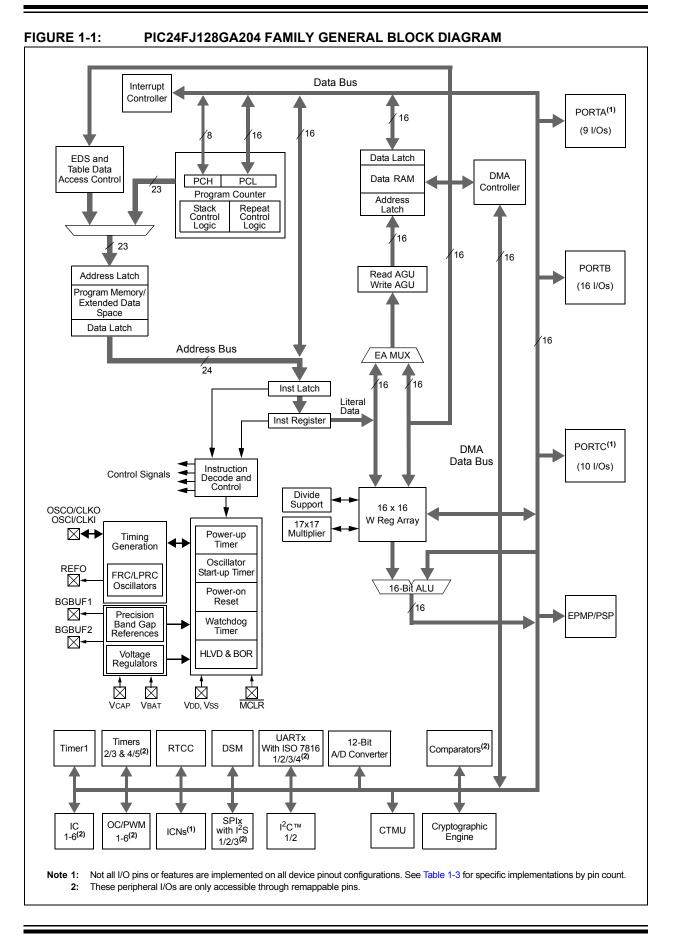


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Decalis	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga204-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Num	ber/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
CTED1	2	27	19	I	ANA	CTMU External Edge Inputs.
CTED2	3	28	20	Ι	ANA	
CTED3	16	13	43	Ι	ANA	
CTED4	18	15	1	Ι	ANA	
CTED5	25	22	14	Ι	ANA	
CTED6	26	23	15	Ι	ANA	
CTED7	—	—	5	Ι	ANA	
CTED8	7	4	24	Ι	ANA	
CTED9	22	19	9	Ι	ANA	
CTED10	17	14	44	Ι	ANA	
CTED11	21	18	8	Ι	ANA	
CTED12	5	2	22	Ι	ANA	
CTED13	6	3	23	Ι	ANA	
CTPLS	24	21	11	0		CTMU Pulse Output.
CVREF	25	22	14	0	ANA	Comparator Voltage Reference Output.
CVREF+	2	27	19	Ι	ANA	Comparator Reference Voltage (high) Input.
CVREF-	3	28	20	Ι	ANA	Comparator Reference Voltage (low) Input.
INT0	16	13	43	Ι	ST	External Interrupt Input 0.
HLVDIN	23	20	10	I	ANA	High/Low-Voltage Detect Input.
MCLR	1	26	18	I	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	9	6	30	I	ANA	Main Oscillator Input Connection.
OSCO	10	7	31	0		Main Oscillator Output Connection.
PGC1	5	2	22	I/O	ST	In-Circuit Debugger/Emulator/ICSP™
PGC2	22	19	9	I/O	ST	Programming Clock.
PGC3	15	12	42	I/O	ST	1
PGD1	4	1	21	I/O	ST]
PGD2	21	18	8	I/O	ST	1
PGD3	14	11	41	I/O	ST	1
Legend: ST = S	Schmitt Trigger	input				mpatible input I = Input P = Power

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog input I^2C = ST with I^2C^{TM} or SMBus levels

