SPIxSTATH: SPIx Status Registers (Register 16-4 and Register 16-5)
- SPIxBUFL and SPIxBUFH: SPIx Buffer Registers
- SPIxBRGL and SPIxBRGH: SPIx Baud Rate Registers
- SPIxIMSKL and SPIxIMSKH: SPIx Interrupt Mask Registers (Register 16-6 and Register 16-7)
- SPIxURDTL and SPIxURDTH: SPIx Underrun Data Registers

#### REGISTER 16-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

| R/W-0  | U-0   | R/W-0   | R/W-0  | R/W-0                   | R/W-0                   | R/W-0 | R/W-0              |
|--------|-------|---------|--------|-------------------------|-------------------------|-------|--------------------|
| SPIEN  | —     | SPISIDL | DISSDO | MODE32 <sup>(1,4)</sup> | MODE16 <sup>(1,4)</sup> | SMP   | CKE <sup>(1)</sup> |
| bit 15 |       |         |        |                         |                         |       | bit 8              |
|        |       |         |        |                         |                         |       |                    |
| R/W-0  | R/W-0 | R/W-0   | R/W-0  | R/W-0                   | R/W-0                   | R/W-0 | R/W-0              |
|        |       |         |        |                         |                         |       |                    |

| SSEN <sup>(2)</sup> | CKP | MSTEN | DISSDI | DISSCK | MCLKEN <sup>(3)</sup> | SPIFE | ENHBUF |
|---------------------|-----|-------|--------|--------|-----------------------|-------|--------|
| bit 7               |     |       |        |        |                       |       | bit 0  |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 15 | SPIEN: SPIx On bit                                                                                |
|--------|---------------------------------------------------------------------------------------------------|
|        | 1 = Enables module                                                                                |
|        | 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR |
|        | modifications                                                                                     |

- bit 14 Unimplemented: Read as '0'
- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
  - 1 = Halts in CPU Idle mode
  - 0 = Continues to operate in CPU Idle mode
- bit 12 DISSDO: Disable SDOx Output Port bit
  - $\ensuremath{\mathtt{1}}$  = SDOx pin is not used by the module; pin is controlled by the port function
  - 0 = SDOx pin is controlled by the module
- **Note 1:** When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
  - 2: When FRMEN = 1, SSEN is not used.
  - **3:** MCLKEN can only be written when the SPIEN bit = 0.
  - 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

## 17.2 Setting Baud Rate when Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 17-1.

## EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE<sup>(1)</sup>

$$I2CxBRG = \left( \left( \frac{1}{FSCL} - PGDx \right) \times \frac{FCY}{2} \right) - 2$$

**Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

## 17.3 Slave Address Masking

The I2CxMSK register (Register 17-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

Note: As a result of changes in the I<sup>2</sup>C<sup>™</sup> protocol, the addresses in Table 17-1 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

| I2Cx RESERVED | ADDRESSES <sup>(1)</sup> |
|---------------|--------------------------|
|               | I2Cx RESERVED            |

| Slave Address | R/W Bit | Description                            |  |  |  |  |  |
|---------------|---------|----------------------------------------|--|--|--|--|--|
| 000 000       | 0       | General Call Address <sup>(2)</sup>    |  |  |  |  |  |
| 0000 000      | 1       | Start Byte                             |  |  |  |  |  |
| 0000 001      | х       | Cbus Address                           |  |  |  |  |  |
| 0000 01x      | Х       | Reserved                               |  |  |  |  |  |
| 0000 1xx      | х       | HS Mode Master Code                    |  |  |  |  |  |
| 1111 0xx      | х       | 10-Bit Slave Upper Byte <sup>(3)</sup> |  |  |  |  |  |
| 1111 1xx      | Х       | Reserved                               |  |  |  |  |  |

Note 1: The address bits listed here will never cause an address match independent of address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

