

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, PMP/PSP, SmartCard, SPI, UART/USART
Peripherals	AES, Brown-out Detect/Reset, DMA, I ² S, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64ga204-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	_	_		_	-	—	—	—		MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_	_	—	_	—	—	-	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	I	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1TXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	I	DMA4IF	PMPIF			OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	CRYROLLIF	CRYFREEIF	SPI2TXIF	SPI2IF	0000
IFS3	008A	-	RTCIF	DMA5IF	SPI3RXIF	SPI2RXIF	SPI1RXIF	—	KEYSTRIF	CRYDNIF	INT4IF	INT3IF	—	-	MI2C2IF	SI2C2IF	—	0000
IFS4	008C	-	—	CTMUIF	_	-	_	—	HLVDIF	—	—	—	—	CRCIF	U2ERIF	U1ERIF	—	0000
IFS5	008E	-	—	-	_	SPI3TXIF	SPI3IF	U4TXIF	U4RXIF	U4ERIF	—	I2C2BCIF	I2C1BCIF	U3TXIF	U3RXIF	U3ERIF	—	0000
IFS6	0090	I	-				FSTIF	-	_	_	_						_	0000
IFS7	0092	I	-					-	_	_	_	JTAGIF					_	0000
IEC0	0094	I	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1TXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	I	DMA4IE	PMPIE			OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	CRYROLLIE	CRYFREEIE	SPI2TXIE	SPI2IE	0000
IEC3	009A	I	RTCIE	DMA5IE	SPI3RXIE	SPI2RXIE	SPI1RXIE	-	KEYSTRIE	CRYDNIE	INT4IE	INT3IE			MI2C2IE	SI2C2IE	—	0000
IEC4	009C	I	-	CTMUIE			-	-	HLVDIE	—	_			CRCIE	U2ERIE	U1ERIE	—	0000
IEC5	009E	I	-			SPI3TXIE	SPI3IE	U4TXIE	U4RXIE	U4ERIE	_	I2C2BCIE	I2C1BCIE	U3TXIE	U3RXIE	U3ERIE	—	0000
IEC6	00A0	I	-				FSTIE	-	—	—	_						—	0000
IEC7	00A2	I	-				-	-	—	—	_	JTAGIE					—	0000
IPC0	00A4	I	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	I	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0		DMA0IP2	DMA0IP1	DMA0IP0	4444
IPC2	00A8	-	U1RXIP2	U1RXIP1	U1RXIP0	-	SPI1TXIP2	SPI1TXIP1	SPI1TXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	-	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	-	—	-	_	-	DMA1IP2	DMA1IP1	DMA1IP0	—	AD1IP2	AD1IP1	AD1IP0	-	U1TXIP2	U1TXIP1	U1TXIP0	0444
IPC4	00AC	I	CNIP2	CNIP1	CNIP0		CMIP2	CMIP1	CMIP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	I	-				-	-	—	—	_					INT1IP<2:0>		0004
IPC6	00B0	I	T4IP2	T4IP1	T4IP0	I	OC4IP2	OC4IP1	OC4IP0	—	OC3IP2	OC3IP1	OC3IP0		DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	00B2	I	U2TXIP2	U2TXIP1	U2TXIP0	I	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	CRYROLLIP2	CRYROLLIP1	CRYROLLIP0	-	CRYFREEIP2	CRYFREEIP1	CRYFREEIP0	—	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	-	SPI2IP2	SPI2IP1	SPI2IP0	4444
IPC9	00B6	-	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	DMA3IP2	DMA3IP1	DMA3IP0	4444
IPC10	00B8	_	_	-	_	_	OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	_	IC6IP2	IC6IP1	IC6IP0	0444
IPC11	00BA	-	_	_	_	_	DMA4IP2	DMA4IP1	DMA4IP0	_	PMPIP2	PMPIP1	PMPIP0	_	_	_	_	0440
IPC12	00BC	_	_	_	_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	_	_	—	0440
IPC13	00BE	_	CRYDNIP2	CRYDNIP1	CRYDNIP0	—	INT4IP2	INT4IP1	INT4IP0	—	INT3IP2	INT3IP1	INT3IP0	_	_	—	_	4440
IPC14	00CO	_	SPI2RXIP2	SPI2RXIP1	SPI2RXIP0	—	SPI1RXIP2	SPI1RXIP1	SPI1RXIP0	—	—	—	_	_	KEYSTRIP2	KEYSTRIP1	KEYSTRIP0	4404
IPC15	00C2		_	—	_	_	RTCIP2	RTCIP1	RTCIP0	_	DMA5IP2	DMA5IP1	DMA5IP0	_	SPI3RXIP2	SPI3RXIP1	SPI3RXIP0	0444