O = Output

P = Power

	Pin Num	per/Grid	Locator			
Pin Function	28-Pin SPDIP/SOIC/ SSOP	28-Pin QFN-S	44-Pin TQFP/QFN	I/O	Input Buffer	Description
RP0	4	1	21	I/O	ST	Remappable Peripherals (input or output).
RP1	5	2	22	I/O	ST	
RP2	6	3	23	I/O	ST	
RP3	7	4	24	I/O	ST	
RP5	14	11	41	I/O	ST	
RP6	3,15	12	42	I/O	ST	
RP7	16	13	43	I/O	ST	
RP8	17	14	44	I/O	ST	
RP9	18	15	1	I/O	ST	
RP10	21	18	8	I/O	ST	1
RP11	22	19	9	I/O	ST	
RP12	23	20	10	I/O	ST	
RP13	24	21	11	I/O	ST	
RP14	25	22	14	I/O	ST	
RP15	26	23	15	I/O	ST	
RP16	_		25	I/O	ST	
RP17	_		26	I/O	ST	
RP18	_		27	I/O	ST	
RP19	_		36	I/O	ST	
RP20	_		37	I/O	ST	
RP21	_		38	I/O	ST	
RP22	_		2	I/O	ST	
RP23	_		3	I/O	ST	
RP24	_		4	I/O	ST	
RP25	_	_	5	I/O	ST	1
RPI4	11	8	33	I	ST	Remappable Peripheral (input).
RTCC	25	22	14	0	—	Real-Time Clock Alarm/Seconds Pulse Output
SCL1	17	14	44	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output
SCL2	7	4	24	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output
SCLKI	12	9	34	Ι	—	Secondary Oscillator Digital Clock Input.
SDA1	18	15	1	I/O	l ² C	I2C1 Data Input/Output.
SDA2	6	3	23	I/O	l ² C	I2C2 Data Input/Output.
SOSCI	11	8	33	Ι	ANA	Secondary Oscillator/Timer1 Clock Input.
	12	9	34	0	ANA	Secondary Oscillator/Timer1 Clock Output.

TABLE 1-3: PIC24FJ128GA204 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog input I^2C = ST with I^2C^{TM} or SMBus levels

TABLE 4-21: DMA REGISTER MAP

	, - <u>2</u> .																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMACON	0450	DMAEN	—	—	—	—	—	—	—	—	—	—	—	—	_	—	PRSSEL	0000
DMABUF	0452		DMA Transfer Data Buffer 0											0000				
DMAL	0454												0000					
DMAH	0456							DN	1A Low Add	ress Limit Re	gister							0000
DMACH0	0458	_	_	_	r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT0	045A	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	—	_	HALFEN	0000
DMASRC0	045C			•		•	•	DMA C	hannel 0 Sc	urce Addres	s Register		•	•				0000
DMADST0	045E							DMA Cha	annel 0 Dest	ination Addre	ess Register							0000
DMACNT0	0460							DMA Ch	annel 0 Tra	nsaction Cou	int Register							0001
DMACH1	0462	_	_	_	r	—	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT1	0464	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	—	HALFEN	0000
DMASRC1	0466							DMA C	hannel 1 So	ource Address	s Register							0000
DMADST1	0468							DMA Ch	annel 1 Dest	ination Addre	ess Register							0000
DMACNT1	046A							DMA Ch	nannel 1 Tra	nsaction Cou	nt Register							0001
DMACH2	046C	_	—	_	r	—	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT2	046E	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	—	HALFEN	0000
DMASRC2	0470							DMA C	hannel 2 Sc	urce Addres	s Register							0000
DMADST2	0472							DMA Cha	annel 2 Dest	ination Addre	ess Register							0000
DMACNT2	0474							DMA Ch	annel 2 Tra	nsaction Cou	int Register							0001
DMACH3	0476	_	—	_	r	—	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT3	0478	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	—	HALFEN	0000
DMASRC3	047A							DMA C	hannel 3 Sc	urce Addres	s Register							0000
DMADST3	047C							DMA Cha	annel 3 Dest	ination Addre	ess Register							0000
DMACNT3	047E							DMA Ch	annel 3 Tra	nsaction Cou	int Register							0001
DMACH4	0480	_	_	_	r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT4	0482	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	_	HALFEN	0000
DMASRC4	0484							DMA C	hannel 4 Sc	urce Addres	s Register							0000
DMADST4	0486							DMA Cha	annel 4 Dest	ination Addre	ess Register							0000
DMACNT4	0488							DMA Ch	annel 4 Tra	nsaction Cou	int Register							0001
DMACH5	048A	_	_		r	_	NULLW	RELOAD	CHREQ	SAMODE1	SAMODE0	DAMODE1	DAMODE0	TRMODE1	TRMODE0	SIZE	CHEN	0000
DMAINT5	048C	DBUFWF	_	CHSEL5	CHSEL4	CHSEL3	CHSEL2	CHSEL1	CHSEL0	HIGHIF	LOWIF	DONEIF	HALFIF	OVRUNIF	_	_	HALFEN	0000
DMASRC5	048E			•				DMA C	hannel 5 Sc	urce Addres	s Register							0000
DMADST5	0490	İ						DMA Cha	annel 5 Dest	ination Addre	ess Register							0000
DMACNT5	0492	İ						DMA Ch	annel 5 Tra	nsaction Cou	int Register							0001
L	1	1									U -							لـــــــــــــــــــــــــــــــــــــ

Legend: — = unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal.