#### **REGISTER 22-1: CRYCONL: CRYPTOGRAPHIC CONTROL LOW REGISTER**

| R/W-0  | U-0 | R/W-0                  | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup> | U-0 | R/W-0, HC <sup>(1)</sup> |
|--------|-----|------------------------|----------------------|----------------------|----------------------|-----|--------------------------|
| CRYON  | —   | CRYSIDL <sup>(3)</sup> | ROLLIE               | DONEIE               | FREEIE               | —   | CRYGO                    |
| bit 15 |     |                        |                      |                      |                      |     | bit 8                    |

| R/W-0 <sup>(1)</sup>   | R/W-0 <sup>(1)</sup>    | R/W-0 <sup>(1)</sup>    | R/W-0 <sup>(1)</sup>    |
|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|-------------------------|
| OPMOD3 <sup>(2)</sup> | OPMOD2 <sup>(2)</sup> | OPMOD1 <sup>(2)</sup> | OPMOD0 <sup>(2)</sup> | CPHRSEL <sup>(2)</sup> | CPHRMOD2 <sup>(2)</sup> | CPHRMOD1 <sup>(2)</sup> | CPHRMOD0 <sup>(2)</sup> |
| bit 7                 |                       |                       |                       |                        |                         |                         | bit 0                   |

| Legend:           | HC = Hardware Clearable bit |                                    |                    |  |  |
|-------------------|-----------------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit            | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set            | '0' = Bit is cleared               | x = Bit is unknown |  |  |

| bit 15 | CRYON: Cryptographic Enable bit                                                                                                                                                                                           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 1 = Module is enabled                                                                                                                                                                                                     |
|        | 0 = Module is disabled                                                                                                                                                                                                    |
| bit 14 | Unimplemented: Read as '0'                                                                                                                                                                                                |
| bit 13 | CRYSIDL: Cryptographic Stop in Idle Control bit <sup>(3)</sup>                                                                                                                                                            |
|        | 1 = Stops module operation in Idle mode                                                                                                                                                                                   |
|        | 0 = Continues module operation in Idle mode                                                                                                                                                                               |
| bit 12 | ROLLIE: CRYTXTB Rollover Interrupt Enable bit <sup>(1)</sup>                                                                                                                                                              |
|        | 1 = Generates an interrupt event when the counter portion of CRYTXTB rolls over to '0'                                                                                                                                    |
|        | 0 = Does not generate an interrupt event when the counter portion of CRYTXTB rolls over to '0'                                                                                                                            |
| bit 11 | DONEIE: Operation Done Interrupt Enable bit <sup>(1)</sup>                                                                                                                                                                |
|        | 1 = Generates an interrupt event when the current cryptographic operation completes                                                                                                                                       |
|        | <ul> <li>Does not generate an interrupt event when the current cryptographic operation completes; software<br/>must poll the CRYGO or CRYBSY bit to determine when current cryptographic operation is complete</li> </ul> |
| bit 10 | FREEIE: Input Text Interrupt Enable bit <sup>(1)</sup>                                                                                                                                                                    |
|        | 1 = Generates an interrupt event when the input text (plaintext or ciphertext) is consumed during the current cryptographic operation                                                                                     |
|        | 0 = Does not generate an interrupt event when the input text is consumed                                                                                                                                                  |
| bit 9  | Unimplemented: Read as '0'                                                                                                                                                                                                |
| bit 8  | CRYGO: Cryptographic Engine Start bit <sup>(1)</sup>                                                                                                                                                                      |
|        | 1 = Starts the operation specified by OPMOD<3:0> (cleared automatically when operation is done)                                                                                                                           |
|        | <ul> <li>Stops the current operation (when cleared by software); also indicates the current operation has<br/>completed (when cleared by hardware)</li> </ul>                                                             |
|        |                                                                                                                                                                                                                           |

- Note 1: These bits are reset on system Resets or whenever the CRYMD bit is set.
  - 2: Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).
  - **3:** If the device enters Idle mode when CRYSIDL = 1, the module will stop its current operation. Entering into Idle mode while an OTP write operation is in process can result in irreversible corruption of the OTP.

