

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga202t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0					
_	_	_		_			DC					
bit 15				1			bit					
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	D 444 o(1)		D /// 0	D 444.0	D 4440	DAALO					
IPL2 ⁽²⁾	IPL1 ⁽²⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
	IPL1-	IPL0 ^{-/}	RA	N	OV	Z	C					
bit 7							bit					
Legend:												
R = Readabl	e bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-9	Unimplemer	nted: Read as '0	,									
oit 8	DC: ALU Half Carry/Borrow bit											
	1 = A carry out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-sized data											
	of the result occurred 0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred											
	0 = No carry	out from the 4 th	or 8 th low-or	der bit of the res	sult has occurre	ed						
bit 7-5	IPL<2:0>: CI	PU Interrupt Prio	rity Level Sta	atus bits ^(1,2)								
	111 = CPU I	nterrupt Priority	Level is 7 (1	5); user interrupt	s are disabled							
		nterrupt Priority										
	101 = CPU Interrupt Priority Level is 5 (13)											
	100 = CPU Interrupt Priority Level is 4 (12)											
	011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10)											
		nterrupt Priority										
L:1 1	000 = CPU Interrupt Priority Level is 0 (8)											
bit 4	RA: REPEAT Loop Active bit											
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress											
bit 3	N: ALU Negative bit											
	1 = Result was negative											
1.1.0	 0 = Result was not negative (zero or positive) OV: ALU Overflow bit 											
bit 2												
	 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred 											
bit 1	Z: ALU Zero											
	1 = An opera	tion, which affec	ts the Z bit, h	nas set it at some	e time in the pa	ast						
	•	t recent operation			•		esult)					
bit 0	C: ALU Carry	/Borrow bit										
	-	ut from the Most	Significant b	oit (MSb) of the r	esult occurred							
		out from the Mos										
Note 1: Th	no IDI v Statuc I	bits are read-only			15>) = 1							
		bits are read-only	•		,	it to form the C						

2: The IPLx Status bits are concatenated with the IPL3 Status (CORCON<3>) bit to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

TABLE 4-9: I²C[™] REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	02DA	—		—	_	_		—	—			I	2C1 Receiv	ve Register				0000
I2C1TRN	02DC	_	_	_	_	_	_	_	_			l:	2C1 Transn	nit Register				OOFF
I2C1BRG	02DE	_	_	_	_		Baud Rate Generator Register								0000			
I2C1CONL	02E0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN					1000				
I2C1CONH	02E2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C1STAT	02E4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C1ADD	02E6	—	—	_	_	—	I2C1 Address Register								0000			
I2C1MSK	02E8	—	_	—	_	—	-				I2C	1 Address I	Mask Regis	ter				0000
I2C2RCV	02EA	—	_	—	_	—	-	_	_			I	2C2 Receiv	e Register				0000
I2C2TRN	02EC	_	_	_	_	_	_	_	_			l:	2C2 Transn	nit Register				OOFF
I2C2BRG	02EE	_	—	_	_					Bau	d Rate Gen	erator Regi	ster					0000
I2C2CONL	02F0	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2CONH	02F2	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C2STAT	02F4	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	02F6	—	_	—	_	—	-					2C2 Addres	ss Register					0000
I2C2MSK	02F8	—	_	_	_	—	_				I2C	2 Address I	Mask Regis	ter				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18 :	A/D CONVERTER REGISTER MAP
---------------------	----------------------------