4.2.5.1 Data Read from EDS

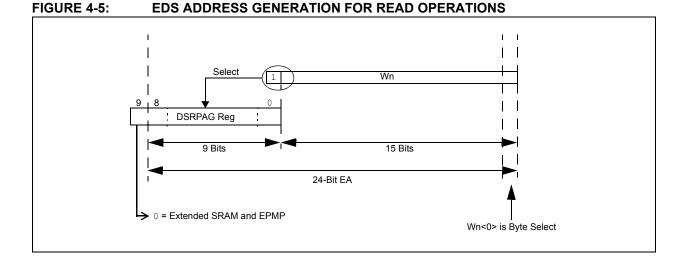

In order to read the data from the EDS space first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-5 illustrates how the EDS space address is generated for read operations.

When the Most Significant bit of the EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of the EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double-word from EDS.

Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles are required to complete an EDS read. EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

; Set the EDS mov	<pre>g page from where #0x0002, w0</pre>	e the data to be read
mov	w0, DSRPAG	;page 2 is selected for read
mov	#0x0800, w1	;select the location (0x800) to be read
bset	w1, #15	;set the MSB of the base address, enable EDS mode
;Read a byte	from the selecte	ed location
mov.b	[w1++], w2	;read Low byte
mov.b	[w1++], w3	;read High byte
;Read a word	from the selecte	d location
mov	[w1], w2	;
,		selected location ;two word read, stored in w2 and w3

REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER
--

R/S-0, HC ⁽¹⁾	R/W-0 ⁽¹⁾	R-0, HSC ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	_	_	_	_	_
bit 15		<u> </u>					bit
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE		—	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit
Legend:		S = Settable b	it	HC = Hardwa	re Clearable bi	t	
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
HSC = Hardw	are Settable/C	learable bit					
	ما معتمما م						
	0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writ 1 = An impro- automatic	or erase operat Enable bit ⁽¹⁾ Flash program/er lash program/er te Sequence Er oper program o cally on any set	ion is complet rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the	ns s uence attempt wR bit)	, or terminatio	on has occurre	
bit 13	0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writ 1 = An impro- automatic 0 = The prog	or erase operat Enable bit ⁽¹⁾ Flash program/er lash program/er te Sequence Er oper program o cally on any set ram or erase op	ion is complet rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl	e and inactive ns s uence attempt wR bit)	, or terminatio	on has occurre	and the bit i ed (bit is se
bit 13 bit 12-7	0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writ 1 = An impro- automatic 0 = The prog Unimplemen	or erase operat Enable bit ⁽¹⁾ Flash program/erash tash program/erash te Sequence Err oper program o cally on any set rram or erase op ted: Read as '0	ion is complet rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl	e and inactive ns s uence attempt wR bit)	, or terminatic	on has occurre	
bit 13 bit 12-7	0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writ 1 = An impro- automatic 0 = The prog Unimplemen ERASE: Erass 1 = Performs	or erase operat Enable bit ⁽¹⁾ Flash program/er lash program/er te Sequence Er oper program o cally on any set ram or erase op	ion is complet rase operation ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl ble bit ⁽¹⁾ ation specified	e and inactive ns s uence attempt WR bit) leted normally by the NVMOF	P<3:0> bits on t	he next WR co	ed (bit is se mmand
bit 13 bit 12-7 bit 6	 0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Write 1 = An impro- automatic 0 = The prog Unimplement ERASE: Erass 1 = Performs 0 = Performs 	or erase operat Enable bit ⁽¹⁾ Flash program/er te Sequence Err oper program of cally on any set ram or erase op ted: Read as '0 se/Program Ena the erase opera	rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl ble bit ⁽¹⁾ ation specified eration specified	e and inactive ns s uence attempt WR bit) leted normally by the NVMOF	P<3:0> bits on t	he next WR co	ed (bit is se mmand
bit 13 bit 12-7 bit 6 bit 5-4	 0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Writi 1 = An impro- automatic 0 = The prog Unimplement ERASE: Erass 1 = Performs 0 = Performs Unimplement 	or erase operat Enable bit ⁽¹⁾ Flash program/erash te Sequence Erro oper program of cally on any set ram or erase op ted: Read as '0 se/Program Ena the erase operator the program op	ion is complet rase operation ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl , ble bit ⁽¹⁾ ation specified eration specifi	e and inactive ns s uence attempt WR bit) leted normally by the NVMOF ied by the NVM	P<3:0> bits on t	he next WR co	ed (bit is se mmand
bit 14 bit 13 bit 12-7 bit 6 bit 5-4 bit 3-0	 0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Write 1 = An impro- automatic 0 = The prog Unimplemen ERASE: Erass 1 = Performs 0 = Performs Unimplemen NVMOP<3:0> 1111 = Memo- 0011 = Memo- 0010 = Memo- 	or erase operat Enable bit ⁽¹⁾ Flash program/erash te Sequence Erro oper program of cally on any set rram or erase operative ted: Read as '0 se/Program Ena the erase operative the program op ted: Read as '0	ion is complet rase operation ase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the beration compl ble bit ⁽¹⁾ ation specified eration specified eration specified peration (ERA m operation (ERA	te and inactive hs s uence attempt e WR bit) leted normally by the NVMOF ied by the NVMOF ied by the NVM 1,2) ASE = 1) or no of ERASE = 0) or no	P<3:0> bits on t OP<3:0> bits of operation (ERA no operation (ER operation (ER/	he next WR co on the next WR SE = 0) ⁽³⁾ ERASE = 1) ASE = 0)	ed (bit is se mmand
bit 13 bit 12-7 bit 6 bit 5-4 bit 3-0 Note 1: The	 0 = Program WREN: Write 1 = Enables F 0 = Inhibits FI WRERR: Write 1 = An impro- automatic 0 = The prog Unimplement ERASE: Erast 1 = Performs 0 = Performs Unimplement NVMOP<3:0> 1111 = Memo- 0011 = Memo- 0001 = Memo- ese bits can on 	or erase operations of erase operations of erase operations of enable bit ⁽¹⁾ Flash program/erases operations of erase oper program of erase oper trained or erase operations of erase operations of the erase operations of	ion is complet rase operation arase operations ror Flag bit ⁽¹⁾ or erase seq attempt of the peration compl ble bit ⁽¹⁾ ation specified eration specified peration (ERA m operation (ERA m operation (ERA n operation (ERA	e and inactive hs s uence attempt e WR bit) leted normally by the NVMOF ied by P<3:0> bits on t OP<3:0> bits of operation (ERA no operation (ER operation (ER/	he next WR co on the next WR SE = 0) ⁽³⁾ ERASE = 1) ASE = 0)	ed (bit is s mmand	