#### REGISTER 22-5: CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0) REGISTER (CONTINUED)

| bit 19    | SKEYEN: Session Key Enable bit                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|           | <ul> <li>1 = Stored Key #1 may be used only as a Key Encryption Key</li> <li>0 = Stored Key #1 may be used for any operation</li> </ul>                                                                                                                                                |  |  |  |  |  |  |
| bit 18-11 | LKYSRC<7:0>: Locked Key Source Configuration bits                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | If SRCLCK = 1:                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|           | 1xxxxxxx = Key Source is as if KEYSRC<3:0> = 1111                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | 01xxxxxx = Key Source is as if KEYSRC<3:0> = 0111                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | 001xxxxx = Key Source is as if KEYSRC<3:0> = 0110                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | 0001xxxx = Key Source is as if KEYSRC<3:0> = 0101                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | 00001xxx = Key Source is as if KEYSRC<3:0> = 0100                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | 000001xx = Key Source is as if KEYSRC<3:0> = 0011                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | 0000001x = Key Source is as if KEYSRC<3:0> = 0010                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | 00000001 = Key Source is as if KEYSRC<3:0> = 0001                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           |                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|           | If SRCLCK = 0:                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|           | These bits are ignored.                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| bit 10    | SRCLCK: Key Source Lock bit                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|           | <ul> <li>1 = The key source is determined by the KEYSRC&lt;3:0&gt; (CRYCONH&lt;3:0&gt;) bits (software key selection<br/>is disabled)</li> </ul>                                                                                                                                       |  |  |  |  |  |  |
|           | <ul> <li>The key source is determined by the KEYSRC&lt;3:0&gt; (CRYCONH&lt;3:0&gt;) bits (locked key selection<br/>is disabled)</li> </ul>                                                                                                                                             |  |  |  |  |  |  |
| bit 9-1   | WRLOCK<8:0>: Write Lock Page Enable bits                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|           | For OTP Pages 0 (CFGPAGE) through 8:                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           | 1 = OTP Page is permanently locked and may not be programmed                                                                                                                                                                                                                           |  |  |  |  |  |  |
|           | 0 = OTP Page is unlocked and may be programmed                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| bit 0     | SWKYDIS: Software Key Disable bit                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           | <ul> <li>1 = Software key (CRYKEY register) is disabled; when KEYSRC&lt;3:0&gt; = 0000, the KEYFAIL status bit<br/>will be set and no encryption/decryption/session key operations can be started until KEYSRC&lt;3:0&gt;<br/>bits are changed to a value other than '0000'</li> </ul> |  |  |  |  |  |  |
|           | 0 = Software key (CRYKEY register) can be used as a key source when KEYSRC<3:0> = 0000                                                                                                                                                                                                 |  |  |  |  |  |  |

**Note 1:** This bit's state is mirrored by the PGMTST bit (CRYOTP<7>).

#### REGISTER 29-4: CW4: FLASH CONFIGURATION WORD 4 (CONTINUED)

- bit 4-0 DSWDTPS<4:0>: Deep Sleep Watchdog Timer Postscaler Select bits
  - 11111 = 1:68,719,476,736 (25.7 days) 11110 = 1:34,359,738,368(12.8 days) 11101 = 1:17,179,869,184 (6.4 days) 11100 = 1:8,589,934592 (77.0 hours) 11011 = 1:4,294,967,296 (38.5 hours) 11010 = 1:2,147,483,648 (19.2 hours) 11001 = 1:1,073,741,824 (9.6 hours) 11000 = 1:536,870,912 (4.8 hours) 10111 = 1:268,435,456 (2.4 hours) 10110 = 1:134,217,728 (72.2 minutes) 10101 = 1:67,108,864 (36.1 minutes) 10100 = 1:33,554,432 (18.0 minutes) 10011 = 1:16,777,216 (9.0 minutes) 10010 = 1:8,388,608 (4.5 minutes) 10001 = 1:4,194,304 (135.3s) 10000 = 1:2,097,152 (67.7s) 01111 = 1:1,048,576 (33.825s) 01110 = 1:524,288 (16.912s) 01101 = 1:262,114 (8.456s) 01100 = 1:131,072 (4.228s) 01011 = 1:65,536 (2.114s) 01010 = 1:32,768 (1.057s) 01001 = 1:16,384 (528.5 ms) 01000 = 1:8,192 (264.3 ms) 00111 = 1:4,096 (132.1 ms) 00110 = 1:2,048 (66.1 ms) 00101 = 1:1,024 (33 ms) 00100 = 1:512 (16.5 ms) 00011 = 1:256 (8.3 ms) 00010 = 1:128 (4.1 ms) 00001 = 1:64 (2.1 ms) 00000 = 1:32 (1 ms)

