E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0	—	U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—	4440
IPC18	00C8	-	_	_	_	_	_	_	_	_	_	_	_	_		HLVDIP<2:0>		0004
IPC19	00CA	-	_	_	_	_	_	_	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC20	00CC	-	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_	_	_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0	—	—	_	_	_	I2C2BCIP2	I2C2BCIP1	I2C2BCIP0	—	I2C1BCIP2	I2C1BCIP1	I2C1BCIP0	4044
IPC22	00D0	_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0	—	SPI3IP2	SPI3IP1	SPI3IP0	_	U4TXIP2	U4TXIP1	U4TXIP0	—	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC26	00D8	-	_	_	_	_		FSTIP<2:0>		_	_	_	_	_	_	_	_	0400
IPC29	00DE	_	_	_	_	_	—	_	_	_		JTAGIP<2:0	>	—	_	_	—	0040
INTTREG	00E0	CPUIRQ	r	VHOLD	_	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'; r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: I²C[™] REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	02DA	_	—	_	_	—	_	_	_				I2C1 Receiv	ve Register				0000
I2C1TRN	02DC	_	_	_	-	_	_	— — I2C1 Transmit Register 00									OOFF	
I2C1BRG	02DE	_	_	_	-					Bau	d Rate Ger	erator Regi	ister					0000
I2C1CONL	02E0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1CONH	02E2	_	_	_	-	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C1STAT	02E4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	02E6	—	_	—	—	_	—		I2C1 Address Register 00								0000	
I2C1MSK	02E8	_	_	_	_	_	_				I2C	1 Address	Mask Regis	ster				0000
I2C2RCV	02EA	_	_	_	_	_	_	_	_				I2C2 Receiv	ve Register				0000
I2C2TRN	02EC	_	_	_	_	_	_	_	_			I	2C2 Transr	nit Register	r			OOFF
I2C2BRG	02EE	_	_	_	_					Bau	d Rate Ger	erator Regi	ister					0000
I2C2CONL	02F0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2CONH	02F2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C2STAT	02F4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	02F6	_	—		_	—	_					I2C2 Addre	ss Register					0000
I2C2MSK	02F8	_	_	_	—	_	_				120	2 Address	Mask Regis	ster				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	TABLE 4-18:	A/D CONVERTER REGISTER MAP
--	-------------	----------------------------

			-						-	-								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0200						A/D	Data Buffer	0/Thresho	ld for Chan	nel 0							xxxx
ADC1BUF1	0202						A/D	Data Buffer	1/Thresho	ld for Chan	nel 1							xxxx
ADC1BUF2	0204						A/D	Data Buffer	2/Thresho	ld for Chan	nel 2							xxxx
ADC1BUF3	0206		A/D Data Buffer 3/Threshold for Channel 3 xxxx												xxxx			
ADC1BUF4	0208		A/D Data Buffer 4/Threshold for Channel 4												xxxx			
ADC1BUF5	020A		A/D Data Buffer 5/Threshold for Channel 5 xxxx											xxxx				
ADC1BUF6	020C		A/D Data Buffer 6/Threshold for Channel 6 xxxx															
ADC1BUF7	020E		A/D Data Buffer 7/Threshold for Channel 7 xxxx															
ADC1BUF8	0210		A/D Data Buffer 8/Threshold for Channel 8/Threshold for Channel 0 in Windowed Compare mode															
ADC1BUF9	0212		A/D Data Buffer 9/Threshold for Channel 9/Threshold for Channel 1 in Windowed Compare mode															
ADC1BUF10	0214		A/D Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾															
ADC1BUF11	0216		A/D Data Buffer 11/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾											XXXX				
ADC1BUF12	0218		A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾											xxxx				
ADC1BUF13	021A							A/D	Data Buffe	er 13								xxxx
ADC1BUF14	021C							A/D	Data Buffe	er 14								XXXX
ADC1BUF15	021E							A/D	Data Buffe	er 15								XXXX
AD1CON1	0220	ADON		ADSIDL	DMABM	DMAEN	MODE12	FORM1	FORM0	SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE	0000
AD1CON2	0222	PVCFG1	PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA	—	—	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0224	ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0228	CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	022A			CSS<31:2	!7>			—		_	_	_	_	—	—	—	—	0000
AD1CSSL	022C		- CSS<14:0> ⁽¹⁾ 0000									0000						
AD1CON4	022E		DMABL<2:0> 0000									0000						
AD1CON5	0230	ASEN	ASEN LPEN CTMREQ BGREQ ASINTI ASINTO WM1 WM0 CM1 CM0 000									0000						
AD1CHITL	0234	_		_						CHH<	12:0> ⁽¹⁾							0000
AD1CTMENL	0238	—		—						CTMEN	<12:0> ⁽¹⁾							0000
AD1DMBUF	023A						A/D Conv	ersion Data	a Buffer (Ex	tended Buf	fer mode)							XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

