

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	56
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.85V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg230f1024-qfn64t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.19 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.20 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

2.1.21 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

2.1.22 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

2.1.23 Operational Amplifier (OPAMP)

The EFM32GG230 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc.

2.1.24 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

2.1.25 Backup Power Domain

The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery when the main power drains out. The backup power domain enables the EFM32GG230 to keep track of time and retain data, even if the main power source should drain out.

2.1.26 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data

and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

2.1.27 General Purpose Input/Output (GPIO)

In the EFM32GG230, there are 56 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

2.2 Configuration Summary

The features of the EFM32GG230 is a subset of the feature set described in the EFM32GG Reference Manual. Table 2.1 (p. 7) describes device specific implementation of the features.

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
I2C1	Full configuration	I2C1_SDA, I2C1_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration with I2S	US2_TX, US2_RX, US2_CLK, US2_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
TIMER3	Full configuration	TIM3_CC[2:0]
RTC	Full configuration	NA
BURTC	Full configuration	NA
LETIMERO	Full configuration	LET0_O[1:0]

Table 2.1. Configuration Summary

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		Sinking 20 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH			0.20V _{DD}	V
I _{IOLEAK}	Input leakage cur- rent	High Impedance IO connected to GROUND or V_{DD}		±0.1	±40	nA
R _{PU}	I/O pin pull-up resis- tor			40		kOhm
R _{PD}	I/O pin pull-down re- sistor			40		kOhm
R _{IOESD}	Internal ESD series resistor			200		Ohm
t _{IOGLITCH}	Pulse width of puls- es to be removed by the glitch sup- pression filter		10		50	ns
•	Output fall time	GPIO_Px_CTRL DRIVEMODE = LOWEST and load capaci- tance C_L =12.5-25pF.	20+0.1C _L		250	ns
^t ioof		GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance C _L =350-600pF	20+0.1C _L		250	ns
V _{IOHYST}	I/O pin hysteresis (V _{IOTHR+} - V _{IOTHR-})	V _{DD} = 1.98 - 3.8 V	0.10V _{DD}			V

Figure 3.4. Typical Low-Level Output Current, 2V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH

3.9 Oscillators

3.9.1 LFXO

Table 3.8. LFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFXO}	Supported nominal crystal frequency			32.768		kHz
ESR _{LFXO}	Supported crystal equivalent series re- sistance (ESR)			30	120	kOhm
C _{LFXOL}	Supported crystal external load range		X ¹		25	pF
DC _{LFXO}	Duty cycle		48	50	53.5	%
I _{LFXO}	Current consump- tion for core and buffer after startup.	ESR=30 kOhm, C _L =10 pF, LFXOBOOST in CMU_CTRL is 1		190		nA
t _{LFXO}	Start- up time.	ESR=30 kOhm, C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		400		ms

¹See Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio

For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

3.9.2 HFXO

Table 3.9. HFXO

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{HFXO}	Supported nominal crystal Frequency		4		48	MHz
	Supported crystal	Crystal frequency 48 MHz			50	Ohm
ESR _{HFXO}	equivalent series re-	Crystal frequency 32 MHz		30	60	Ohm
	sistance (ESR)	Crystal frequency 4 MHz		400	1500	Ohm
9 _{mHFXO}	The transconduc- tance of the HFXO input transistor at crystal startup	HFXOBOOST in CMU_CTRL equals 0b11	20			mS
C _{HFXOL}	Supported crystal external load range		5		25	pF
	Current consump-	4 MHz: ESR=400 Ohm, C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11		85		μA
IHFXO	startup	32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		165		μA
t _{HFXO}	Startup time	32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400		μs

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		f _{HFRCO} = 28 MHz		165	190	μA
	Current consump- tion (Production test condition = 14MHz)	f _{HFRCO} = 21 MHz		134	155	μA
		f _{HFRCO} = 14 MHz		106	120	μA
IHFRCO		f _{HFRCO} = 11 MHz		94	110	μA
		f _{HFRCO} = 6.6 MHz		77	90	μA
		f _{HFRCO} = 1.2 MHz		25	32	μA
TUNESTEP _{H-} FRCO	Frequency step for LSB change in TUNING value			0.3 ³		%

¹For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.