| DC CHARACTERISTICS |            | $\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |                                             |   |     |   |                          |  |  |
|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---|-----|---|--------------------------|--|--|
| Param<br>No.       | Symbo<br>I | Characteristic                                                                                                                                                                                                                                                               | Min Typ <sup>(1)</sup> Max Units Conditions |   |     |   |                          |  |  |
| -                  | Vol        | Output Low Voltage                                                                                                                                                                                                                                                           |                                             |   |     |   |                          |  |  |
| DO10               |            | I/O Ports                                                                                                                                                                                                                                                                    | —                                           | _ | 0.4 | V | IOL = 6.6 mA, VDD = 3.6V |  |  |
|                    |            |                                                                                                                                                                                                                                                                              | —                                           | — | 0.4 | V | IOL = 5.0 mA, VDD = 2V   |  |  |
| DO16               |            | OSCO/CLKO                                                                                                                                                                                                                                                                    | _                                           | _ | 0.4 | V | IOL = 6.6 mA, VDD = 3.6V |  |  |
|                    |            |                                                                                                                                                                                                                                                                              | _                                           | _ | 0.4 | V | IOL = 5.0 mA, VDD = 2V   |  |  |
|                    | Vон        | Output High Voltage                                                                                                                                                                                                                                                          |                                             |   |     |   |                          |  |  |
| DO20               |            | I/O Ports                                                                                                                                                                                                                                                                    | 3.0                                         | _ | —   | V | Юн = -3.0 mA, VDD = 3.6V |  |  |
|                    |            |                                                                                                                                                                                                                                                                              | 2.4                                         | — | —   | V | ЮН = -6.0 mA, VDD = 3.6V |  |  |
|                    |            |                                                                                                                                                                                                                                                                              | 1.65                                        | — | —   | V | Iон = -1.0 mA, VDD = 2V  |  |  |
|                    |            |                                                                                                                                                                                                                                                                              | 1.4                                         | _ | —   | V | ЮН = -3.0 mA, VDD = 2V   |  |  |
| DO26               |            | OSCO/CLKO                                                                                                                                                                                                                                                                    | 2.4                                         | — | —   | V | ЮН = -6.0 mA, VDD = 3.6V |  |  |
|                    |            |                                                                                                                                                                                                                                                                              | 1.4                                         | — | _   | V | Юн = -1.0 mA, VDD = 2V   |  |  |

### TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

| DC CHARACTERISTICS |        |                                      | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                    |     |       |                                         |
|--------------------|--------|--------------------------------------|------------------------------------------------------|--------------------|-----|-------|-----------------------------------------|
| Param<br>No.       | Symbol | Characteristic                       | Min                                                  | Typ <sup>(1)</sup> | Мах | Units | Conditions                              |
|                    |        | Program Flash Memory                 |                                                      |                    |     |       |                                         |
| D130               | Eр     | Cell Endurance                       | 20000                                                |                    | —   | E/W   | -40°C to +125°C                         |
| D131               | Vpr    | VDD for Read                         | VMIN                                                 |                    | 3.6 | V     | VміN = Minimum Operating Voltage        |
| D132B              |        | VDD for Self-Timed Write             | VMIN                                                 |                    | 3.6 | V     | VміN = Minimum Operating Voltage        |
| D133A              | Tiw    | Self-Timed Word Write<br>Cycle Time  | —                                                    | 20                 | —   | μS    |                                         |
|                    |        | Self-Timed Row Write<br>Cycle Time   | —                                                    | 1.5                | —   | ms    |                                         |
| D133B              | TIE    | Self-Timed Page Erase<br>Time        | 20                                                   | —                  | 40  | ms    |                                         |
| D134               | TRETD  | Characteristic Retention             | 20                                                   |                    | _   | Year  | If no other specifications are violated |
| D135               | IDDP   | Supply Current during<br>Programming | _                                                    | 5                  | —   | mA    |                                         |
| D136               | Votp   | OTP Programming                      | 3.1                                                  | —                  | 3.6 | V     |                                         |
| D137               | Тотр   | OTP Memory Write/Bit                 | —                                                    | 500                |     | μs    |                                         |