Note 1: The CSS<12:10>, CHH<12:10> and CTMEN<12:10> bits are unimplemented in 28-pin devices, read as '0'.

5.0 DIRECT MEMORY ACCESS CONTROLLER (DMA)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access Controller (DMA)" (DS39742). The information in this data sheet supersedes the information in the FRM.

The Direct Memory Access (DMA) Controller is designed to service high data throughput peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU intensive management. By allowing these data-intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.

The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA capable peripherals located on the new DMA SFR bus. The controller serves as a master device on the DMA SFR bus, controlling data flow from DMA capable peripherals. The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations causing a processor stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Six multiple independent and independently programmable channels
- Concurrent operation with the CPU (no DMA caused Wait states)
- DMA bus arbitration
- Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or word support for data transfer
- 16-Bit Source and Destination Address register for each channel, dynamically updated and reloadable
- 16-Bit Transaction Count register, dynamically updated and reloadable
- · Upper and Lower Address Limit registers
- Counter half-full level interrupt
- · Software triggered transfer
- Null Write mode for symmetric buffer operations

A simplified block diagram of the DMA Controller is shown in Figure 5-1.

FIGURE 5-1: DMA FUNCTIONAL BLOCK DIAGRAM

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Program Memory"** (DS39715). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ128GA204 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ128GA204 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS70000600). The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

8.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 8-1. The IVT resides in program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ128GA204 family devices implement nonmaskable traps and unique interrupts. These are summarized in Table 8-1 and Table 8-2.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The ALTIVT (INTCON2<15>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock- sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

9.5 FRC Self-Tuning

PIC24FJ128GA204 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses clock recovery from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that exceeds 0.25%, which is well within the requirements.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the system, causing it to recover a calibration clock from a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 0, the system uses the crystal controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	If the SOSC is to be used as the clock
	recovery source (STSRC = 0), the SOSC
	must always be enabled.

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference by greater than 0.2% in either direction or whenever the frequency deviation is beyond the ability of the TUNx bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

TABLE 10-2: EXITING POWER-SAVING MODES

			Code							
Mode	Inter	rupts	Resets			RTCC	WDT	VDD	Execution	
	All	INT0	All	POR	MCLR	Alarm	WDT	Restore ⁽²⁾	Resumes	
Idle	Y	Y	Y	Y	Y	Y	Y	N/A	Next instruction	
Sleep (all modes)	Y	Y	Y	Y	Y	Y	Y	N/A		
Deep Sleep	Ν	Y	Ν	Y	Y	Y	Y ⁽¹⁾	N/A	Reset vector	
VBAT	Ν	N	Ν	N	N	N	N	Y	Reset vector	

Note 1: Deep Sleep WDT.

2: A POR or POR like Reset results whenever VDD is removed and restored in any mode except for Retention Deep Sleep mode.

10.1.1 INSTRUCTION-BASED POWER-SAVING MODES

Three of the power-saving modes are entered through the execution of the PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution, and all peripherals, except RTCC and DSWDT. It also freezes I/O states and removes power to Flash memory, and may remove power to SRAM.

The assembly syntax of the PWRSAV instruction is shown in Example 10-1. Sleep and Idle modes are entered directly with a single assembler command. Deep Sleep requires an additional sequence to unlock and enable the entry into Deep Sleep, which is described in Section 10.4.1 "Entering Deep Sleep Mode".

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

The features enabled with the low-voltage/retention regulator results in some changes to the way that Sleep and Deep Sleep modes behave. See Section 10.3 "Sleep Mode" and Section 10.4 "Deep Sleep Mode" for additional information.