3: Available in ICSP[™] mode only; refer to the device programming specification.

6.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 6-1):
 - a) Set the NVMOPx bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 6-3).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 6-4.

EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)

; Set up NVMCON for block erase operation MOV #0×4042, W0 MOV W0, NVMCON ; Initialize NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR), W0 ; MOV W0, TBLPAG ; Initialize Program Memory (PM) Page Boundary SFR MOV #tbloffset(PROG ADDR), W0 ; Initialize in-page EA<15:0> pointer TBLWTL WO, [WO] ; Set base address of erase block ; Block all interrupts with priority <7 DISI #5 ; for next 5 instructions MOV.B #0x55, W0 MOV WO. NVMKEY ; Write the 0x55 key MOV.B #0xAA, W1 : MOV W1, NVMKEY ; Write the OxAA key BSET NVMCON, #WR ; Start the erase sequence NOP ; Insert two NOPs after the erase NOP ; command is asserted

6.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using Table Write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes (MSBs) of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write

latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOPx bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 6-5). An equivalent procedure in 'C' compiler language, using the MPLAB[®] C30 compiler and built-in hardware functions, is shown in Example 6-6.

EXAMPLE 6-5: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

MOV MOV	-	; ;Initialize PM Page Boundary SFR ;Initialize a register with program memory address
	#LOW_WORD_N, W2	;
MOV	#HIGH_BYTE_N, W3	;
TBLWTL	W2, [W0]	; Write PM low word into program latch
TBLWTH	W3, [W0++]	; Write PM high byte into program latch
MOV	MCON for programming one word t #0x4003, W0 W0, NVMCON	o data Program Memory ; ; Set NVMOP bits to 0011
DISI	#5	; Disable interrupts while the KEY sequence is written
MOV.B	#0x55, W0	; Write the key sequence
MOV	W0, NVMKEY	
MOV.B	#0xAA, W0	
MOV	W0, NVMKEY	
BSET	NVMCON, #WR	; Start the write cycle
NOP		; Required delays
NOP		

EXAMPLE 6-6: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

// C example using MPLAB C30	
unsigned int offset;	
unsigned long progAddr = 0xXXXXXX;	<pre>// Address of word to program</pre>
unsigned int progDataL = 0xXXXX;	// Data to program lower word
unsigned char progDataH = 0xXX;	// Data to program upper byte
//Set up NVMCON for word programming	
$NVMCON = 0 \times 4003;$	// Initialize NVMCON
//Oct we reinter to the first memory leasting	
//Set up pointer to the first memory locatio	
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	<pre>// Initialize lower word of address</pre>
//Perform TBLWT instructions to write latche	s
<pre>builtin tblwtl(offset, progDataL);</pre>	// Write to address low word
<pre>builtin tblwth(offset, progDataH);</pre>	// Write to upper byte
asm("DISI #5");	<pre>// Block interrupts with priority <7</pre>
	// for next 5 instructions
builtin_write_NVM();	// C30 function to perform unlock
	// sequence and set WR