### TABLE 32-10: DC CHARACTERISTICS: PROGRAM MEMORY

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

### FIGURE 32-4: I<sup>2</sup>C<sup>™</sup> BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)



### TABLE 32-22: I<sup>2</sup>C<sup>™</sup> BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

| AC CHARACTERISTICS |             |                               | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |                |              |                    |                                             |       |            |
|--------------------|-------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------|---------------------------------------------|-------|------------|
| Param<br>No.       | Symbol      | Characteristic                |                                                                                                                                                                                                                                                                                       | Characteristic |              | Min <sup>(1)</sup> | Мах                                         | Units | Conditions |
| IM30               | TSU:STA     | Start Condition               | 100 kHz mode                                                                                                                                                                                                                                                                          | TCY (BRG + 1)  | —            | μS                 | Only relevant for                           |       |            |
|                    |             | Setup Time                    | 400 kHz mode                                                                                                                                                                                                                                                                          | TCY (BRG + 1)  | —            | μS                 | Repeated Start                              |       |            |
|                    | 1 N         |                               | 1 MHz mode <sup>(2)</sup>                                                                                                                                                                                                                                                             | TCY (BRG + 1)  | _            | μS                 | condition                                   |       |            |
| IM31               | M31 THD:STA | Start Condition<br>Hold Time  | 100 kHz mode                                                                                                                                                                                                                                                                          | TCY (BRG + 1)  | _            | μS                 | After this period, the first clock pulse is |       |            |
|                    |             |                               | 400 kHz mode                                                                                                                                                                                                                                                                          | TCY (BRG + 1)  | —            | μS                 |                                             |       |            |
|                    |             |                               | 1 MHz mode <sup>(2)</sup>                                                                                                                                                                                                                                                             | TCY (BRG + 1)  | —            | μS                 | generated                                   |       |            |
| IM33               | Tsu:sto     | Stop Condition                | 100 kHz mode                                                                                                                                                                                                                                                                          | TCY (BRG + 1)  | —            | μS                 |                                             |       |            |
|                    |             |                               |                                                                                                                                                                                                                                                                                       | Setup Time     | 400 kHz mode | TCY (BRG + 1)      | —                                           | μS    |            |
|                    |             |                               | 1 MHz mode <sup>(2)</sup>                                                                                                                                                                                                                                                             | TCY (BRG + 1)  | —            | μS                 |                                             |       |            |
| IM34               | THD:STO     | O Stop Condition<br>Hold Time | 100 kHz mode                                                                                                                                                                                                                                                                          | TCY (BRG + 1)  | —            | ns                 |                                             |       |            |
|                    |             |                               | 400 kHz mode                                                                                                                                                                                                                                                                          | TCY (BRG + 1)  |              | ns                 |                                             |       |            |
|                    |             |                               | 1 MHz mode <sup>(2)</sup>                                                                                                                                                                                                                                                             | TCY (BRG + 1)  | —            | ns                 |                                             |       |            |

**Note 1:** BRG is the value of the I<sup>2</sup>C Baud Rate Generator. Refer to Section 17.2 "Setting Baud Rate when Operating as a Bus Master" for details.

2: Maximum Pin Capacitance = 10 pF for all I<sup>2</sup>C pins (for 1 MHz mode only).