DS30010038C-page 39

	TABLE 4-18:	A/D CONVERTER REGISTER MAP
--	-------------	----------------------------

			-						-	-								
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0200		A/D Data Buffer 0/Threshold for Channel 0											xxxx				
ADC1BUF1	0202						A/D	Data Buffer	1/Thresho	ld for Chan	nel 1							xxxx
ADC1BUF2	0204						A/D	Data Buffer	2/Thresho	ld for Chan	nel 2							XXXX
ADC1BUF3	0206						A/D	Data Buffer	3/Thresho	ld for Chan	nel 3							XXXX
ADC1BUF4	0208						A/D	Data Buffer	4/Thresho	ld for Chan	nel 4							xxxx
ADC1BUF5	020A						A/D	Data Buffer	5/Thresho	ld for Chan	nel 5							xxxx
ADC1BUF6	020C						A/D	Data Buffer	6/Thresho	ld for Chan	nel 6							xxxx
ADC1BUF7	020E						A/D	Data Buffer	7/Thresho	ld for Chan	nel 7							xxxx
ADC1BUF8	0210				A/D	Data Buffer 8/	Threshold for	Channel 8/	Threshold	for Channe	l 0 in Windo	wed Comp	are mode					xxxx
ADC1BUF9	0212				A/D	Data Buffer 9/	Threshold for	Channel 9/	Threshold	for Channe	1 in Windo	wed Comp	are mode					XXXX
ADC1BUF10	0214				A/D D	ata Buffer 10/T	hreshold for 0	Channel 10/	Threshold	for Channe	l 2 in Windo	wed Comp	are mode ^{(*}	1)				XXXX
ADC1BUF11	0216				A/D D	ata Buffer 11/T	hreshold for (Channel 11/	Threshold	for Channe	13 in Windo	wed Comp	are mode ^{(*}	1)				XXXX
ADC1BUF12	0218				A/D D	ata Buffer 12/T	hreshold for (Channel 12/	Threshold	for Channe	l 4 in Windo	wed Comp	are mode ^{(*}	1)				xxxx
ADC1BUF13	021A							A/D	Data Buffe	er 13								xxxx
ADC1BUF14	021C							A/D	Data Buffe	er 14								XXXX
ADC1BUF15	021E							A/D	Data Buffe	er 15								XXXX
AD1CON1	0220	ADON		ADSIDL	DMABM	DMAEN	MODE12	FORM1	FORM0	SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE	0000
AD1CON2	0222	PVCFG1	PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA	—	—	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	0224	ADRC	EXTSAM	PUMPEN	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0228	CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	022A			CSS<31:2	!7>			—		_	_	_	—	—	—	—	—	0000
AD1CSSL	022C		— CSS<14:0> ⁽¹⁾ 0000										0000					
AD1CON4	022E			—	—	—		—		_	_	_	—	—	[DMABL<2:0)>	0000
AD1CON5	0230	ASEN	LPEN	CTMREQ	BGREQ	_		ASINT1	ASINT0	—	_	_	—	WM1	WM0	CM1	CM0	0000
AD1CHITL	0234	_		—						CHH<	12:0> ⁽¹⁾							0000
AD1CTMENL	0238	—		—						CTMEN	<12:0> ⁽¹⁾							0000
AD1DMBUF	023A						A/D Conv	ersion Data	a Buffer (Ex	tended Buf	fer mode)							XXXX

Legend: — = unimplemented, read as '0'; x = unknown value on Reset. Reset values are shown in hexadecimal.

Note 1: The CSS<12:10>, CHH<12:10> and CTMEN<12:10> bits are unimplemented in 28-pin devices, read as '0'.