Name Addr Bit 19 Bit 19 Bit 9 Bit 9 Bit 8 Bit 7 Bit 6 Bit 7 Bit 7 Bit 6 Bit 7 Bit 7 <th< th=""><th></th><th>10.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		10.																	
ADC1BUF1 0202 ADC1BUF2 0204 ADC1BUF2 0204 ADC ADC ADC1BUF2 0206 ADD Data Buffer 3/Threshold for Channel 3 ADC ADC ADC1BUF5 0208 ADD Data Buffer 5/Threshold for Channel 4 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 6 XXX ADC1BUF6 0206 ADD Data Buffer 6/Threshold for Channel 0 in Windowed Compare mode XXX ADC1BUF7 0210 ADD Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0212 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0212 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF10 0214 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF12 0214 A/D Data Buffer 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC1BUF12 0214 A/D Data Buffer 10/Threshold for Channel 1 in Win		Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC18UF2 0204 AVC 18UF2 AVD Data Buffer 2/Threshold for Channel 3 xxxx ADC18UF4 0208 AVC Data Buffer 4/Threshold for Channel 3 xxxx ADC18UF4 0200 AVD Data Buffer 4/Threshold for Channel 5 xxxx ADC18UF6 0200 AVD Data Buffer 6/Threshold for Channel 6 xxxx ADC18UF7 0206 AVD Data Buffer 6/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF7 0202 AVD Data Buffer 8/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF8 0210 AVD Data Buffer 9/Threshold for Channel 0 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0214 AVD Data Buffer 10/Threshold for Channel 0 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0214 AVD Data Buffer 10/Threshold for Channel 1/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF11 0216 AVD Data Buffer 1/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 AVD Data Buffer 1/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 0214 AVD Data Buffer 1/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 0216 AVD	ADC1BUF0	0200						A/D	Data Buffer	0/Thresho	ld for Chan	nel 0							XXXX
ADC1BUF3 0206 ADC1BUF4 0208 ADC1BUF4 0208 ADC1BUF4 0208 ADC1BUF4 0208 ADD Data Buffer 4Threshold for Channel 4 xxxx ADC1BUF5 0200 ADD Data Buffer 5Threshold for Channel 5 Xxxx Xxxx ADC1BUF5 0200 ADD Data Buffer 6Threshold for Channel 6 Xxxx ADC1BUF7 0202 ADD Data Buffer 9Threshold for Channel 6 Xxxx ADC1BUF7 0202 ADD Data Buffer 9Threshold for Channel 9 Threshold for Channel 1 in Windowed Compare mode Xxxx ADC1BUF10 0214 ADD Data Buffer 10Threshold for Channel 9 Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF11 0216 ADD Data Buffer 10Threshold for Channel 1 In Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF12 0218 ADD Data Buffer 112Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF13 0210 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF13 0218 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF14 0216 ADD Data Buffer 12Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ Xxxx ADC1BUF14 <t< td=""><td>ADC1BUF1</td><td>0202</td><td></td><td></td><td></td><td></td><td></td><td>A/D</td><td>Data Buffer</td><td>1/Thresho</td><td>ld for Chan</td><td>nel 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></t<>	ADC1BUF1	0202						A/D	Data Buffer	1/Thresho	ld for Chan	nel 1							XXXX
ADC18UF4 0208 ADC18UF5 20A ADC18UF5 20A ADC18UF5 ADC18UF1 ADC18UF1 ADC18UF1 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF10 ADC18UF11 ADC18UF11 ADC18UF11 ADC18UF12 Q18 ADC18UF11 ADC18UF13 ADC18UF14 ADC18U	ADC1BUF2	0204						A/D	Data Buffer	2/Thresho	ld for Chan	nel 2							XXXX
ADC18UF5 020A ADC18UF6 020C ADC18UF6 020C ADC18UF6 020C ADC18UF7 020E ADC18UF6 021C ADC18UF6 0210 ADD Data Buffer 10/Threshold for Channel 0 in Windowed Compare mode XXX XXX ADC18UF10 0214 ADD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX XXX ADC18UF12 0218 ADD Data Buffer 11/Threshold for Channel 12/Threshold for Channel 1 in Windowed Compare mode ⁽¹⁾ XXX ADC18UF13 021A ADD Data Buffer 12/Threshold for Channel 12/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ XXX ADC18UF13 021A ADC18UF13 021A ADC18UF13 SSSC2 SSSC1 SSSC0 - ASAM SAMP DONE	ADC1BUF3	0206		A/D Data Buffer 3/Threshold for Channel 3												XXXX			
ADC18UF6 020C ADC18UF7 020E ADC18UF7 020E ADC18UF7 020E ADC18UF7 020E ADC18UF7 021E ADC18UF7	ADC1BUF4	0208		A/D Data Buffer 4/Threshold for Channel 4												XXXX			
ADC18UF7 020E ADC18UF8 0210 ADC18UF8 0210 ADC18UF9 0210 ADC18UF9 0210 ADC18UF9 0210 ADC18UF9 0212 ADC18UF9 0212 ADC18UF9 0212 ADC18UF9 0212 ADD Data Buffer 3/Threshold for Channel 3/Threshold for Channel 1/Threshold for Channel 10/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0216 ADD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 0214 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF14 0210 A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF14 0212 ADON ADD AB MDDE12 FORM SSRC3 SSRC2 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1C0N1 0222 PVCF60 NVCF60 OFFCAL BUFREGEN SAMC2 <	ADC1BUF5	020A		A/D Data Buffer 5/Threshold for Channel 5												XXXX			
ADC18UF8 0210 A/D Data Buffer 8/Threshold for Channel 9/Threshold for Channel 0 in Windowed Compare mode xxxx ADC18UF9 0212 A/D Data Buffer 9/Threshold for Channel 1 in Windowed Compare mode xxxx ADC18UF10 0214 A/D Data Buffer 10/Threshold for Channel 1 in/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF11 0216 A/D Data Buffer 11/Threshold for Channel 1 in/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A X/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 5 to X/D Data Buffer 13 XXX ADC18UF14 021C X/D Cala Buffer 10/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ XXX ADC18UF14 021C X/D Data Buffer 13/Threshold for Channel 5 to X/D Data Buffer 13 XXX ADC18UF15 021E X/D Data Buffer 13/Threshold for Channel 5 to X/D Data Buffer 13 <td< td=""><td>ADC1BUF6</td><td>020C</td><td></td><td></td><td></td><td></td><td></td><td>A/D</td><td>Data Buffer</td><td>6/Thresho</td><td>ld for Chan</td><td>nel 6</td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></td<>	ADC1BUF6	020C						A/D	Data Buffer	6/Thresho	ld for Chan	nel 6							XXXX
ADC18UF9 0212 A/D Data Buffer 9/Threshold for Channel 9/Threshold for Channel 1 in Windowed Compare mode xxxx ADC18UF10 0214 A/D Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF10 0216 A/D Data Buffer 11/Threshold for Channel 10/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF14 021C A/D Data Buffer 13 XXX XXXX ADC18UF15 021E A/D Data Buffer 14 XXXX ADC10N1 0220 ADON A/D AND MARN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1C0N2 0222 PVCFG1 PVCFG0 NVCFG0 OFFCAL BUFREGEN CSCNA - - BUFS SMPI4 SMPI	ADC1BUF7	020E						A/D	Data Buffer	7/Thresho	ld for Chan	nel 7							XXXX