#### TABLE 32-36: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

| AC CHARACTERISTICS |                       | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |       |                    |     |       |                    |
|--------------------|-----------------------|------------------------------------------------------|-------|--------------------|-----|-------|--------------------|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                        | Min   | Typ <sup>(2)</sup> | Max | Units | Conditions         |
| SP10               | TscL                  | SCKx Output Low Time <sup>(3)</sup>                  | TCY/2 | —                  | _   | ns    |                    |
| SP11               | TscH                  | SCKx Output High Time <sup>(3)</sup>                 | TCY/2 | —                  | _   | ns    |                    |
| SP20               | TscF                  | SCKx Output Fall Time <sup>(4)</sup>                 | —     | —                  | —   | ns    | See Parameter DO32 |
| SP21               | TscR                  | SCKx Output Rise Time <sup>(4)</sup>                 | —     | —                  | —   | ns    | See Parameter DO31 |
| SP30               | TdoF                  | SDOx Data Output Fall<br>Time <sup>(4)</sup>         | —     | _                  | —   | ns    | See Parameter DO32 |
| SP31               | TdoR                  | SDOx Data Output Rise<br>Time <sup>(4)</sup>         | —     | —                  | —   | ns    | See Parameter DO31 |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid After<br>SCKx Edge            | —     | 6                  | 20  | ns    |                    |
| SP36               | TdoV2sc,<br>TdoV2scL  | SDOx Data Output Setup to<br>First SCKx Edge         | 30    | _                  | —   | ns    |                    |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data<br>Input to SCKx Edge        | 23    |                    | _   | ns    |                    |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge            | 30    |                    |     | ns    |                    |

**Note 1:** These parameters are characterized but not tested in manufacturing.

- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

### 33.2 Package Details

The following sections give the technical details of the packages.

## 28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-124C Sheet 1 of 2

## **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

| Microchip Traden<br>Architecture —<br>Flash Memory Fa<br>Program Memory<br>Product Group<br>Pin Count —<br>Tape and Reel Fl<br>Temperature Rar<br>Package —<br>Pattern — | PIC 24 FJ 128 GA2 04 T - I / PT - XXX mark                                                                                                                                                                                                                                                                                  | <ul> <li>Examples:</li> <li>a) PIC24F J128GA202-I/MM:<br/>PIC24F device with 128-Kbyte program<br/>memory, 8-Kbyte data memory, 28-pin,<br/>Industrial temp., QFN-S package.</li> <li>b) PIC24F,128GA204-I/PT:<br/>PIC24F device with 128-Kbyte program<br/>memory, 8-Kbyte data memory, 44-pin,<br/>Industrial temp., TQFP package.</li> </ul> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Architecture                                                                                                                                                             | 24 = 16-bit modified Harvard without DSP                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 |
| Flash Memory Family                                                                                                                                                      | FJ = Flash program memory                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |
| Product Group                                                                                                                                                            | GA2 = General purpose microcontrollers                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                 |
| Pin Count                                                                                                                                                                | 02 = 28-pin<br>04 = 44-pin                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                 |
| Temperature Range                                                                                                                                                        | I = -40°C to +85°C (Industrial)<br>E = -40°C to +125°C (Extended)                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
| Package                                                                                                                                                                  | MM = 28-lead (6x6x0.9 mm) QFN-S (Quad Flat)<br>ML = 44-lead (8x8 mm) QFN (Quad Flat)<br>PT = 44-lead (10x10x1 mm) TQFP (Thin Quad Flatpack)<br>SO = 28-lead (7.50 mm wide) SOIC (Small Outline)<br>SP = 28-lead (300 mil) SPDIP (Skinny Plastic Dual In-Line)<br>SS = 28-lead (5.30 mm) SSOP (Plastic Shrink Small Outline) |                                                                                                                                                                                                                                                                                                                                                 |
| Pattern                                                                                                                                                                  | Three-digit QTP, SQTP, Code or Special Requirements<br>(blank otherwise)<br>ES = Engineering Sample                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 |