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0
bit 15			·	·		·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP0
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemer	ted: Read as '	0'				
bit 14-12	T2IP<2:0>: ⊺	imer2 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priorit	ty interrupt)			
	•						
	•						
		pt is Priority 1					
		ipt source is dis					
oit 11	•	ted: Read as '					
bit 10-8		: Output Compa		-	ty bits		
	•	pt is Priority 7 (ingnest priori	ty interrupt)			
	•						
	• 001 - Interru	unt in Driarity 1					
		ipt is Priority 1 ipt source is dis	abled				
bit 7							
bit 7 bit 6-4	-	∙ ited: Read as 'i Input Capture 0	0'	rrupt Priority bi	ts		
	IC2IP<2:0>:	ted: Read as '	o' Channel 2 Inte		ts		
	IC2IP<2:0>:	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts		
	IC2IP<2:0>:	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts		
	IC2IP<2:0>: 111 = Interru	n ted: Read as ' Input Capture C	o' Channel 2 Inte		ts		
	IC2IP<2:0>: 111 = Interru	nted: Read as f Input Capture C upt is Priority 7 (upt is Priority 1 upt source is dis	₀ , Channel 2 Inte (highest priorit sabled		ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu	nted: Read as f Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as f	^{0'} Channel 2 Inte (highest priorit sabled	ty interrupt)	ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts		
	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as f Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as f	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Internu 001 = Internu 000 = Internu Unimplemen DMA0IP<2:0	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA0IP<2:0 111 = Interru	nted: Read as f Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as f >: DMA Chann opt is Priority 7 (0' Channel 2 Inte (highest priorit sabled 0' el 0 Interrupt I	ty interrupt) Priority bits	ts		
bit 6-4 bit 3	IC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen DMA0IP<2:0 111 = Interru 001 = Interru	nted: Read as ' Input Capture C opt is Priority 7 (opt is Priority 1 opt source is dis nted: Read as ' >: DMA Chann	0' Channel 2 Inte (highest priorif sabled 0' el 0 Interrupt I (highest priorif	ty interrupt) Priority bits	ts		

REGISTER	(0-24. IF 03.			CONTROL RE			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					DMA1IP2	DMA1IP1	DMA1IP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0
bit 7			1			1	bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 10-8 bit 7 bit 6-4	111 = Interru 001 = Interru 000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru 001 = Interru	>: DMA Chann pt is Priority 7 (pt is Priority 1 pt source is dis ited: Read as ' A/D Interrupt F pt is Priority 7 (pt is Priority 1	(highest priority abled o' Priority bits (highest priority	/ interrupt)			
bit 3 bit 2-0	Unimplemen U1TXIP<2:0> 111 = Interru • • 001 = Interru	<pre>ipt source is dis ited: Read as 'i >: UART1 Trans ipt is Priority 7 (ipt is Priority 1 ipt source is dis</pre>	₀ ' smitter Interrup (highest priority	•			

REGISTER 8-24: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	SPI3TXIP2	SPI3TXIP1	SPI3TXIP0		SPI3IP2	SPI3IP1	SPI3IP0				
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	U4TXIP2	U4TXIP1	U4TXIP0		U4RXIP2	U4RXIP1	U4RXIP0				
bit 7	0117412	O TIXE T	0 TIXII 0		0 notin 2	O HOULT	bit				
Legend:											
R = Readabl		W = Writable			mented bit, reac						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN				
bit 15	Unimplement	ted: Read as ')'								
bit 14-12	-	>: SPI3 Trans		riority bits							
	111 = Interrup	ot is Priority 7 (highest priority	/ interrupt)							
	•										
	•										
	001 = Interrup										
	-	ot source is dis									
bit 11	Unimplemented: Read as '0' SPI3IP<2:0>: SPI3 General Interrupt Priority bits										
bit 10-8			•								
	•	ot is Priority 7 (nignest priority	/ interrupt)							
	•										
	•	at in Driamity 1									
	001 = Interrup	ot is Phonity 1	abled								
bit 7	-	ted: Read as '									
bit 6-4	-	: UART4 Trans		t Priority bits							
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interrup										
	-	ot source is dis									
bit 3	-	ted: Read as '									
bit 2-0		: UART4 Rece ot is Priority 7 (
	•		nighest phonty	interrupt)							
	•										
	• 001 = Interrup	t is Driority 1									

REGISTER 8-42: IPC22: INTERRUPT PRIORITY CONTROL REGISTER 22

10.4.2 EXITING DEEP SLEEP MODE

Deep Sleep mode exits on any one of the following events:

- POR event on VDD supply. If there is no DSBOR circuit to rearm the VDD supply POR circuit, the external VDD supply must be lowered to the natural arming voltage of the POR circuit.
- DSWDT time-out. When the DSWDT times out, the device exits Deep Sleep.
- RTCC alarm (if RTCEN = 1).
- Assertion ('0') of the $\overline{\text{MCLR}}$ pin.
- Assertion of the INT0 pin (if the interrupt was enabled before Deep Sleep mode was entered). The polarity configuration is used to determine the assertion level ('0' or '1') of the pin that will cause an exit from Deep Sleep mode. Exiting from Deep Sleep mode requires a change on the INT0 pin while in Deep Sleep mode.

Note: Any interrupt pending when entering Deep Sleep mode is cleared.