10.1.1.1 Interrupts Coincident with Power Save Instructions

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

For Deep Sleep mode, interrupts that coincide with the execution of the PWRSAV instruction may be lost. If the low-voltage/retention regulator is not enabled, the microcontroller resets on leaving Deep Sleep and the interrupt will be lost.

Interrupts that occur during the Deep Sleep unlock sequence will interrupt the mandatory five-instruction cycle sequence timing and cause a failure to enter Deep Sleep. For this reason, it is recommended to disable all interrupts during the Deep Sleep unlock sequence.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

// Syntax to enter Sleep mode: PWRSAV #SLEEP MODE ; Put the device into SLEEP mode 11 //Synatx to enter Idle mode: PWRSAV #IDLE MODE ; Put the device into IDLE mode 11 // Syntax to enter Deep Sleep mode: // First use the unlock sequence to set the DSEN bit (see Example 10-2) BSET DSCON, #DSEN ; Enable Deep Sleep BSET DSCON, #DSEN ; Enable Deep Sleep(repeat the command) #SLEEP MODE PWRSAV ; Put the device into Deep SLEEP mode

PIC24FJ128GA204 FAMILY

NOTES:

REGISTER 16-5: S	PIXSTATH: SPIX S	STATUS REGISTER HIGH
------------------	------------------	----------------------

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
_	—	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

PIC24FJ128GA204 FAMILY

FIGURE 16-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

PIC24FJ128GA204 FAMILY

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

19.0 DATA SIGNAL MODULATOR (DSM)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Signal Modulator (DSM)" (DS39744). The information in this data sheet supersedes the information in the FRM.

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the "modulator signal") with a carrier signal to produce a modulated output. Both the carrier and the modulator signals are supplied to the DSM module, either internally from the output of a peripheral, or externally through an input pin. The modulated output signal is generated by performing a logical AND operation of both the carrier and modulator signals, and then it is provided to the MDOUT pin. Using this method, the DSM can generate the following types of key modulation schemes:

- Frequency Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Figure 19-1 shows a simplified block diagram of the Data Signal Modulator peripheral.

Data Port Size	PMA<9:8>	PMA<7:0>	PMD<7:4>	PMD<3:0>	Accessible memory					
Demultiplexed Address (ADRMUX<1:0> = 00)										
8-Bit (PTSZ<1:0> = 00)	Addr<9:8>	Addr<7:0>	Da	ata	1K					
4-Bit (PTSZ<1:0> = 01)	Addr<9:8>	Addr<7:0>	—	Data	1K					
1 Address Phase (ADRMUX<1:0> = 01)										
8-Bit (PTSZ<1:0> = 00)	8-Bit (PTSZ<1:0> = 00) — PMALL Addr<7:0> Data									
4 Dit (DTS7 - 0.1)			Addr<7:4>	Addr<3:0>	11/2					
4-Bit (P132<1:02 - 01)	Auui < 9.62	FINALL	—	Data (1)	IK					
2 Address Phases (ADRMUX<1:0> = 10)										
		PMALL	Addr<7:0>							
8-Bit (PTSZ<1:0> = 00)	—	PMALH	Addr<15:8>		64K					
		—	Data							
	Addr<9:8>	PMALL	Addr<3:0>							
4-Bit (PTSZ<1:0> = 01)		PMALH	Addr<7:4>		1K					
		—	Data							
	3 Address F	Phases (ADR	MUX<1:0> = 1	1)						
		PMALL	Addr<7:0>							
9 Dit (DTS7 -1:0> $-$ 0.0)		PMALH	Addr<	<15:8>	2 Mbytoc					
6-611 (F 132 > 1.0 - 0.0)		PMALU	Addr<	22:16>	2 Mbytes					
		—	Da	ata						
		PMALL	Addr	<3:0>						
4 - Bit (PTS7 < 1:0 > = 0.1)	Addr = 12.12	PMALH	Addr<7:4>		16K					
	7.001 \$ 10.12×	PMALU	Addr<	<11:8>						
			Da	ata						

TABLE 20-1: MEMORY ADDRESSABLE IN DIFFERENT MODES

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
PMPEN		PSIDL	ADRMUX1	ADRMUX0	—	MODE1	MODE0			
bit 15		•				•	bit 8			
DAMA	D44/ 0				DANA		DAMO			
R/W-0		R/W-U		0-0		R/W-U	R/W-U			
bit 7	CSFU	ALP	ALMODE	—	BUSKEEP	IRQIVIT	hit 0			
							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
h:+ 45		10 Enchla hit								
DIL 15	1 = EDMD is a									
	0 = EPMP is (disabled								
bit 14	Unimplemen	ted: Read as ')'							
bit 13	PSIDL: EPMF	P Stop in Idle M	lode bit							
	1 = Discontinu	ues module op	eration when d	evice enters Idl	e mode					
	0 = Continues	s module opera	tion in Idle mo	de						
bit 12-11	ADRMUX<1:0	0>: Address/Da	ata Multiplexing	Selection bits						
	11 = Lower as	ddress bits are	multiplexed wi	th data bits usir	ng 3 address p	hases				
	01 = Lower a	ddress bits are	multiplexed wi	th data bits usi	ng 2 address p ng 1 address p	hases				
	00 = Address	and data appe	ar on separate	pins	.g					
bit 10	Unimplemen	ted: Read as ')'							
bit 9-8	MODE<1:0>:	Parallel Port N	lode Select bits	5						
	11 = Master n	node								
	10 = Enhance	ed PSP: Pins use	sed are PMRD	, PMWR, PMC PMWR PMCS	S, PMD<7:0> and PMD<7:0>	and PMA<1:0>				
	00 = Legacy I	Parallel Slave F	Port: Pins used	are PMRD, PM	/WR, PMCS a	nd PMD<7:0>				
bit 7-6	CSF<1:0>: C	hip Select Fund	ction bits							
	11 = Reserve	d								
	10 = PMA<14	is used for C	hip Select 1							
	01 = Reserve 00 = PMCS1	a is used for Chi	n Select 1							
bit 5	ALP: Address	s Latch Polarity	bit							
	1 = Active-hig	h (PMALL, PM	ALH and PMA	LU)						
	0 = Active-low	(PMALL, PMA	LH and PMAL	Ū)						
bit 4	ALMODE: Ad	ldress Latch St	robe Mode bit							
	1 = Enables '	'smart" address	s strobes (each	address phase	e is only prese	nt if the current	access would			
	cause a c	ifferent addres "smart" addres	s in the latch the stropes	nan the previou	is address)					
bit 3	Unimplemented: Read as '0'									
bit 2	BUSKEEP: B	us Keeper bit								
	1 = Data bus	keeps its last v	alue when not	actively being o	driven					
	0 = Data bus	is in a high-imp	edance state v	when not active	ly being driven					
bit 1-0	IRQM<1:0>:	nterrupt Reque	est Mode bits							
	11 = Interrupt	is generated w	hen Read Buff	er 3 is read or W PMA<1.0 - 11	Vrite Buffer 3 is	written (Buffere	d PSP mode),			
	10 = Reserve	eau or write op d		IVI/A≻1.U2 = ⊥⊥		T OF HIDDE ON	y)			
	01 = Interrupt	is generated a	t the end of a	read/write cycle	;					
	00 = No interi	rupt is generate	ed							

REGISTER 20-1: PMCON1: EPMP CONTROL REGISTER 1

REGISTER 22-1: CRYCONL: CRYPTOGRAPHIC CONTROL LOW REGISTER

R/W-0	U-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	R/W-0, HC ⁽¹⁾
CRYON	—	CRYSIDL ⁽³⁾	ROLLIE	DONEIE	FREEIE	—	CRYGO
bit 15							bit 8