PIC24FJ128GA204 FAMILY

REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
DMAEN	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	_	—	—	—	—	PRSSEL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round robin scheme

0 = Fixed priority scheme

6.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Program Memory"** (DS39715). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ128GA204 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ128GA204 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS

R/W-0) R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
TRAPR	(1) IOPUWR ⁽¹⁾		RETEN ⁽²⁾	_	DPSLP ⁽¹⁾	CM ⁽¹⁾	VREGS ⁽³⁾
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	¹⁾ SWR ⁽¹⁾	SWDTEN ⁽⁴⁾	WDTO ⁽¹⁾	SLEEP ⁽¹⁾	IDLE ⁽¹⁾	BOR ⁽¹⁾	POR ⁽¹⁾
bit 7							bit 0
Legend:		XA7 XA7.1.1.1.1				(0)	
R = Read		vv = vvritable t	JIC		nented bit, read		
-n = value	e at POR	"1" = Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unkr	lown
bit 15	TDADD, Trop	Dooot Elog hit	1)				
DIC 15	$1 = \Delta$ Trap Co	nflict Reset has	soccurred				
	0 = A Trap Co	onflict Reset has	s not occurred				
bit 14	IOPUWR: Illeg	gal Opcode or I	Uninitialized W	Access Reset	Flag bit ⁽¹⁾		
	1 = An illegal	opcode detec	tion, an illega	l address mod	e or Uninitialize	ed W register	is used as an
	Address I	Pointer and cau	ised a Reset				
h:1 10	0 = An illegal	opcode or Unit	nitialized vv reg	gister Reset na	s not occurred		
DIL 13 bit 12		ted: Read as 0	phio hit(2)				
	1 = Retention	mode is enable		a is in Sleen m	odes (1.2\/ regu	lator supplies	to the core)
	0 = Retention	mode is disabl	ed; normal vol	tage levels are	present	lator supplies	
bit 11	Unimplement	ted: Read as 'o)'	•			
bit 10	DPSLP: Deep	Sleep Flag bit	(1)				
	1 = Device ha	s been in Deep	Sleep mode				
	0 = Device ha	s not been in D	eep Sleep mo	de			
bit 9	CM: Configura	ation Word Mis	match Reset F	lag bit ⁽¹⁾			
	1 = A Configu	ration Word Mis	smatch Reset	has occurred	he		
bit 8	VREGS: Prog	Iram Memory P	ower During S	leen hit ⁽³⁾	50		
bit o	1 = Program r	memory bias vo	oltage remains	powered durin	g Sleep		
	0 = Program r	nemory bias vo	oltage is power	ed down during	g Sleep		
bit 7	EXTR: Extern	al Reset (MCL	R) Pin bit ⁽¹⁾				
	1 = A Master	Clear (pin) Res	et has occurre	d .			
	0 = A Master (Clear (pin) Res	et has not occ	urred			
bit 6	SWR: Softwar	re Reset (Instru	iction) Flag bit				
	$1 = \mathbf{A} \text{ RESET I}$ $0 = \mathbf{A} \text{ RESET I}$	instruction has	not been executed	uted			
Note 1:	All of the Reset sta	atus bits may b eset.	e set or cleare	d in software. S	Setting one of th	ese bits in soft	tware does not
2:	If the LPCFG Con bit has no effect.	figuration bit is	ʻı' (unprogran	nmed), the rete	ntion regulator	is disabled and	d the RETEN
3:	Re-enabling the re Sleep. Application occurring.	egulator after it is that do not u	enters Standb se the voltage	y mode will ado regulator shou	d a delay, T∨RE Id set this bit to	G, when wakin prevent this d	ig up from elay from
4:	If the FWDTEN C	onfiguration bit	is '1' (unprogr	ammed), the W	/DT is always e	nabled, regard	dless of the

REGISTER 7-1: RCON: RESET CONTROL REGISTER

REGISTER 8-14: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

- bit 2 CMIE: Comparator Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 1 MI2C1IE: Master I2C1 Event Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- bit 0 SI2C1IE: Slave I2C1 Event Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled
- Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 8-25: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	CNIP2	CNIP1	CNIP0		CMIP2	CMIP1	CMIP0			
bit 15	•						bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	MI2C1IP2	MI2C1IP1	MI2C1IP0		SI2C1IP2	SI2C1IP1	SI2C1IP0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15	Unimplement	ted: Read as '0	,							
bit 14-12	CNIP<2:0>: Ir	nput Change No	otification Inter	rupt Priority bit	S					
	111 = Interrup	pt is Priority 7 (I	highest priority	interrupt)						
	•									
	•									
	001 = Interrup	pt is Priority 1								
	000 = Interrupt source is disabled									
bit 11	Unimplemented: Read as '0'									
bit 10-8	CMIP<2:0>: (Comparator Inte	errupt Priority b	oits						
	111 = Interrup	pt is Priority 7 (I	highest priority	interrupt)						
	•									
	•									
	001 = Interrup	pt is Priority 1								
	000 = Interrup	pt source is disa	abled							
bit 7	Unimplement	ted: Read as '0	,							
bit 6-4	MI2C1IP<2:0>	>: Master I2C1	Event Interrup	t Priority bits						
	111 = Interrup	pt is Priority 7 (I	highest priority	(interrupt)						
	•									
	•									
	001 = Interrup	pt is Priority 1								
	000 = Interrup	pt source is disa	abled							
bit 3	Unimplement	ted: Read as '0	,							
bit 2-0	SI2C1IP<2:0>	Slave I2C1 E	vent Interrupt	Priority bits						
	111 = Interrup	pt is Priority 7 (I	highest priority	(interrupt)						
	•									
	•									
	001 = Interrup	pt is Priority 1	- -							
	000 = Interrup	pt source is disa	adied							

REGISTER 8-29: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CRYROLLIP2	CRYROLLIP1	CRYROLLIP0	—	CRYFREEIP2	CRYFREEIP1	CRYFREEIP0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI2TXIP2	SPI2TXIP1	SPI2TXIP0	_	SPI2IP2	SPI2IP1	SPI2IP0
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	Unimplemen	ted: Read as '0'		
bit 14-12	CRYROLLIP	<2:0>: Cryptographic Roll	over Interrupt Priority bits	
	111 = Interrup	ot is Priority 7 (highest prio	ority interrupt)	
	•			
	•			
	001 = Interrup	ot is Priority 1		
	000 = Interrup	ot source is disabled		
bit 11	Unimplemen	ted: Read as '0'		
bit 10-8	CRYFREEIP<	<2:0>: Cryptographic Buff	er Free Interrupt Priority bits	
	111 = Interrup	ot is Priority 7 (highest prio	ority interrupt)	
	•			
	•			
	001 = Interrup	ot is Priority 1		
		ot source is disabled		
bit 7	Unimplemen	ted: Read as '0'		
bit 6-4	SPI2TXIP<2:0	0>: SPI2 Transmit Interrup	pt Priority bits	
	111 = Interru	pt is Priority 7 (nignest pri	ority interrupt)	
	•			
	•			
	001 = Interru	pt is Priority 1		
hit 2	Unimplement			
		SDI2 Conorol Interrupt D	riority bito	
DIL Z-U	3FIZIF \2.0>.	of is Priority 7 (highest pri	nonty bits	
	•	ot is Fridity 7 (nighest prid	onty interrupt)	
	•			
	•			
	001 = Interrup	ot is Priority 1		

PIC24FJ128GA204 FAMILY

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	DMA4IP2	DMA4IP1	DMA4IP0
bit 15	-					- -	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	PMPIP2	PMPIP1	PMPIP0	—	—	—	—
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as ')'				
bit 10-8	DMA4IP<2:0	>: DMA Chann	el 4 Interrupt P	riority bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-4	PMPIP<2:0>:	Parallel Maste	r Port Interrup	t Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as ')'				

REGISTER 8-32: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

9.7 On-Chip PLL

An on-chip PLL (x4, x6, x8) can be selected by the Configuration Fuse bits, PLLDIV<3:0>. The Primary Oscillator and FRC sources (FRCDIV) have the option of using this PLL.

Using the internal FRC source, the PLL module can generate the following frequencies, as shown in Table 9-2.

TABLE 9-2: VALID FRC CONFIGURATION FOR ON-CHIP PLL⁽¹⁾

FRC	RCDIV<2:0> (FRCDIV)	x4 PLL	x6 PLL	x8 PLL
8 MHz	000 (divide-by-1)	32 MHz	—	—
8 MHz	001 (divide-by-2)	16 MHz	24 MHz	32 MHz
8 MHz	010 (divide-by-4)	8 MHz	12 MHz	16 MHz

Note 1: The minimum frequency input to the on-chip PLL is 2 MHz.

10.4.2 EXITING DEEP SLEEP MODE

Deep Sleep mode exits on any one of the following events:

- POR event on VDD supply. If there is no DSBOR circuit to rearm the VDD supply POR circuit, the external VDD supply must be lowered to the natural arming voltage of the POR circuit.
- DSWDT time-out. When the DSWDT times out, the device exits Deep Sleep.
- RTCC alarm (if RTCEN = 1).
- Assertion ('0') of the $\overline{\text{MCLR}}$ pin.
- Assertion of the INT0 pin (if the interrupt was enabled before Deep Sleep mode was entered). The polarity configuration is used to determine the assertion level ('0' or '1') of the pin that will cause an exit from Deep Sleep mode. Exiting from Deep Sleep mode requires a change on the INT0 pin while in Deep Sleep mode.

Note: Any interrupt pending when entering Deep Sleep mode is cleared.

Exiting Deep Sleep generally does not retain the state of the device and is equivalent to a Power-on Reset (POR) of the device. Exceptions to this include the RTCC (if present), which remains operational through the wake-up, the DSGPRx registers and the DSWDT.

Wake-up events that occur from the time Deep Sleep exits until the time the POR sequence completes are not ignored. The DSWAKE register will capture ALL wake-up events, from setting the DSEN bit to clearing the RELEASE bit.

The sequence for exiting Deep Sleep mode is:

- 1. After a wake-up event, the device exits Deep Sleep and performs a POR. The DSEN bit is cleared automatically. Code execution resumes at the Reset vector.
- To determine if the device exited Deep Sleep, read the Deep Sleep bit, DPSLP (RCON<10>). This bit will be set if there was an exit from Deep Sleep mode. If the bit is set, clear it.
- 3. Determine the wake-up source by reading the DSWAKE register.
- Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCON<1>).
- 5. If application context data has been saved, read it back from the DSGPR0 and DSGPR1 registers.
- 6. Clear the RELEASE bit (DSCON<0>).

10.4.3 SAVING CONTEXT DATA WITH THE DSGPRx REGISTERS

As exiting Deep Sleep mode causes a POR, most Special Function Registers reset to their default POR values. In addition, because VCORE power is not supplied in Deep Sleep mode, information in data RAM may be lost when exiting this mode.

Applications which require critical data to be saved prior to Deep Sleep, may use the Deep Sleep General Purpose registers, DSGPR0 and DSGPR1, or data EEPROM (if available). Unlike other SFRs, the contents of these registers are preserved while the device is in Deep Sleep mode. After exiting Deep Sleep, software can restore the data by reading the registers and clearing the RELEASE bit (DSCON<0>).

Note: User software should enable the DSSWEN (CW4<8>) Configuration Fuse bit for saving critical data in the DSGPRx registers.

10.4.4 I/O PINS IN DEEP SLEEP MODE

During Deep Sleep, the general purpose I/O pins retain their previous states and the Secondary Oscillator (SOSC) will remain running, if enabled. Pins that are configured as inputs (TRISx bit is set), prior to entry into Deep Sleep, remain high-impedance during Deep Sleep. Pins that are configured as outputs (TRISx bit is clear), prior to entry into Deep Sleep, remain as output pins during Deep Sleep. While in this mode, they continue to drive the output level determined by their corresponding LATx bit at the time of entry into Deep Sleep.

Once the device wakes back up, all I/O pins continue to maintain their previous states, even after the device has finished the POR sequence and is executing application code again. Pins configured as inputs during Deep Sleep remain high-impedance and pins configured as outputs continue to drive their previous value. After waking up, the TRISx and LATx registers, and the SOSCEN bit (OSCCON<1>) are reset. If firmware modifies any of these bits or registers, the I/O will not immediately go to the newly configured states. Once the firmware clears the RELEASE bit (DSCON<0>), the I/O pins are "released". This causes the I/O pins to take the states configured by their respective TRISx and LATx bit values.

This means that keeping the SOSC running after waking up requires the SOSCEN bit to be set before clearing RELEASE.

If the Deep Sleep BOR (DSBOR) is enabled, and a DSBOR or a true POR event occurs during Deep Sleep, the I/O pins will be immediately released, similar to clearing the RELEASE bit. All previous state information will be lost, including the general purpose DSGPR0 and DSGPR1 contents.

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "I/O Ports with Peripheral Pin Select (PPS)" (DS39711). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the PORTx register, read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers, that are not valid for a particular device, will be disabled. That means the corresponding LATx and TRISx registers, and the port pin, will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

PIC24FJ128GA204 FAMILY

REGISTER 11-33: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-14	Unimplemen	ted: Read as ')'					
bit 13-8	bit 13-8 RP21R<5:0>: RP21 Output Pin Mapping bits							
	Peripheral Ou	itput Number n	is assigned to	pin, RP21 (see	Table 11-4 for	peripheral func	tion numbers).	

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP20R<5:0>:** RP20 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP20 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

REGISTER 11-34: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0
Logond							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP23R<5:0>:** RP23 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP23 (see Table 11-4 for peripheral function numbers). bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP22R<5:0>:** RP22 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP22 (see Table 11-4 for peripheral function numbers).

Note 1: These pins are not available in 28-pin devices.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module, Input Capture x (ICx), provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module, Input Capture y (ICy), provides the Most Significant 16 bits. Wrap arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4^{th} or 16^{th}). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- Set the IC32 bits for both modules (ICyCON2<8> and ICxCON2<8>), enabling the even numbered module first. This ensures that the modules will start functioning in unison.
- Set the ICTSELx and SYNCSELx bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bit settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 4 **OCFLT0:** Output Compare x PWM Fault 0 (OCFA pin) Condition Status bit^(2,4)
 - 1 = PWM Fault 0 has occurred
 - 0 = No PWM Fault 0 has occurred
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on $OCx^{(2)}$
 - 110 = Edge-Aligned PWM mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC2 channels; Comparator 2 output controls the OC3-OC4 channels; Comparator 3 output controls the OC5-OC6 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.4 "Peripheral Pin Select (PPS)".

REGISTER 20-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER⁽²⁾

R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾		
BASE<23:16>									
bit 15 bit 8									
R/W ⁽¹⁾	U-0	U-0	U-0	R/W ⁽¹⁾	U-0	U-0	U-0		
BASE15	_	—	_	BASE11	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			pit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			

bit 15-7 BASE<23:15>: Chip Select x Base Address bits⁽¹⁾

bit 6-4 Unimplemented: Read as '0'

bit 3 **BASE11:** Chip Select x Base Address bit⁽¹⁾

bit 2-0 Unimplemented: Read as '0'

Note 1: The value at POR is 0080h for PMCS1BS and 0880h for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for Chip Select 1 will be FFFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

REGISTER 29-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1						
_	JTAGEN	GCP	GWRP	DEBUG	LPCFG	ICS1	ICS0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN1	FWDTEN0	WINDIS	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	r = Reserved bit	PO = Program Once bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit
	 1 = JTAG port is enabled 0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	 1 = Writes to program memory are allowed 0 = Writes to program memory are not allowed
bit 11	DEBUG: Background Debugger Enable bit
	 1 = Device resets into Operational mode 0 = Device resets into Debug mode
bit 10	LPCFG : Low-Voltage/Retention Regulator Configuration bit
	 1 = Low-voltage/retention regulator is always disabled 0 = Low-power, low-voltage/retention regulator is enabled and controlled in firmware by the RETEN bit
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7-6	FWDTEN<1:0>: Watchdog Timer Configuration bits
	 11 = WDT is always enabled; the SWDTEN bit has no effect 10 = WDT is enabled and controlled in firmware by the SWDTEN bit 01 = WDT is enabled only in Run mode and disabled in Sleep modes; SWDTEN bit is disabled 00 = WDT is disabled; the SWDTEN bit is disabled
bit 5	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled (FWDTEN<1:0> must not be '00')
bit 4	FWPSA: WDT Prescaler Ratio Select bit
	 1 = Prescaler ratio of 1:128 0 = Prescaler ratio of 1:32

REGISTER 29-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- WDTCLK<1:0>: WDT Clock Source Select bits bit 4-3
 - When WDTCMX = 1:
 - - 11 = LPRC
 - 10 = Either the 31 kHz FRC source or LPRC, depending on device configuration⁽¹⁾
 - 01 = SOSC input
 - 00 = System clock when active, LPRC while in Sleep mode

When WDTCMX = 0: LPRC is always the WDT clock source.

bit 2 Reserved: Configure as '1'

bit 1-0 POSCMD<1:0>: Primary Oscillator Configuration bits

- 11 = Primary Oscillator mode is disabled
- 10 = HS Oscillator mode is selected
- 01 = XT Oscillator mode is selected
- 00 = EC Oscillator mode is selected
- Note 1: The 31 kHz FRC source is used when a Windowed WDT mode is selected and the LPRC is not being used as the system clock. The LPRC is used when the device is in Sleep mode and in all other cases.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	ins N 44						
Pitch	е		0.65 BSC				
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3	0.20 REF					
Overall Width	E	8.00 BSC					
Exposed Pad Width	E2	6.25	6.45	6.60			
Overall Length	D	8.00 BSC					
Exposed Pad Length	D2	6.25	6.45	6.60			
Terminal Width	b	0.20	0.30	0.35			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed-Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820