Exiting Deep Sleep generally does not retain the state of the device and is equivalent to a Power-on Reset (POR) of the device. Exceptions to this include the RTCC (if present), which remains operational through the wake-up, the DSGPRx registers and the DSWDT.

Wake-up events that occur from the time Deep Sleep exits until the time the POR sequence completes are not ignored. The DSWAKE register will capture ALL wake-up events, from setting the DSEN bit to clearing the RELEASE bit.

The sequence for exiting Deep Sleep mode is:

- 1. After a wake-up event, the device exits Deep Sleep and performs a POR. The DSEN bit is cleared automatically. Code execution resumes at the Reset vector.
- To determine if the device exited Deep Sleep, read the Deep Sleep bit, DPSLP (RCON<10>). This bit will be set if there was an exit from Deep Sleep mode. If the bit is set, clear it.
- 3. Determine the wake-up source by reading the DSWAKE register.
- Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCON<1>).
- 5. If application context data has been saved, read it back from the DSGPR0 and DSGPR1 registers.
- 6. Clear the RELEASE bit (DSCON<0>).

10.4.3 SAVING CONTEXT DATA WITH THE DSGPRx REGISTERS

As exiting Deep Sleep mode causes a POR, most Special Function Registers reset to their default POR values. In addition, because VCORE power is not supplied in Deep Sleep mode, information in data RAM may be lost when exiting this mode.

Applications which require critical data to be saved prior to Deep Sleep, may use the Deep Sleep General Purpose registers, DSGPR0 and DSGPR1, or data EEPROM (if available). Unlike other SFRs, the contents of these registers are preserved while the device is in Deep Sleep mode. After exiting Deep Sleep, software can restore the data by reading the registers and clearing the RELEASE bit (DSCON<0>).

Note: User software should enable the DSSWEN (CW4<8>) Configuration Fuse bit for saving critical data in the DSGPRx registers.

10.4.4 I/O PINS IN DEEP SLEEP MODE

During Deep Sleep, the general purpose I/O pins retain their previous states and the Secondary Oscillator (SOSC) will remain running, if enabled. Pins that are configured as inputs (TRISx bit is set), prior to entry into Deep Sleep, remain high-impedance during Deep Sleep. Pins that are configured as outputs (TRISx bit is clear), prior to entry into Deep Sleep, remain as output pins during Deep Sleep. While in this mode, they continue to drive the output level determined by their corresponding LATx bit at the time of entry into Deep Sleep.

Once the device wakes back up, all I/O pins continue to maintain their previous states, even after the device has finished the POR sequence and is executing application code again. Pins configured as inputs during Deep Sleep remain high-impedance and pins configured as outputs continue to drive their previous value. After waking up, the TRISx and LATx registers, and the SOSCEN bit (OSCCON<1>) are reset. If firmware modifies any of these bits or registers, the I/O will not immediately go to the newly configured states. Once the firmware clears the RELEASE bit (DSCON<0>), the I/O pins are "released". This causes the I/O pins to take the states configured by their respective TRISx and LATx bit values.

This means that keeping the SOSC running after waking up requires the SOSCEN bit to be set before clearing RELEASE.

If the Deep Sleep BOR (DSBOR) is enabled, and a DSBOR or a true POR event occurs during Deep Sleep, the I/O pins will be immediately released, similar to clearing the RELEASE bit. All previous state information will be lost, including the general purpose DSGPR0 and DSGPR1 contents.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = OCTRIG1 external input
 - 11101 = OCTRIG2 external input
 - 11100 = CTMU⁽²⁾
 - 11011 = A/D⁽²⁾
 - $11010 = \text{Comparator } 3^{(2)}$
 - $11001 = \text{Comparator } 2^{(2)}$
 - 11000 = Comparator 1⁽²⁾
 - 10111 = Reserved 10110 = Reserved
 - $10101 = \text{Input Capture 6}^{(2)}$
 - $10100 = \text{Input Capture 5}^{(2)}$
 - 10011 =Input Capture 4⁽²⁾
 - $10010 = \text{Input Capture 3}^{(2)}$
 - 10001 =Input Capture 2⁽²⁾
 - 10000 = Input Capture 1⁽²⁾
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2
 - 01011 = Timer1
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Output Compare 6⁽¹⁾
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare $3^{(1)}_{(1)}$
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- **Note 1:** Never use an OCx module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