R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾				
OPMOD3 ⁽²⁾	OPMOD2 ⁽²⁾	OPMOD1 ⁽²⁾	OPMOD0 ⁽²⁾	CPHRSEL ⁽²⁾	CPHRMOD2 ⁽²⁾	CPHRMOD1 ⁽²⁾	CPHRMOD0 ⁽²⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	CRYON: Cryptographic Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	CRYSIDL: Cryptographic Stop in Idle Control bit ⁽³⁾
	1 = Stops module operation in Idle mode
	0 = Continues module operation in Idle mode
bit 12	ROLLIE: CRYTXTB Rollover Interrupt Enable bit ⁽¹⁾
	1 = Generates an interrupt event when the counter portion of CRYTXTB rolls over to '0'
	0 = Does not generate an interrupt event when the counter portion of CRYTXTB rolls over to '0'
bit 11	DONEIE: Operation Done Interrupt Enable bit ⁽¹⁾
	1 = Generates an interrupt event when the current cryptographic operation completes
	 Does not generate an interrupt event when the current cryptographic operation completes; software must poll the CRYGO or CRYBSY bit to determine when current cryptographic operation is complete
bit 10	FREEIE: Input Text Interrupt Enable bit ⁽¹⁾
	1 = Generates an interrupt event when the input text (plaintext or ciphertext) is consumed during the current cryptographic operation
	0 = Does not generate an interrupt event when the input text is consumed
bit 9	Unimplemented: Read as '0'
bit 8	CRYGO: Cryptographic Engine Start bit ⁽¹⁾
	1 = Starts the operation specified by OPMOD<3:0> (cleared automatically when operation is done)
	 Stops the current operation (when cleared by software); also indicates the current operation has completed (when cleared by hardware)

- Note 1: These bits are reset on system Resets or whenever the CRYMD bit is set.
 - 2: Writes to these bit fields are locked out whenever an operation is in progress (CRYGO bit is set).
 - **3:** If the device enters Idle mode when CRYSIDL = 1, the module will stop its current operation. Entering into Idle mode while an OTP write operation is in process can result in irreversible corruption of the OTP.

23.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- · Configurable interrupt output
- Data FIFO

Figure 23-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 23-2.

FIGURE 23-1: CRC MODULE BLOCK DIAGRAM

FIGURE 23-2: CRC SHIFT ENGINE DETAIL

27.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 27-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

27.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON1<12>), the internal current source is connected to the B input of Comparator 2. A Capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the Comparator Voltage Reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 27-3 illustrates the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTED1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "dsPIC33/PIC24 Family Reference Manual".

FIGURE 27-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbo I	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
-	Vol	Output Low Voltage						
DO10		I/O Ports	—	_	0.4	V	IOL = 6.6 mA, VDD = 3.6V	
			—	—	0.4	V	IOL = 5.0 mA, VDD = 2V	
DO16		OSCO/CLKO	_	_	0.4	V	IOL = 6.6 mA, VDD = 3.6V	
			_	_	0.4	V	IOL = 5.0 mA, VDD = 2V	
	Vон	Output High Voltage						
DO20		I/O Ports	3.0	_	—	V	Юн = -3.0 mA, VDD = 3.6V	
			2.4	—	—	V	ЮН = -6.0 mA, VDD = 3.6V	
			1.65	—	—	V	Iон = -1.0 mA, VDD = 2V	
			1.4	_	—	V	ЮН = -3.0 mA, VDD = 2V	
DO26		OSCO/CLKO	2.4	—	—	V	ЮН = -6.0 mA, VDD = 3.6V	
			1.4	—	_	V	Юн = -1.0 mA, VDD = 2V	

TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CH/	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	20000		—	E/W	-40°C to +125°C
D131	Vpr	VDD for Read	VMIN		3.6	V	VміN = Minimum Operating Voltage
D132B		VDD for Self-Timed Write	VMIN		3.6	V	VміN = Minimum Operating Voltage
D133A	Tiw	Self-Timed Word Write Cycle Time	—	20	—	μS	
		Self-Timed Row Write Cycle Time	—	1.5	—	ms	
D133B	TIE	Self-Timed Page Erase Time	20	—	40	ms	
D134	TRETD	Characteristic Retention	20		_	Year	If no other specifications are violated
D135	IDDP	Supply Current during Programming	_	5	—	mA	
D136	Votp	OTP Programming	3.1	—	3.6	V	
D137	Тотр	OTP Memory Write/Bit	—	500		μS	

TABLE 32-10: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 32-36: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽³⁾	TCY/2	—	_	ns		
SP11	TscH	SCKx Output High Time ⁽³⁾	TCY/2	—	_	ns		
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	—	—	—	ns	See Parameter DO32	
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	—	ns	See Parameter DO31	
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	—	_	—	ns	See Parameter DO32	
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	—	ns	See Parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23		_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns		

Note 1: These parameters are characterized but not tested in manufacturing.

- **2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.