 2 For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.

³The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Figure 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature

Figure 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature

Figure 3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature

Figure 3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature

Figure 3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature

Figure 3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature

3.9.5 AUXHFRCO

Table 3.12. AUXHFRCO

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		28 MHz frequency band	27.5	28.0	28.5	MHz
		21 MHz frequency band	20.6	21.0	21.4	MHz
	Oscillation frequen-	14 MHz frequency band	13.7	14.0	14.3	MHz
IAUXHFRCO	cy, v _D = 3.0 v, T _{AMB} =25°C	11 MHz frequency band	10.8	11.0	11.2	MHz
		7 MHz frequency band	6.48 ¹	6.60 ¹	6.72 ¹	MHz
1		1 MHz frequency band	1.15 ²	1.20 ²	1.25 ²	MHz
t _{AUXHFRCO_settlir}	_g Settling time after start-up	f _{AUXHFRCO} = 14 MHz		0.6		Cycles
DC _{AUXHFRCO}	Duty cycle	f _{AUXHFRCO} = 14 MHz	48.5	50	51	%
TUNESTEP _{AU>} HFRCO	Frequency step for LSB change in TUNING value			0.3 ³		%

¹For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.

 2 For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.

³The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

EFM[®]32

Symbol	Parameter	Condition	Min	Тур	Max	Unit
C _{ADCIN}	Input capacitance			2		pF
R _{ADCIN}	Input ON resistance		1			MOhm
R _{ADCFILT}	Input RC filter resis- tance			10		kOhm
C _{ADCFILT}	Input RC filter/de- coupling capaci- tance			250		fF
f _{ADCCLK}	ADC Clock Fre- quency				13	MHz
		6 bit	7			ADC- CLK Cycles
t _{ADCCONV}	Conversion time	8 bit	11			ADC- CLK Cycles
		12 bit	13			ADC- CLK Cycles
t _{ADCACQ}	Acquisition time	Programmable	1		256	ADC- CLK Cycles
t _{ADCACQVDD3}	Required acquisi- tion time for VDD/3 reference		2			μs
	Startup time of ref- erence generator and ADC core in NORMAL mode			5		μs
tadcstart	Startup time of ref- erence generator and ADC core in KEEPADCWARM mode			1		μs
		1 MSamples/s, 12 bit, single ended, internal 1.25V refer- ence		59		dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference		63		dB
		1 MSamples/s, 12 bit, single ended, V _{DD} reference		65		dB
SNRADC	Signal to Noise Ra-	1 MSamples/s, 12 bit, differen- tial, internal 1.25V reference		60		dB
	10 (JNK)	1 MSamples/s, 12 bit, differen- tial, internal 2.5V reference		65		dB
		1 MSamples/s, 12 bit, differen- tial, 5V reference		54		dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference		67		dB
		1 MSamples/s, 12 bit, differential, $2xV_{DD}$ reference		69		dB

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		58		dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference		59		dB
		500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		57		dB
	Signal to Noise-	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		54		dB
SNDR _{DAC}	pulse Distortion Ra- tio (SNDR)	500 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		56		dB
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		53		dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference		55		dB
		500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		62		dBc
		500 kSamples/s, 12 bit, single ended, internal 2.5V reference		56		dBc
SFDR _{DAC}	Dynamic Range(SFDR)	500 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		61		dBc
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		55		dBc
		500 kSamples/s, 12 bit, differential, V_{DD} reference		60		dBc
V	Offset voltage	After calibration, single ended		2	12	mV
V DACOFFSET	Oliset voltage	After calibration, differential		2		mV
DNL _{DAC}	Differential non-lin- earity			±1		LSB
INL _{DAC}	Integral non-lineari- ty			±5		LSB
MC _{DAC}	No missing codes			12		bits

¹Measured with a static input code and no loading on the output.

3.12 Operational Amplifier (OPAMP)

The electrical characteristics for the Operational Amplifiers are based on simulations.

Table 3.16. OPAMP

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
		(OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, Unity Gain		350	405	μA
	Active Current	(OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, Unity Gain		95	115	μA

Figure 3.30. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1

Response time

Table 3.22. SPI Master Timing

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{SCLK} ¹²	SCLK period		2 * t _{HFPER-}			ns
			CLK			
t _{CS_MO} ¹²	CS to MOSI		-2.00		1.00	ns
t _{SCLK_MO} ¹²	SCLK to MOSI		-4.00		3.00	ns
t 12	MISO setup time	IOVDD = 1.98 V	36.00			ns
I ^I SU_MI ' ²		IOVDD = 3.0 V	29.00			ns
t _{H_MI} ^{1 2}	MISO hold time		-4.00			ns

¹Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

 $^2\text{Measurement}$ done at 10% and 90% of V_DD (figure shows 50% of $V_\text{DD})$

Figure 3.32. SPI Slave Timing

Table 3.23. SPI Slave Timing

Symbol	Parameter	Min	Тур	Max	Unit
t _{SCLK_sl} ^{1 2}	SCKL period	2 * t _{HFPER-} CLK			ns
t _{SCLK_hi} ^{1 2}	SCLK high period	3 * t _{HFPER-} CLK			ns
t _{SCLK_lo} ¹²	SCLK low period	3 * t _{HFPER-} CLK			ns
t _{CS_ACT_MI} ¹²	CS active to MISO	4.00		30.00	ns
t _{CS_DIS_MI} ¹²	CS disable to MISO	4.00		30.00	ns
t _{SU_MO} ¹²	MOSI setup time	4.00			ns
t _{H_MO} ^{1 2}	MOSI hold time	2 + 2* t _{HF-} PERCLK			ns
t _{SCLK_MI} 12	SCLK to MISO	9 + t _{HFPER-} CLK		36 + 2*t _{HF-} PERCLK	ns

¹Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)

 $^2\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $V_{\text{DD}})$

4 Pinout and Package

Note

Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32GG230.

4.1 Pinout

The *EFM32GG230* pinout is shown in Figure 4.1 (p. 48) and Table 4.1 (p. 48). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 4.1. EFM32GG230 Pinout (top view, not to scale)

Table 4.1. Device Pinout

	QFN64 Pin# and Name	Pin Alternate Functionality / Description								
Pin #	Pin Name	Analog	Timers	Communication	Other					
0	VSS	Ground.								
1	PA0		TIM0_CC0 #0/1/4	I2C0_SDA #0 LEU0_RX #4	PRS_CH0 #0 GPIO_EM4WU0					
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0					

QFN64 Pin# Pin Alternate Functionality / Description and Name									
Pin#	Pin Name	Analog	Timers	Communication	Other				
53	PF4		TIM0_CDTI1 #2/5		PRS_CH1 #1				
54	PF5		TIM0_CDTI2 #2/5		PRS_CH2 #1				
55	IOVDD_5	Digital IO power supply 5.							
56	PE8		PCNT2_S0IN #1		PRS_CH3 #1				
57	PE9		PCNT2_S1IN #1						
58	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX				
59	PE11		TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX				
60	PE12		TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0				
61	PE13			US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5				
62	PE14		TIM3_CC0 #0	LEU0_TX #2					
63	PE15		TIM3_CC1 #0	LEU0_RX #2					
64	PA15		TIM3_CC2 #0						

4.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 51). The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note

Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-TION 0.

Table 4.2. Alternate functionality overview

Alternate	LOCATION							
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2							Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3							Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6							Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7							Analog comparator ACMP0, channel 7.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8							Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9							Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10							Analog comparator ACMP1, channel 2.

EFM[®]32

...the world's most energy friendly microcontrollers

Alternate		LOCATION								
Functionality	0	1	2	3	4	5	6	Description		
LEU0_RX	PD5	PB14	PE15	PF1	PA0			LEUART0 Receive input.		
LEU0_TX	PD4	PB13	PE14	PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.		
LEU1_RX	PC7	PA6						LEUART1 Receive input.		
LEU1_TX	PC6	PA5						LEUART1 Transmit output. Also used as receive input in half duplex communication.		
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.		
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.		
PCNT0_S0IN	PC13		PC0	PD6				Pulse Counter PCNT0 input number 0.		
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.		
PCNT1_S0IN	PC4							Pulse Counter PCNT1 input number 0.		
PCNT1_S1IN	PC5							Pulse Counter PCNT1 input number 1.		
PCNT2_S0IN	PD0	PE8						Pulse Counter PCNT2 input number 0.		
PCNT2_S1IN	PD1	PE9						Pulse Counter PCNT2 input number 1.		
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.		
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.		
PRS_CH2	PC0	PF5						Peripheral Reflex System PRS, channel 2.		
PRS_CH3	PC1	PE8						Peripheral Reflex System PRS, channel 3.		
TIM0_CC0	PA0	PA0		PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.		
TIM0_CC1	PA1	PA1		PD2	PC0	PF1		Timer 0 Capture Compare input / output channel 1.		
TIM0_CC2	PA2	PA2		PD3	PC1	PF2		Timer 0 Capture Compare input / output channel 2.		
TIM0_CDTI0	PA3	PC13	PF3	PC13	PC2	PF3		Timer 0 Complimentary Deat Time Insertion channel 0.		
TIM0_CDTI1	PA4	PC14	PF4	PC14	PC3	PF4		Timer 0 Complimentary Deat Time Insertion channel 1.		
TIM0_CDTI2	PA5	PC15	PF5	PC15	PC4	PF5		Timer 0 Complimentary Deat Time Insertion channel 2.		
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.		
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.		
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.		
TIM2_CC0	PA8		PC8					Timer 2 Capture Compare input / output channel 0.		
TIM2_CC1	PA9		PC9					Timer 2 Capture Compare input / output channel 1.		
TIM2_CC2	PA10		PC10					Timer 2 Capture Compare input / output channel 2.		
TIM3_CC0	PE14							Timer 3 Capture Compare input / output channel 0.		
TIM3_CC1	PE15							Timer 3 Capture Compare input / output channel 1.		
TIM3_CC2	PA15							Timer 3 Capture Compare input / output channel 2.		
US0_CLK	PE12		PC9	PC15	PB13	PB13		USART0 clock input / output.		
US0_CS	PE13		PC8	PC14	PB14	PB14		USART0 chip select input / output.		
								USART0 Asynchronous Receive.		
US0_RX	PE11		PC10	PE12	PB8	PC1		USART0 Synchronous mode Master Input / Slave Output (MISO).		
US0 TX	PE10		PC11	PE13	PB7	PC0		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.		
								USART0 Synchronous mode Master Output / Slave Input (MOSI).		
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.		
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.		

Alternate			L	OCATIO	N						
Functionality	Inctionality 0 1 2 3 4 5 6		Description								
US1_RX	PC1	PD1	PD6				USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).				
US1_TX	PC0	PD0	PD7				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).				
US2_CLK	PC4						USART2 clock input / output.				
US2_CS	PC5						USART2 chip select input / output.				
US2_RX	PC3						USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).				
US2_TX	PC2						USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).				

4.3 GPIO Pinout Overview

The specific GPIO pins available in *EFM32GG230* is shown in Table 4.3 (p. 55). Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	-	-	-	-	PA10	PA9	PA8	-	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	PB12	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

4.4 Opamp Pinout Overview

The specific opamp terminals available in *EFM32GG230* is shown in Figure 4.2 (p. 56).

Figure 4.2. Opamp Pinout

4.5 QFN64 Package

Figure 4.3. QFN64

Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.

Figure 5.2. QFN64 PCB Solder Mask

Table 5.2. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
а	0.97	е	8.90
b	0.42	f	7.32
С	0.50	g	7.32
d	8.90	-	-

Added new alternative locations for SWO.

Corrected slew rate data for Opamps.

7.11 Revision 0.90

February 4th, 2011

Initial preliminary release.