ADC1BUF10 0214 ADD Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF11 0216 A/D Data Buffer 11/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF14 021C A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC1BUF15 021E A/D Data Buffer 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx AD1C0N1 0220 ADON ADSID DMABM MOAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC1 SSRV1 SMPI2 <td< td=""><td>ADC1BUF8</td><td>0210</td><td></td><td></td><td></td><td>A/D</td><td>Data Buffer 8/</td><td>Threshold for</td><td>Channel 8/</td><td>Threshold</td><td>for Channe</td><td>0 in Windo</td><td>wed Comp</td><td>are mode</td><td></td><td></td><td></td><td></td><td>XXXX</td></td<>	ADC1BUF8	0210				A/D	Data Buffer 8/	Threshold for	Channel 8/	Threshold	for Channe	0 in Windo	wed Comp	are mode					XXXX
ADC1BUF11 0216 ADD Data Buffer 11/Threshold for Channel 11/Threshold for Channel 3 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF13 021A A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC1BUF14 021C A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxx ADC1BUF14 021C A/D Data Buffer 13 XXX ADC1BUF15 021E A/D Data Buffer 15 XXX AD1CON1 0220 ADON ADSID DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM SAMP DONE 000 AD1CON1 0220 ADON ADSID DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 ASAM MPI0 BUFM ALTS 000 AD1CON3 0224 ADCC EXTSAM PUMPEN SAMC3 SAMC2 SAMC1 SAMC0 ADCS5 ADCS5 ADCS4 ADCS3 <	ADC1BUF9	0212		A/D Data Buffer 9/Threshold for Channel 9/Threshold for Channel 1 in Windowed Compare mode											xxxx				
ADC18UF12 0218 A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾ xxxx ADC18UF13 021A	ADC1BUF10	0214		A/D Data Buffer 10/Threshold for Channel 10/Threshold for Channel 2 in Windowed Compare mode ⁽¹⁾ :											xxxx				
ADC1BUF13 021A	ADC1BUF11	0216				A/D Da	ata Buffer 11/T	hreshold for (Channel 11/	Threshold	for Channe	3 in Windo	wed Comp	are mode ⁽¹)				xxxx
ADC1BUF14 021C VACUAL	ADC1BUF12	0218		A/D Data Buffer 12/Threshold for Channel 12/Threshold for Channel 4 in Windowed Compare mode ⁽¹⁾											xxxx				
ADC1BUF15021EO210ADON—ADSIDLDMABMDMAENMODE12FORM1FORM0SSRC3SSRC2SSRC1SSRC0—ASAMSAMPDONE000AD1CON10222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA——BUFSSMPI4SMPI3SMPI2SMP11SMP10BUFMALTS000AD1CON20222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA———BUFSSMP14SMP13SMP12SMP10BUFMALTS000AD1CON30224ADRCEXTSAMPUMPENSAMC4SAMC3SAMC2SAMC1SAMC0ADC57ADC56ADC55ADC54ADC53ADC52ADC51ADC50000AD1CN30228CH0NB2CH0NB1CH0SB3CH0SB2CH0SB1CH0SB0CH0NA2CH0NA1CH0NA0CH0SA4CH0SA3CH0SA2CH0SA0000AD1CSSL022C—————————————000AD1CON4022E—————————————000AD1CON4022E————————————000AD1CON4022E————————————…000 <td>ADC1BUF13</td> <td>021A</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A/D</td> <td>Data Buffe</td> <td>er 13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>xxxx</td>	ADC1BUF13	021A							A/D	Data Buffe	er 13								xxxx
AD1CON1 0220 ADON — ADSIDL DMABM DMAEN MODE12 FORM1 FORM0 SSRC3 SSRC1 SSRC0 — ASAM SAMP DONE 000 AD1CON2 0222 PVCFG1 PVCFG0 NVCFG0 OFFCAL BUFREGEN CSCNA — — BUFS SMPI4 SMPI3 SMPI2 SMPI1 SMP0 BUFM ALTS 000 AD1CON3 0224 ADRC EXTSAM PUMPEN SAMC4 SAMC3 SAMC2 SAMC1 SAMC0 ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 000 AD1CHS 0228 CH0NB1 CH0NB0 CH0SB3 CH0SB3 CH0SB1 CH0SB0 CH0NA2 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SA0 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SB0 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SA3 CH0NA2 CH0NA1 CH0NA3 CH0SA3 CH0SA3 CH0NA1 CH0NA3 CH0SA3 CH0SA1 <td>ADC1BUF14</td> <td>021C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A/D</td> <td>Data Buffe</td> <td>er 14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>xxxx</td>	ADC1BUF14	021C							A/D	Data Buffe	er 14								xxxx
AD1CON20222PVCFG1PVCFG0NVCFG0OFFCALBUFREGENCSCNA——BUFSSMPI4SMPI3SMPI2SMPI1SMPI0BUFMALTS000AD1CON30224ADRCEXTSAMPUMPENSAMC4SAMC3SAMC2SAMC1SAMC0ADCS7ADCS6ADCS5ADCS4ADCS3ADCS2ADCS1ADCS0000AD1CHS0228CH0NB2CH0NB1CH0NB0CH0SB4CH0SB3CH0SB2CH0SB1CH0SB0CH0NA2CH0NA1CH0NA0CH0SA4CH0SA3CH0SA2CH0SA0000AD1CSH022C000AD1CON4022E000AD1CON50230ASENLPENCTMREQBGREQ000AD1CHTL0238000AD1CON50230ASENLPENCTMREQBGREQASINT1ASINT0000AD1CTMENL0238000AD1CON50230ASENLPENCTMREQBGREQASINT1ASINT0	ADC1BUF15	021E							A/D	Data Buffe	r 15								XXXX
AD1CON3 0224 ADRC EXTSAM PUMPEN SAMC4 SAMC3 SAMC2 SAMC1 SAMC0 ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 000 AD1CHS 0228 CH0NB2 CH0NB1 CH0NB0 CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA2 CH0NA1 CH0NA0 CH0SA3 CH0SA2 CH0SA0 000 AD1CSSH 0220 C CSS<31:27> — — — — — — — — — — — 000 ADCS3 ADCS2 ADCS1 ADCS0 000 AD1CSSH 0220 — CSS<31:27> — — — — — — — — — — — 000 AD1CS1 020 … </td <td>AD1CON1</td> <td>0220</td> <td>ADON</td> <td>—</td> <td>ADSIDL</td> <td>DMABM</td> <td>DMAEN</td> <td>MODE12</td> <td>FORM1</td> <td>FORM0</td> <td>SSRC3</td> <td>SSRC2</td> <td>SSRC1</td> <td>SSRC0</td> <td>_</td> <td>ASAM</td> <td>SAMP</td> <td>DONE</td> <td>0000</td>	AD1CON1	0220	ADON	—	ADSIDL	DMABM	DMAEN	MODE12	FORM1	FORM0	SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE	0000
AD1CHS 0228 CH0NB2 CH0NB1 CH0NB0 CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA2 CH0NA1 CH0NA0 CH0SA4 CH0SA3 CH0SA2 CH0SA1 CH0SA3 CH0SA3 CH0SA4 CH0SA3 CH0SA3 CH0SA4 CH0SA4 CH0SA3 CH0SA4	AD1CON2	0222	PVCFG1	PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA		—	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CSSH 022A CSS<31:27> - 000 AD1CSSL 022C - - - - - - - - - - 000 AD1CON4 022E - - - - - - - - DMABL<2:0> 000 AD1CON5 0230 ASEN LPEN CTMREQ BGREQ - - - - - - - DMABL<2:0> 000 AD1CHITL 0234 - D000 D00	AD1CON3	0224	ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CSSL 022C CSS<14:0>(1) <th< td=""><td>AD1CHS</td><td>0228</td><td>CH0NB2</td><td>CH0NB1</td><td>CH0NB0</td><td>CH0SB4</td><td>CH0SB3</td><td>CH0SB2</td><td>CH0SB1</td><td>CH0SB0</td><td>CH0NA2</td><td>CH0NA1</td><td>CH0NA0</td><td>CH0SA4</td><td>CH0SA3</td><td>CH0SA2</td><td>CH0SA1</td><td>CH0SA0</td><td>0000</td></th<>	AD1CHS	0228	CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CON4 022E	AD1CSSH	022A			CSS<31:2	7>		_	_	—		_	—			—	—	—	0000
AD1CON5 0230 ASEN LPEN CTMREQ BGREQ — ASINT1 ASINT0 — — — — WM1 WM0 CM1 CM0 000 AD1CHITL 0234 — — — — ASINT1 ASINT0 — — — — WM1 WM0 CM1 CM0 000 AD1CHITL 0234 — — — — — — — — W00 CM1 CM0 000 AD1CTMENL 0238 — — — — — CTMEN CTMEN CTMEN US00 US00	AD1CSSL	022C	—							CSS<1	14:0> ⁽¹⁾								0000
AD1CHITL 0234 CHH<12:0>(1) 000 AD1CTMENL 0238 CTMEN<12:0>(1) 000	AD1CON4	022E	—	—	—	—	—	—	—	—	—	—	—	—	—	[DMABL<2:0	>	0000
AD1CTMENL 0238 CTMEN<12:0> ⁽¹⁾		0230	ASEN	LPEN	CTMREQ	BGREQ	—	_	ASINT1	ASINT0	—	—	—	—	WM1	WM0	CM1	CM0	0000
	AD1CHITL	0234	—	—	—														0000
AD1DMBUF 023A A/D Conversion Data Buffer (Extended Buffer mode) xxx	AD1CTMENL	0238	—	—	—						CTMEN	<12:0> ⁽¹⁾							0000
	AD1DMBUF	023A						A/D Conv	ersion Data	a Buffer (Ex	tended Buf	fer mode)							XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

Note 1: The CSS<12:10>, CHH<12:10> and CTMEN<12:10> bits are unimplemented in 28-pin devices, read as '0'.

				CONTROL					
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
—	—	—	—	—	DMA4IP2	DMA4IP1	DMA4IP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
	PMPIP2	PMPIP1	PMPIP0	—		—			
bit 7							bit 0		
									
Legend:			,						
R = Readable		W = Writable		•	nented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 10-8 bit 7 bit 6-4	Unimplemented: Read as '0' DMA4IP<2:0>: DMA Channel 4 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) • • • 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' PMPIP<2:0>: Parallel Master Port Interrupt Priority bits								
bit 3-0	• • • • • • • • • • • • • • • • • • •	pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as 'd	abled	y interrupt)					

REGISTER 8-32: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
—	SPI2RXIP2	SPI2RXIP1	SPI2RXIPO	—	SPI1RXIP2	SPI1RXIP1	SPI1RXIPO					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
0-0	0-0	0-0	0-0	0-0	KEYSTRIP2	KEYSTRIP1	KEYSTRIP0					
 bit 7	_	_		_	KE13TRIF2	KETSTRIFT	bit (
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Bit is unknown					
bit 15	Unimplement	ted: Read as '	0'									
bit 14-12	SPI2RXIP<2:	0>: SPI2 Rece	ive Interrupt Pr	iority bits								
	111 = Interru	pt is Priority 7 (highest priority	interrupt)								
	•											
	•											
	001 = Interrupt is Priority 1											
		ot source is dis	abled									
bit 11	Unimplement	ted: Read as '	0'									
bit 10-8	SPI1RXIP<2:0>: SPI1 Receive Interrupt Priority bits											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is Priority 1											
	000 = Interrupt source is disabled											
bit 7-3	Unimplement	ted: Read as '	0'									
bit 2-0	-			Program Don	e Interrupt Prior	ity bits						
oit 2-0			highest priority	•	·							
	•											
	•											
	• • 001 = Interru	nt is Priority 1										

REGISTER 8-35: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0					
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
	U3ERIP2	U3ERIP1	U3ERIP0	0-0	<u> </u>	<u> </u>	0-0					
bit 7	USERI 2	UJEINI	USEI(III U				bit (
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15	Unimplemented: Read as '0' U3TXIP<2:0>: UART3 Transmitter Interrupt Priority bits											
bit 14-12			-	-								
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)								
	•											
	•											
		pt is Priority 1 pt source is dis	abled									
bit 11	Unimplemen	ted: Read as '	o'									
bit 10-8	U3RXIP<2:0>: UART3 Receiver Interrupt Priority bits											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	001 = Interrupt is Priority 1											
		pt source is dis										
bit 7	•	ted: Read as '										
bit 6-4		: UART3 Error	•									
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	001 = Interrupt is Priority 1											
	0.0.0 1.1.	- +										
bit 3-0		pt source is dis i ted: Read as 'o										

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock- sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON,#0

9.5 FRC Self-Tuning

PIC24FJ128GA204 family devices include an automatic mechanism to calibrate the FRC during run time. This system uses clock recovery from a source of known accuracy to maintain the FRC within a very narrow margin of its nominal 8 MHz frequency. This allows for a frequency accuracy that exceeds 0.25%, which is well within the requirements.

The self-tune system is controlled by the bits in the upper half of the OSCTUN register. Setting the STEN bit (OSCTUN<15>) enables the system, causing it to recover a calibration clock from a source selected by the STSRC bit (OSCTUN<12>). When STSRC = 0, the system uses the crystal controlled SOSC for its calibration source. Regardless of the source, the system uses the TUN<5:0> bits (OSCTUN<5:0>) to change the FRC's frequency. Frequency monitoring and adjustment is dynamic, occurring continuously during run time. While the system is active, the TUNx bits cannot be written to by software.

Note:	If the SOSC is to be used as the clock								
	recovery source (STSRC = 0), the SOSC								
	must always be enabled.								

The self-tune system can generate a hardware interrupt, FSTIF. The interrupt can result from a drift of the FRC from the reference by greater than 0.2% in either direction or whenever the frequency deviation is beyond the ability of the TUNx bits to correct (i.e., greater than 1.5%). The STLOCK and STOR status bits (OSCTUN<11,9>) are used to indicate these conditions.

The STLPOL and STORPOL bits (OSCTUN<10,8>) configure the FSTIF interrupt to occur in the presence or the absence of the conditions. It is the user's responsibility to monitor both the STLOCK and STOR bits to determine the exact cause of the interrupt.

Note: The STLPOL and STORPOL bits should be ignored when the self-tune system is disabled (STEN = 0).

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ128GA204 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 25 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP25.

See Table 1-3 for a summary of pinout options in each package offering.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I^2C^{TM} (input and output)
- Change Notification Inputs
- RTCC Alarm Output(s)
- EPMP Signals (input and output)
- Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

11.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pinselectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

NOTES:

16.5 Audio Mode

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP<2:0> bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

16.6 Registers

The SPI module consists of the following Special Function Registers (SFRs):

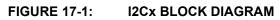
- SPIxCON1L, SPIxCON1H and SPIxCON2L: SPIx Control Registers (Register 16-1, Register 16-2 and Register 16-3)
- SPIxSTATL and SPIxSTATH: SPIx Status Registers (Register 16-4 and Register 16-5)
- SPIxBUFL and SPIxBUFH: SPIx Buffer Registers
- SPIxBRGL and SPIxBRGH: SPIx Baud Rate Registers
- SPIxIMSKL and SPIxIMSKH: SPIx Interrupt Mask Registers (Register 16-6 and Register 16-7)
- SPIxURDTL and SPIxURDTH: SPIx Underrun Data Registers

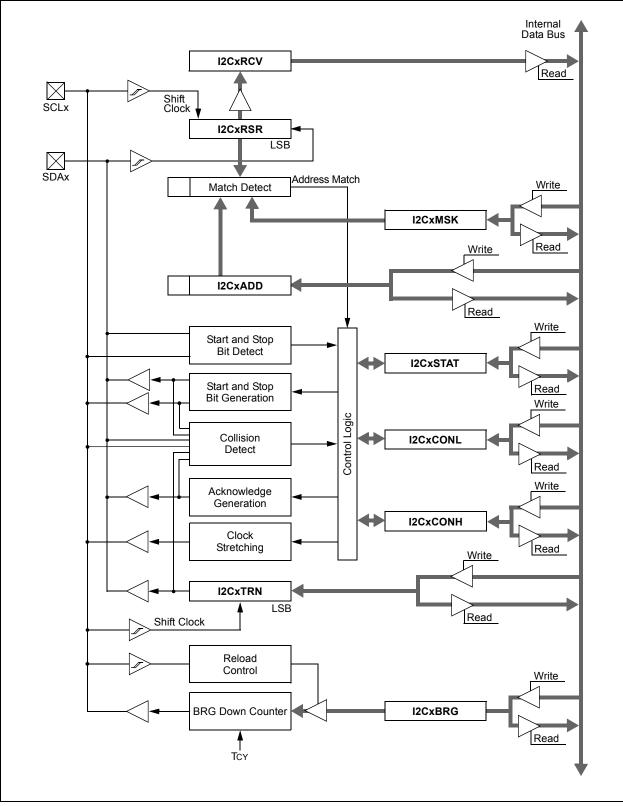
REGISTER 16-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPIEN	—	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
(0)					(0)		

SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15	SPIEN: SPIx On bit
	1 = Enables module
	0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR
	modifications


- bit 14 Unimplemented: Read as '0'
- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode
- bit 12 DISSDO: Disable SDOx Output Port bit
 - $\ensuremath{\mathtt{1}}$ = SDOx pin is not used by the module; pin is controlled by the port function
 - 0 = SDOx pin is controlled by the module
- **Note 1:** When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.
 - 2: When FRMEN = 1, SSEN is not used.
 - **3:** MCLKEN can only be written when the SPIEN bit = 0.
 - 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 16-4: SPIx STATL: SPIx STATUS REGISTER LOW (CONTINUED)

bit 2	Unimplemented: Read as '0'
bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	1 = SPIxTXB is full 0 = SPIxTXB not full
	Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR.
	Enhanced Buffer Mode: Indicates TXELM<5:0> = 6' b111111.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit 1 = SPIxRXB is full 0 = SPIxRXB is not full
	Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.
	Enhanced Buffer Mode: Indicates RXELM<5:0> = 6'b111111.

Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

REGISTER 22-5: CFGPAGE: SECURE ARRAY CONFIGURATION BITS (OTP PAGE 0) REGISTER (CONTINUED)

bit 19	SKEYEN: Session Key Enable bit
	 1 = Stored Key #1 may be used only as a Key Encryption Key 0 = Stored Key #1 may be used for any operation
bit 18-11	LKYSRC<7:0>: Locked Key Source Configuration bits
	If SRCLCK = 1:
	1xxxxxxx = Key Source is as if KEYSRC<3:0> = 1111
	01xxxxxx = Key Source is as if KEYSRC<3:0> = 0111
	001xxxxx = Key Source is as if KEYSRC<3:0> = 0110
	0001xxxx = Key Source is as if KEYSRC<3:0> = 0101
	00001xxx = Key Source is as if KEYSRC<3:0> = 0100
	000001xx = Key Source is as if KEYSRC<3:0> = 0011
	0000001x = Key Source is as if KEYSRC<3:0> = 0010
	00000001 = Key Source is as if KEYSRC<3:0> = 0001
	0000000 = Key Source is as if KEYSRC<3:0> = 0000
	If SRCLCK = 0:
	These bits are ignored.
bit 10	SRCLCK: Key Source Lock bit
	 1 = The key source is determined by the KEYSRC<3:0> (CRYCONH<3:0>) bits (software key selection is disabled)
	 The key source is determined by the KEYSRC<3:0> (CRYCONH<3:0>) bits (locked key selection is disabled)
bit 9-1	WRLOCK<8:0>: Write Lock Page Enable bits
	For OTP Pages 0 (CFGPAGE) through 8:
	1 = OTP Page is permanently locked and may not be programmed
	0 = OTP Page is unlocked and may be programmed
bit 0	SWKYDIS: Software Key Disable bit
	 1 = Software key (CRYKEY register) is disabled; when KEYSRC<3:0> = 0000, the KEYFAIL status bit will be set and no encryption/decryption/session key operations can be started until KEYSRC<3:0> bits are changed to a value other than '0000'
	0 = Software key (CRYKEY register) can be used as a key source when KEYSRC<3:0> = 0000

Note 1: This bit's state is mirrored by the PGMTST bit (CRYOTP<7>).

REGISTER 24-4: AD1CON4: A/D CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15			•				bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—		DMABL<2:0> ⁽¹)
bit 7 bit 0							
Legend:							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 DMABL<2:0>: DMA Buffer Size Select bits⁽¹⁾
 - 111 = Allocates 128 words of buffer to each analog input
 - 110 = Allocates 64 words of buffer to each analog input
 - 101 = Allocates 32 words of buffer to each analog input
 - 100 = Allocates 16 words of buffer to each analog input
 - 011 = Allocates 8 words of buffer to each analog input
 - 010 = Allocates 4 words of buffer to each analog input
 - 001 = Allocates 2 words of buffer to each analog input
 - 000 = Allocates 1 word of buffer to each analog input
- **Note 1:** The DMABL<2:0> bits are only used when AD1CON1<11> = 1 and AD1CON1<12> = 0; otherwise, their value is ignored.

REGISTER 24-8:	AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)
----------------	--

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				CHH<1	2:9> ⁽¹⁾		CHH8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHH	<7:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimplem	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unknown	
bit 12-9 bit 8-0	Unimplemented: Read as '0' CHH<12:9>: A/D Compare Hit bits ⁽¹⁾ If CM<1:0> = 11: 1 = A/D Result Buffer n has been written with data or a match has occurred 0 = A/D Result Buffer n has not been written with data For All Other Values of CM<1:0>: 1 = A match has occurred on A/D Result Channel n 0 = No match has occurred on A/D Result Channel n CHH<8:0>: A/D Compare Hit bits If CM<1:0> = 11:						
	0 = A/D Resu For All Other 1 1 = A match h	It Buffer n has be It Buffer n has no <u>Values of CM<1:(</u> has occurred on <i>A</i> has occurred on	t been writte <u>)>:</u> \/D Result Cl	n with data nannel n	itch has occu	rred	

Note 1: The CHH<12:10> bits are unimplemented in 28-pin devices, read as '0'.

REGISTER 24-11: AD1CTMENL: CTMU ENABLE REGISTER (LOW WORD)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—		С	TMEN<12:8> ⁽¹)	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMEN<7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-0 CTMEN<12:0>: CTMU Enable During Conversion bits⁽¹⁾

1 = CTMU is enabled and connected to the selected channel during conversion
 0 = CTMU is not connected to this channel

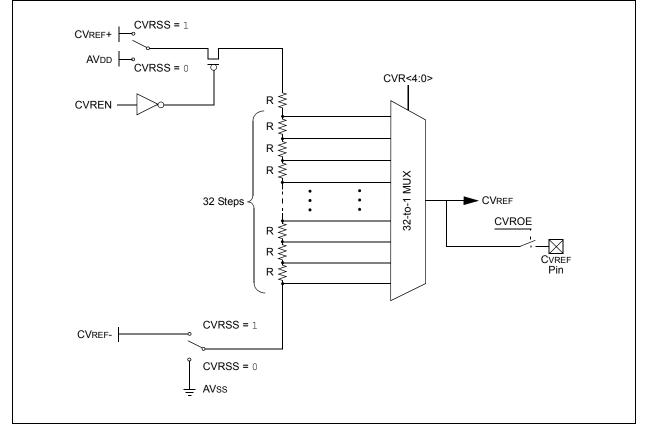
Note 1: The CTMEN<12:10> bits are unimplemented in 28-pin devices, read as '0'.

REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

CON COE CPOL - - - CEVT COU bit 15 - - - - CEVT COU Bit 15 - - - CEVT COU RW-0 RW EVPOL1(1) EVPOL0(1) - CREF - - CCH1 COI bit 7 - - CREF - - CCH1 COI Legend: HS = Hardware Settable bit U = Unimplemented bit, read as '0' - - - CEVT Col - CON: Comparator Enable bit U = Unimplemented is cleared x = Bit is unknown - <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
bit 15 R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W EVPOL1 ⁽¹⁾ EVPOL0 ⁽¹⁾ — CREF — — CCH1 CCF bit 7 Event — — CCH1 CCF	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0, HS	R-0, HSC				
R/W-0 R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 EVPOL1 ⁽¹⁾ EVPOL0 ⁽¹⁾ - CREF - - CCH1 CC bit 7 Legend: HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit CCH1 CC n= value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator is disabled 0 = Comparator output is internal only bit 14 COE: Comparator Output Barbie bit 1 = Comparator output is internal only 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Plarity Select bit 1 = Comparator output is internal only bit 14 COE: comparator output is internal only 0 = Comparator output is internal only bit 12-10 Unimplemented: Read as '0' 0 bit 12-10 Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator event thas not occurred 0 COMparator Upt bit When CPOL = 0: 1 = VIN+ V NN- VIN+ 0 = VIN+ V NN- VIN+ VIN- VIN+ VIN+ VIN+	CON	COE	CPOL	—	—	—	CEVT	COUT				
EVPOL1 ⁽¹⁾ EVPOL0 ⁽¹⁾ — CREF — — CCH1 CCI bit 7 Legend: HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator output Enable bit 1 = Comparator output is internal only bit 14 COE: Comparator Output Enable bit 1 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is internal only bit 14 COE: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator event has not occurred COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN-	bit 15	·						bit 8				
EVPOL1 ⁽¹⁾ EVPOL0 ⁽¹⁾ — CREF — — CCH1 CCI bit 7 Legend: HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as 10' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator is enabled 0 = Comparator output Enable bit 1 = Comparator output is internal only bit 14 COE: Comparator Output Enable bit 1 = Comparator output is internal only bit 3 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is internal only bit 4 COE: Comparator coutput is not inverted 0 = Comparator output is not inverted bit 9 CEVT: Comparator Event bit 1 = Comparator event has is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator output bit When CPOL = 0: 1 1 = VIN+ > VIN- 0 = VIN+ < VIN-												
bit 7 Legend: HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator output Enable bit 1 = Comparator output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is inverted bit 12-10 Unimplemented: Read as '0' 1 = Comparator Output bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN+ 0 = VIN+ < VIN+ 0 = VIN+ < VIN+ 0 = VIN+ > VIN+ 0 = Trigger/Event/Interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/inte			U-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
Legend: HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator is enabled 0' = Bit is cleared x = Bit is unknown bit 14 COE: Comparator Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is inverted 0 = Comparator output is inverted 0 = Comparator event bit 1 = Comparator event bit 1 = Comparator event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inter are disabled until the bit is cleared 0 = Comparator Output bit When CPOL = 0; 1 = VIN+ < VIN-	EVPOL1 ⁽¹⁾	EVPOL0 ⁽¹⁾		CREF			CCH1	CCH0				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator is enabled 0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator output is enabled 0 = Comparator output is internal only bit 14 COE: Comparator output is internal only 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is internal only bit 14 COE: Comparator Cutput Polarity Select bit 1 = Comparator output is internal only bit 12-10 Unimplemented: Read as '0' 0 bit 9 CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator output bit When CPOL = 0: 1 = Vin+ < Vin-	bit 7							bit (
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator is enabled 0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator output Enable bit 1 = Comparator output is internal only bit 14 COE: Comparator output is internal only 0 0 0 bit 13 CPOL: Comparator output is internal only 0 0 0 bit 14 COE: comparator output is inverted 0 0 0 0 Comparator output is inverted 0 0 0 0 bit 12-10 Unimplemented: Read as '0' 0 1 Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0												
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator is enabled 0 = Comparator output is insended 0' = Bit is cleared x = Bit is unknown bit 14 COE: Comparator Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is inverted 0 = Comparator output is inverted 0 = Comparator output is not inverted 0 = Comparator cutput is not inverted bit 9 CEVT: Comparator Cutput bit is cleared 0 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = COT: Comparator Output bit When CPOL = 0: 1 = ViN+ > ViN- 0 = ViN+ > ViN- 0 = ViN+ < ViN-	-											
bit 15 CON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator output Enable bit 1 = Comparator Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted 0 = Comparator cutput is not inverted 1 = Comparator cutput is not inverted 0 = Comparator cutput is defined by EVPOL<1:0> has occurred; subsequent triggers and inter are disabled until the bit is cleared 0 = Comparator cutput bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ > VIN- bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 0 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 0 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CXINA pin bit 3-2 Unimplemented: Read as '0'					•							
1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 1 = VIN+ < VIN-	-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ < VIN-												
0 = Comparator is disabled bit 14 COE: Comparator Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator Event bit 1 = Comparator output bis is cleared 0 = Comparator Output bis is cleared 0 = Comparator Output bit When CPOL = 0: 1 = VIN+ < VIN-	bit 15	-										
bit 14 COE: Comparator Output Enable bit 1 = Comparator output is present on the CXOUT pin 0 = Comparator output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is inverted bit 13 CPOL: Comparator Output is no inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator output bit Men CPOL = 0: 1 = VIN+ S VIN- 0 = VIN+ S VIN- 0 = VIN+ < VIN-		•										
1 = Comparator output is present on the CXOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN-	hit 14	•										
 a Comparator output is internal only bit 13 CPOL: Comparator Output Polarity Select bit a Comparator output is inverted b Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' CEVT: Comparator Event bit a Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and internar disabled until the bit is cleared c Comparator event has not occurred bit 8 COUT: Comparator Output bit when CPOL = 0: t = VIN+ > VIN- t = Trigger/event/interrupt Polarity Select bits⁽¹⁾ t = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled	bit i i											
 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interare disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN- 0 = VIN+ > VIN- 0 = Trigger/Event/Interrupt Polarity Select bits⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CXINA pin 												
 0 = Comparator output is not inverted bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inte are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ > VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ > VIN- 0 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CXINA pin bit 3-2 	bit 13	CPOL: Comparator Output Polarity Select bit										
bit 12-10 Unimplemented: Read as '0' bit 9 CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and inter- are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ > VIN- 1 = VIN+ > VIN- 0 = VIN+ > VIN- 0 = VIN+ > VIN- 0 = Trigger/event/interrupt Polarity Select bits ⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CXINA pin bit 3-2 Unimplemented: Read as '0'		1 = Comparator output is inverted										
bit 9 CEVT: Comparator Event bit 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interare disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN-												
1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and intervare disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN-	bit 12-10	Unimplemented: Read as '0'										
are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ > VIN- 0 = VIN+ > VIN- 0 = VIN+ > VIN- bit 7-6 EVPOL<1:D>: Trigger/Event/Interrupt Polarity Select bits ⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CXINA pin bit 3-2 Unimplemented: Read as '0'	bit 9	CEVT: Comparator Event bit										
 0 = Comparator event has not occurred bit 8 COUT: Comparator Output bit When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ < VIN- 0 = VIN+ > VIN- 0 = VIN+ > VIN- bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin bit 3-2 Unimplemented: Read as '0' 		1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared										
When CPOL = 0: 1 = VIN+ > VIN- 0 = VIN+ < VIN- When CPOL = 1: 1 = VIN+ < VIN- 0 = VIN+ > VIN- bit 7-6 When CPOL = 1: 1 = Trigger/Event/Interrupt Polarity Select bits ⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin bit 3-2 Unimplemented: Read as '0'												
1 = VIN+ > VIN- 0 = VIN+ < VIN-	bit 8	COUT: Comp	arator Output bi	t								
 0 = VIN+ < VIN- When CPOL = 1: 1 = VIN+ < VIN- 0 = VIN+ > VIN- 0 = VIN+ > VIN- bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CXINA pin bit 3-2 Unimplemented: Read as '0' 												
When CPOL = 1: 1 = VIN+ < VIN- 0 = VIN+ > VIN- bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CXINA pin bit 3-2 Unimplemented: Read as '0'		1 = VIN + > VIN -										
1 = VIN+ < VIN-												
 0 = VIN+ > VIN- bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits⁽¹⁾ 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin bit 3-2 Unimplemented: Read as '0' 												
11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin bit 3-2 Unimplemented: Read as '0'												
10 = Trigger/event/interrupt is generated on the high-to-low transition of the comparator output 01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin bit 3-2	bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽¹⁾										
01 = Trigger/event/interrupt is generated on the low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CXINA pin bit 3-2		11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)										
00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin bit 3-2 Unimplemented: Read as '0'												
bit 5 Unimplemented: Read as '0' bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin bit 3-2 Unimplemented: Read as '0'												
bit 4 CREF: Comparator Reference Select bit (non-inverting input) 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin bit 3-2 Unimplemented: Read as '0'	bit 5											
1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pinbit 3-2Unimplemented: Read as '0'		•										
0 = Non-inverting input connects to the CxINA pinbit 3-2 Unimplemented: Read as '0'	~											
bit 3-2 Unimplemented: Read as '0'												
	bit 3-2		÷ .									
		-										

Note 1: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

26.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Comparator Voltage Reference Module" (DS39709). The information in this data sheet supersedes the information in the FRM.

26.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 26-1). The comparator voltage reference provides a range of output voltages with 32 distinct levels. The comparator reference supply voltage can come from either VDD and VSs or the external CVREF+ and CVREF- pins. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ⁽¹⁾	Max	Units Operating VDD		Conditions				
Incremental	Current Bro	wn-out Res	et (∆BOR) ⁽²⁾						
DC25	3.1	5.0	μA	-40°C to +125°C	2.0V				
	4.3	6.0	μA	-40°C to +125°C	3.3V				
Incremental	Current Wat	chdog Time	er (AWDT) ⁽²⁾			•			
DC71	0.8	1.5	μA	-40°C to +125°C	2.0V	۵WDT ⁽²⁾			
	0.8	1.5	μA	-40°C to +125°C	3.3V				
Incremental	Current Hig	h/Low-Volta	ge Detect (A	HLVD) ⁽²⁾		•			
DC75	4.2	15	μA	-40°C to +125°C	2.0V	AHLVD ⁽²⁾			
	4.2	15	μA	-40°C to +125°C	3.3V				
Incremental	Current Rea	I-Time Cloc	k and Calen	dar (∆RTCC) ⁽²⁾					
DC77	0.3	1.0	μA	-40°C to +125°C	2.0V	∆RTCC (with SOSC) ⁽²⁾			
	0.35	1.0	μA	-40°C to +125°C	3.3V				
DC77A	0.3	1.0	μA	-40°C to +125°C	2.0V	∆RTCC (with LPRC) ⁽²⁾			
	0.35	1.0	μA	-40°C to +125°C	3.3V				
Incremental	Current Dee	p Sleep BO) ⁽²⁾					
DC81	0.11	0.40	μA	-40°C to +125°C	2.0V	∆Deep Sleep BOR ⁽²⁾			
	0.12	0.40	μA	-40°C to +125°C	3.3V				
Incremental	Current Dee	p Sleep Wa	tchdog Time	er Reset (∆DSWD	Г) ⁽²⁾				
DC80	0.24	0.40	μA	-40°C to +125°C	2.0V	_ ∆Deep Sleep WDT ⁽²⁾			
	0.24	0.40	μA	-40°C to +125°C	3.3V				
VBAT A/D Mo	onitor ⁽³⁾	-							
DC91	1.5		μA	-40°C to +125°C	3.3V	VBAT = 2V			
	4	—	μA	-40°C to +125°C	3.3V	VBAT = 3.3V			

TABLE 32-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, DSBOR, DSWDT)⁽⁴⁾

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

3: The A/D channel is connected to the VBAT pin internally; this is the current during A/D VBAT operation.

4: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

APPENDIX A: REVISION HISTORY

Revision A (July 2013)

Original data sheet for the PIC24FJ128GA204 family of devices.

Revision B (May 2014)

This revision incorporates the following updates:

- · Sections:
 - Added Section 16.5 "Audio Mode" and Section 16.6 "Registers" Section 16.1 "Standard Master Mode", Section 16.2 "Standard Slave Mode", Section 16.3 "Enhanced Master Mode" and Section 16.4 "Enhanced Slave Mode"
 - Added Section 18.9 "Registers"
 - Updated Section 17.3 "Slave Address Masking",
 - Updated Section 29.3.1 "Windowed Operation"
- Registers:
 - Updated Register 8-45, Register 11-2, Register 11-29, Register 16-6, Register 16-7, Register 17-1, Register 17-2, Register 18-2, Register 18-4, Register 18-6, Register 22-5
 - Updated note in Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"
 - Updated Sections: Section 18.5 "Receiving in 8-Bit or 9-Bit Data Mode"
- Tables:
 - Included Table 32-22, Table 32-23, Table 32-24 and Table 32-25
 - Updated Tables:Table 4-4, Table 4-6, Table 4-9, Table 4-10, Table 4-11, Table 4-12, Table 4-13, Table 4-28, Table 32-3, Table 32-4, Table 32-5, Table 32-6, Table 32-7, Table 32-8, Table 32-10, Table 32-12, Table 32-13, Table 32-14, Table 32-15, Table 32-16 and Table 32-20
- Figures:
 - Included Figure 32-5, Figure 32-6, Figure 32-7 and Figure 32-8
- · Examples:
 - Updated Example 21-1
- Packaging diagrams in Section 33.0 "Packaging Information" were updated
- Changes to text and formatting were incorporated throughout the document

Revision C (March 2015)

This revision incorporates the following updates:

- · Registers:
 - Register 25-1
- Tables:
 - Table 32-4, Table 32-5, Table 32-6 and Table 32-21
- Package Marking examples in Section 33.0 "Packaging Information" were updated