REGISTE	ER 16-1: SPIxCON1L	: SPIx CONT	ROL REGISTER 1 LOW (CONTINUED)						
bit 11-10	MODE<32,16>: Seria	I Word Length	bits ^(1,4)						
	<u>AUDEN = 0:</u>								
		MODE16	COMMUNICATION 32-Bit						
	1 0	x 1	16-Bit						
	0	0	8-Bit						
	AUDEN = 1:								
	MODE32	MODE16	COMMUNICATION						
	1	1	24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame						
	1 0	0 1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame 16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame						
	0	0	16-Bit Data, 16-Bit FIFO, 16-Bit Channel/32-Bit Frame						
bit 9	SMP: SPIx Data Inpu	t Sample Phas	e bit						
	Master Mode:								
	1 = Input data is sam								
	0 = input data is sam	pled at the mid	dle of data output time						
	Input data is always s		middle of data output time, regardless of the SMP bit setting.						
bit 8	CKE: SPIx Clock Edg	•							
			rom active clock state to Idle clock state rom Idle clock state to active clock state						
bit 7	SSEN: Slave Select E								
	$1 = \overline{SSx}$ pin is used b	y the macro in	Slave mode; \overline{SSx} pin is used as the slave select input o (\overline{SSx} pin will be controlled by the port I/O)						
bit 6	CKP: Clock Polarity S	-							
			l; active state is a low level						
	0 = Idle state for clock	k is a low level;	active state is a high level						
bit 5	MSTEN: Master Mode	e Enable bit							
	1 = Master mode								
bit 4	0 = Slave mode DISSDI: Disable SDI	(Input Port hit							
DIL 4		•	ule; pin is controlled by the port function						
	0 = SDIx pin is contro	olled by the mod	dule						
bit 3	DISSCK: Disable SC	-							
	1 = SCKx pin is not u 0 = SCKx pin is contr		dule; pin is controlled by the port function odule						
bit 2	MCLKEN: Master Clo	ock Enable bit ⁽³	3)						
		1 = MCLK is used by the BRG 0 = PBCLK is used by the BRG							
bit 1	SPIFE: Frame Sync F	Pulse Edge Sel	ect bit						
		•	edge) coincides with the first bit clock edge) precedes the first bit clock						
bit 0	ENHBUF: Enhanced	Buffer Mode E	nable bit						
	1 = Enhanced Buffer 0 = Enhanced Buffer								
Note 1:	When AUDEN = 1. this m	nodule functions	s as if CKE = 0, regardless of its actual value.						
2:	When FRMEN = 1, SSEN								
3:	MCLKEN can only be write		SPIEN bit = 0.						
4:	-		PCM mode as LRC follows FRMSYPW.						

4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

R/W-0	U-0	R/W-0, HC	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0					
I2CEN		I2CSIDL	SCLREL ⁽¹⁾	STRICT	A10M	DISSLW	SMEN					
bit 15	-	-				•	bit 8					
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC					
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN					
bit 7	it 7 bit											
Legend:		HC = Hardwa	e Clearable bit									
R = Readabl		W = Writable I	pit	-	nented bit, read							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 15	1 = Enables f 0 = Disables	Enable bit (writa he I2Cx module the I2Cx module	e, and configure e; all l ² C™ pins	s the SDAx ar			3					
bit 14	Unimplemen	ted: Read as '0	3									
bit 13		x Stop in Idle M										
		ues module ope			e mode							
bit 12		s module operat			(1)							
	<pre>SCLREL: SCLx Release Control bit (I²C Slave mode only)⁽¹⁾ Module resets and (I2CEN = 0) sets SCLREL = 1. <u>If STREN = 0:</u>⁽²⁾ 1 = Releases clock 0 = Forces clock low (clock stretch) <u>If STREN = 1:</u> 1 = Releases clock 0 = Holds clock low (clock stretch); user may program this bit to '0'; clock stretch is at the next SCLx low</pre>											
bit 11	STRICT: 12C	x Strict Reserve	d Address Rule	Enable bit								
	 STRICT: I2Cx Strict Reserved Address Rule Enable bit 1 = Strict reserved addressing is enforced; for reserved addresses, refer to Table 17-1. (In Slave Mode) – The device doesn't respond to reserved address space and addresses falling in that category are NACKed. (In Master Mode) – The device is allowed to generate addresses with reserved address space. 0 = Reserved addressing would be Acknowledged. (In Slave Mode) – The device will respond to an address falling in the reserved address space. 0 = Reserved addressing would be Acknowledged. (In Slave Mode) – The device will respond to an address falling in the reserved address space. When there is a match with any of the reserved addresses, the device will generate an ACK. (In Master Mode) – Reserved. 											
bit 10	A10M: 10-Bit	Slave Address	Flag bit									
		is a 10-bit slave is a 7-bit slave a										
bit 9	DISSLW: Sle	DISSLW: Slew Rate Control Disable bit										
		control is disab				disabled for 1	MHz mode)					
bit 8	SMEN: SMB	us Input Levels	Enable bit									
		nput logic so thr SMBus-specific		mpliant with th	e SMBus speci	ification						
	utomatically cle ave reception.	eared to '0' at the	e beginning of s	lave transmiss	ion; automatica	ally cleared to '0	' at the end of					

REGISTER 17-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

2: Automatically cleared to '0' at the beginning of slave transmission.

TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $								
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions				
Operat	Operating Voltage										
DC10	Vdd	Supply Voltage	2.0	_	3.6	V	BOR disabled				
			VBOR	_	3.6	V	BOR enabled				
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	Greater of: VPORREL or VBOR	_	-	V	VBOR used only if BOR is enabled (BOREN = 1)				
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	-	V	(Note 2)				
DC16A	VPORREL	VDD Power-on Reset Release Voltage	1.80	1.88	1.95	V	(Note 3)				
DC17A	SRVDD	Recommended VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	0-3.3V in 66 ms, 0-2.5V in 50 ms (Note 2)				
DC17B	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.1	2.2	V	(Note 3)				

Note 1: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

2: If the VPOR or SRVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

3: On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

DC CHARAC	TERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ⁽¹⁾	Мах	Units	Operating Temperature	Vdd	Conditions			
Idle Current	(IIDLE) ⁽²⁾								
DC40	116	150	μA	-40°C to +85°C	2.0V				
		170	μA	+125°C	2.0V	1 MIPS,			
	123	160	μA	-40°C to +85°C	3.3V	Fosc = 2 MHz			
		180	μA	+125°C	3.3V				
DC43	0.39	0.5	mA	-40°C to +85°C	2.0V				
		0.52	mA	+125°C	2.0V	4 MIPS,			
	0.41	0.54	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz			
		0.56	mA	+125°C	3.3V				
DC47	1.5	1.9	mA	-40°C to +85°C	2.0V				
	—	2	mA	+125°C	2.0V	16 MIPS,			
	1.6	2.0	mA	-40°C to +85°C	3.3V	Fosc = 32 MHz			
		2.1	mA	+125°C	3.3V				
DC50	0.54	0.61	mA	-40°C to +85°C	2.0V	4 MIPS (FRC),			
	0.54	0.64	mA	-40°C to +85°C	3.3V	Fosc = 8 MHz			
DC51	17	78	μA	-40°C to +85°C	2.0V				
	—	128	μA	+125°C	2.0V	LPRC (15.5 KIPS),			
	18	80	μA	-40°C to +85°C	3.3V	Fosc = 31 kHz			
		130	μA	+125°C	3.3V				

TABLE 32-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

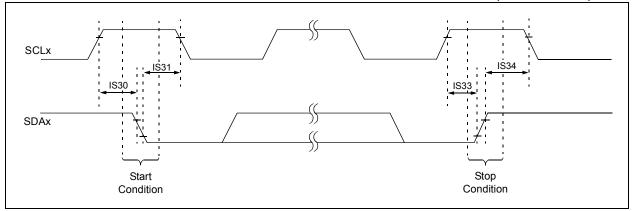
2: Base IIDLE current is measured with the core off, the clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
DVB01	Vbt	Operating Voltage	1.6	_	3.6	V	Battery connected to the VBAT pin
DVB10	VBTADC	VBAT A/D Monitoring Voltage Specification ⁽¹⁾	1.6	—	3.6		A/D monitoring the VBAT pin using the internal A/D channel

TABLE 32-15: VBAT OPERATING VOLTAGE SPECIFICATIONS

Note 1: Measuring the A/D value using the A/D is represented by the equation: Measured Voltage = ((VBAT/2)/VDD) * 4096) for 12-bit A/D

TABLE 32-16: CTMU CURRENT SOURCE SPECIFICATIONS


DC CH	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym Characteristic Min I lyp ⁽¹⁾ Max ⁽⁹⁾ Units Comments							Conditions
DCT10	IOUT1	CTMU Current Source, Base Range	208	550	797	nA	CTMUICON<9:8> = 00	
DCT11	IOUT2	CTMU Current Source, 10x Range	3.32	5.5	7.67	μA	CTMUICON<9:8> = 01	2.5V < VDD < VDDMAX
DCT12	IOUT3	CTMU Current Source, 100x Range	32.22	55	77.78	μΑ	CTMUICON<9:8> = 10	2.5V < VDD < VDDMAX
DCT13	IOUT4	CTMU Current Source, 1000x Range	322	550	777	μA	CTMUICON<9:8> = 11 ⁽²⁾	
DCT21	VΔ	Temperature Diode Voltage Change per Degree Celsius	—	-3	—	mV/°C		

Note 1: Nominal value at the center point of the current trim range (CTMUICON<15:10> = 000000).

2: Do not use this current range with a temperature sensing diode.

3: Maximum values are tested at +85°C.

FIGURE 32-6: I²C[™] BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

TABLE 32-24: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (SLAVE MODE)

АС СН	ARACTE	RISTICS					.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
IS30	Tsu:sta	Start Condition	100 kHz mode	4.7	_	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μs	Start condition
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	_	μS	After this period, the first clock
			400 kHz mode	0.6	_	μS	pulse is generated
			1 MHz mode ⁽¹⁾	0.25	_	μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μs	
		Setup Time	400 kHz mode	0.6	_	μS	
			1 MHz mode ⁽¹⁾	0.6	—	μs	
IS34	THD:STO	STO Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600	_	ns	
			1 MHz mode ⁽¹⁾	250	_	ns	

Note 1: Maximum Pin Capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

NOTES: