




Welcome to **E-XFL.COM** 

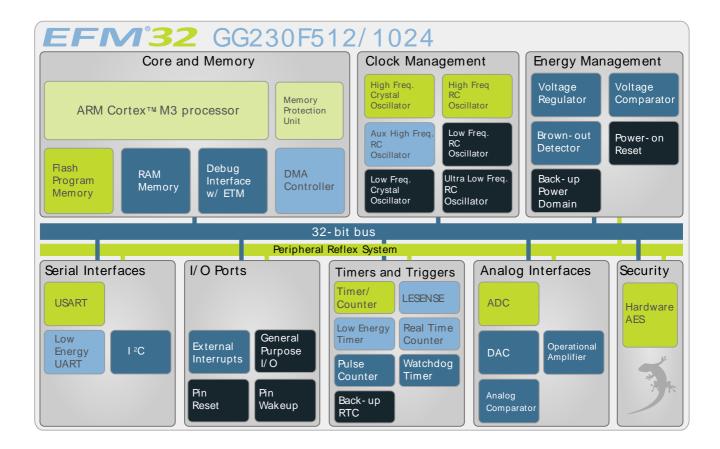
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    | Antivo                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Product Status             | Active                                                                    |
| Core Processor             | ARM® Cortex®-M3                                                           |
| Core Size                  | 32-Bit Single-Core                                                        |
| Speed                      | 48MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, IrDA, SmartCard, SPI, UART/USART                        |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                |
| Number of I/O              | 56                                                                        |
| Program Memory Size        | 512KB (512K x 8)                                                          |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 128K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 1.98V ~ 3.8V                                                              |
| Data Converters            | A/D 8x12b; D/A 2x12b                                                      |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 64-VFQFN Exposed Pad                                                      |
| Supplier Device Package    | 64-QFN (9x9)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/efm32gg230f512g-e-qfn64 |




# 2 System Summary

## 2.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32GG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32GG230 devices. For a complete feature set and in-depth information on the modules, the reader is referred to the *EFM32GG Reference Manual*.

A block diagram of the EFM32GG230 is shown in Figure 2.1 (p. 3).

Figure 2.1. Block Diagram



#### 2.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in *EFM32 Cortex-M3 Reference Manual*.

## 2.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.



### 2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32GG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

#### 2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230  $\mu$ DMA controller licensed from ARM.

#### 2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32GG.

#### 2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32GG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

#### 2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32GG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

## 2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

## 2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

## 2.1.10 Inter-Integrated Circuit Interface (I2C)

The I<sup>2</sup>C module provides an interface between the MCU and a serial I<sup>2</sup>C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I<sup>2</sup>C module, allows both fine-grained control of the transmission



and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

### 2.1.27 General Purpose Input/Output (GPIO)

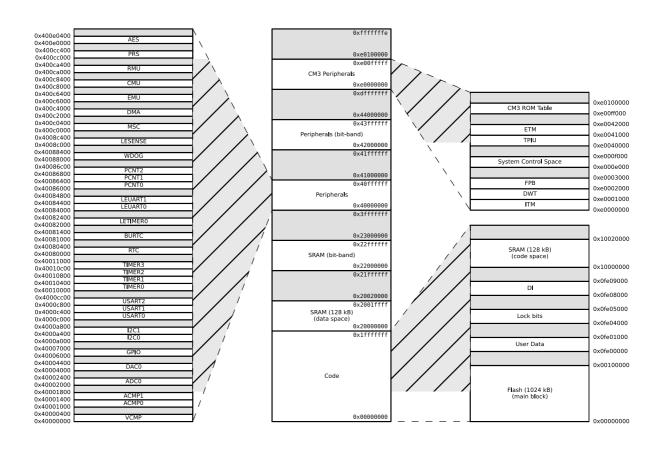
In the EFM32GG230, there are 56 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

## 2.2 Configuration Summary

The features of the EFM32GG230 is a subset of the feature set described in the EFM32GG Reference Manual. Table 2.1 (p. 7) describes device specific implementation of the features.

Table 2.1. Configuration Summary

| Module    | Configuration                | Pin Connections                 |
|-----------|------------------------------|---------------------------------|
| Cortex-M3 | Full configuration           | NA                              |
| DBG       | Full configuration           | DBG_SWCLK, DBG_SWDIO, DBG_SWO   |
| MSC       | Full configuration           | NA                              |
| DMA       | Full configuration           | NA                              |
| RMU       | Full configuration           | NA                              |
| EMU       | Full configuration           | NA                              |
| СМИ       | Full configuration           | CMU_OUT0, CMU_OUT1              |
| WDOG      | Full configuration           | NA                              |
| PRS       | Full configuration           | NA                              |
| I2C0      | Full configuration           | I2C0_SDA, I2C0_SCL              |
| I2C1      | Full configuration           | I2C1_SDA, I2C1_SCL              |
| USART0    | Full configuration with IrDA | US0_TX, US0_RX. US0_CLK, US0_CS |
| USART1    | Full configuration with I2S  | US1_TX, US1_RX, US1_CLK, US1_CS |
| USART2    | Full configuration with I2S  | US2_TX, US2_RX, US2_CLK, US2_CS |
| LEUART0   | Full configuration           | LEU0_TX, LEU0_RX                |
| LEUART1   | Full configuration           | LEU1_TX, LEU1_RX                |
| TIMER0    | Full configuration with DTI  | TIM0_CC[2:0], TIM0_CDTI[2:0]    |
| TIMER1    | Full configuration           | TIM1_CC[2:0]                    |
| TIMER2    | Full configuration           | TIM2_CC[2:0]                    |
| TIMER3    | Full configuration           | TIM3_CC[2:0]                    |
| RTC       | Full configuration           | NA                              |
| BURTC     | Full configuration           | NA                              |
| LETIMER0  | Full configuration           | LET0_O[1:0]                     |




| Module | Configuration                             | Pin Connections                                                |
|--------|-------------------------------------------|----------------------------------------------------------------|
| PCNT0  | Full configuration, 16-bit count register | PCNT0_S[1:0]                                                   |
| PCNT1  | Full configuration, 8-bit count register  | PCNT1_S[1:0]                                                   |
| PCNT2  | Full configuration, 8-bit count register  | PCNT2_S[1:0]                                                   |
| ACMP0  | Full configuration                        | ACMP0_CH[7:0], ACMP0_O                                         |
| ACMP1  | Full configuration                        | ACMP1_CH[7:0], ACMP1_O                                         |
| VCMP   | Full configuration                        | NA                                                             |
| ADC0   | Full configuration                        | ADC0_CH[7:0]                                                   |
| DAC0   | Full configuration                        | DAC0_OUT[1:0], DAC0_OUTxALT                                    |
| ОРАМР  | Full configuration                        | Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx |
| AES    | Full configuration                        | NA                                                             |
| GPIO   | 56 pins                                   | Available pins are shown in Table 4.3 (p. 55)                  |

## 2.3 Memory Map

The *EFM32GG230* memory map is shown in Figure 2.2 (p. 8), with RAM and Flash sizes for the largest memory configuration.

Figure 2.2. EFM32GG230 Memory Map with largest RAM and Flash sizes





# 3 Electrical Characteristics

#### 3.1 Test Conditions

#### 3.1.1 Typical Values

The typical data are based on  $T_{AMB}=25^{\circ}C$  and  $V_{DD}=3.0$  V, as defined in Table 3.2 (p. 9), unless otherwise specified.

#### 3.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 9), unless otherwise specified.

## 3.2 Absolute Maximum Ratings

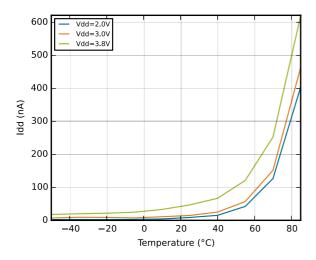
The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 9) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 9).

Table 3.1. Absolute Maximum Ratings

| Symbol             | Parameter                      | Condition                              | Min  | Тур | Max                  | Unit |
|--------------------|--------------------------------|----------------------------------------|------|-----|----------------------|------|
| T <sub>STG</sub>   | Storage tempera-<br>ture range |                                        | -40  |     | 150                  | °C   |
| T <sub>S</sub>     | Maximum soldering temperature  | Latest IPC/JEDEC J-STD-020<br>Standard |      |     | 260                  | °C   |
| V <sub>DDMAX</sub> | External main supply voltage   |                                        | 0    |     | 3.8                  | V    |
| V <sub>IOPIN</sub> | Voltage on any I/O pin         |                                        | -0.3 |     | V <sub>DD</sub> +0.3 | V    |
|                    | Current per I/O pin (sink)     |                                        |      |     | 100                  | mA   |
| IOMAX              | Current per I/O pin (source)   |                                        |      |     | -100                 | mA   |

## 3.3 General Operating Conditions

## 3.3.1 General Operating Conditions


Table 3.2. General Operating Conditions

| Symbol            | Parameter                    | Min  | Тур | Max | Unit |
|-------------------|------------------------------|------|-----|-----|------|
| T <sub>AMB</sub>  | Ambient temperature range    | -40  |     | 85  | °C   |
| V <sub>DDOP</sub> | Operating supply voltage     | 1.98 |     | 3.8 | V    |
| f <sub>APB</sub>  | Internal APB clock frequency |      |     | 48  | MHz  |
| f <sub>AHB</sub>  | Internal AHB clock frequency |      |     | 48  | MHz  |



## 3.4.3 EM4 Current Consumption

Figure 3.3. EM4 current consumption.



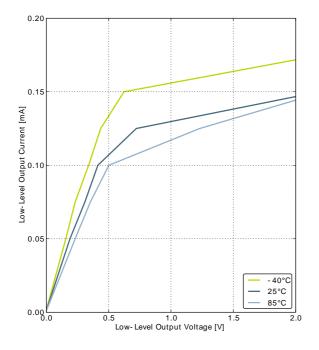
## 3.5 Transition between Energy Modes

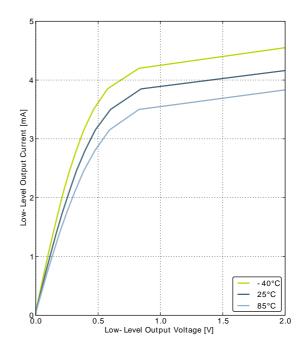
The transition times are measured from the trigger to the first clock edge in the CPU.

Table 3.4. Energy Modes Transitions

| Symbol            | Parameter                       | Min | Тур | Max | Unit                          |
|-------------------|---------------------------------|-----|-----|-----|-------------------------------|
| t <sub>EM10</sub> | Transition time from EM1 to EM0 |     | 0   |     | HF-<br>CORE-<br>CLK<br>cycles |
| t <sub>EM20</sub> | Transition time from EM2 to EM0 |     | 2   |     | μs                            |
| t <sub>EM30</sub> | Transition time from EM3 to EM0 |     | 2   |     | μs                            |
| t <sub>EM40</sub> | Transition time from EM4 to EM0 |     | 163 |     | μs                            |

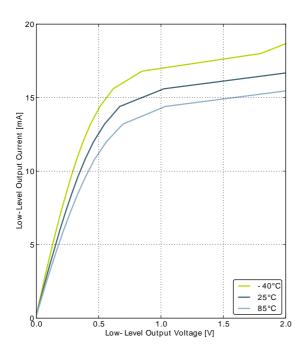
## 3.6 Power Management

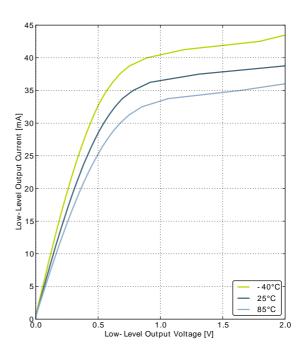

The EFM32GG requires the AVDD\_x, VDD\_DREG and IOVDD\_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations".




| Symbol                | Parameter                                                            | Condition                                                                               | Min                  | Тур  | Max                 | Unit |
|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|------|---------------------|------|
|                       |                                                                      | Sinking 20 mA, V <sub>DD</sub> =3.0 V,<br>GPIO_Px_CTRL DRIVEMODE<br>= HIGH              |                      |      | 0.20V <sub>DD</sub> | V    |
| I <sub>IOLEAK</sub>   | Input leakage cur-<br>rent                                           | High Impedance IO connected to GROUND or V <sub>DD</sub>                                |                      | ±0.1 | ±40                 | nA   |
| R <sub>PU</sub>       | I/O pin pull-up resis-<br>tor                                        |                                                                                         |                      | 40   |                     | kOhm |
| R <sub>PD</sub>       | I/O pin pull-down resistor                                           |                                                                                         |                      | 40   |                     | kOhm |
| R <sub>IOESD</sub>    | Internal ESD series resistor                                         |                                                                                         |                      | 200  |                     | Ohm  |
| t <sub>IOGLITCH</sub> | Pulse width of pulses to be removed by the glitch suppression filter |                                                                                         | 10                   |      | 50                  | ns   |
|                       |                                                                      | GPIO_Px_CTRL DRIVEMODE<br>= LOWEST and load capaci-<br>tance C <sub>L</sub> =12.5-25pF. | 20+0.1C <sub>L</sub> |      | 250                 | ns   |
| t <sub>IOOF</sub>     | Output fall time                                                     | GPIO_Px_CTRL DRIVEMODE<br>= LOW and load capacitance<br>C <sub>L</sub> =350-600pF       | 20+0.1C <sub>L</sub> |      | 250                 | ns   |
| V <sub>IOHYST</sub>   | I/O pin hysteresis<br>(V <sub>IOTHR+</sub> - V <sub>IOTHR-</sub> )   | V <sub>DD</sub> = 1.98 - 3.8 V                                                          | 0.10V <sub>DD</sub>  |      |                     | V    |




Figure 3.4. Typical Low-Level Output Current, 2V Supply Voltage

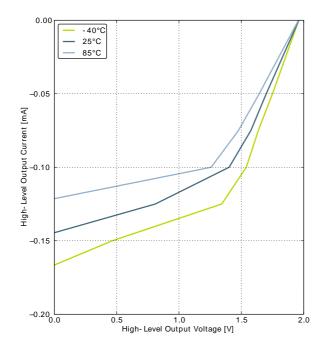


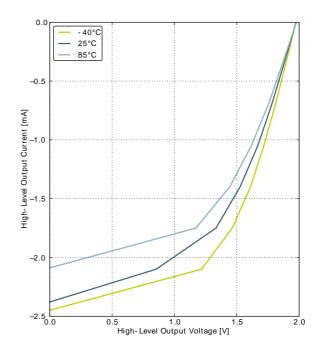



GPIO\_Px\_CTRL DRIVEMODE = LOWEST



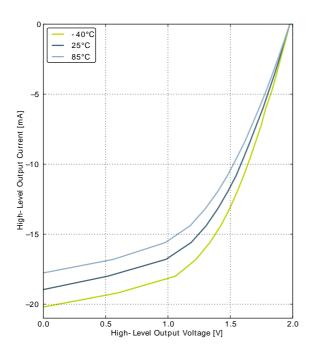


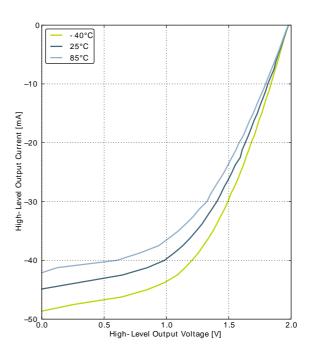




GPIO\_Px\_CTRL DRIVEMODE = STANDARD

GPIO\_Px\_CTRL DRIVEMODE = HIGH




Figure 3.5. Typical High-Level Output Current, 2V Supply Voltage






GPIO\_Px\_CTRL DRIVEMODE = LOWEST







GPIO\_Px\_CTRL DRIVEMODE = STANDARD

GPIO\_Px\_CTRL DRIVEMODE = HIGH



### 3.9 Oscillators

#### 3.9.1 LFXO

Table 3.8. LFXO

| Symbol              | Parameter                                              | Condition                                                                                                      | Min            | Тур    | Max  | Unit |
|---------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|--------|------|------|
| f <sub>LFXO</sub>   | Supported nominal crystal frequency                    |                                                                                                                |                | 32.768 |      | kHz  |
| ESR <sub>LFXO</sub> | Supported crystal equivalent series resistance (ESR)   |                                                                                                                |                | 30     | 120  | kOhm |
| C <sub>LFXOL</sub>  | Supported crystal external load range                  |                                                                                                                | X <sup>1</sup> |        | 25   | pF   |
| DC <sub>LFXO</sub>  | Duty cycle                                             |                                                                                                                | 48             | 50     | 53.5 | %    |
| I <sub>LFXO</sub>   | Current consumption for core and buffer after startup. | ESR=30 kOhm, C <sub>L</sub> =10 pF,<br>LFXOBOOST in CMU_CTRL is<br>1                                           |                | 190    |      | nA   |
| t <sub>LFXO</sub>   | Start- up time.                                        | ESR=30 kOhm, C <sub>L</sub> =10 pF,<br>40% - 60% duty cycle has<br>been reached, LFXOBOOST in<br>CMU_CTRL is 1 |                | 400    |      | ms   |

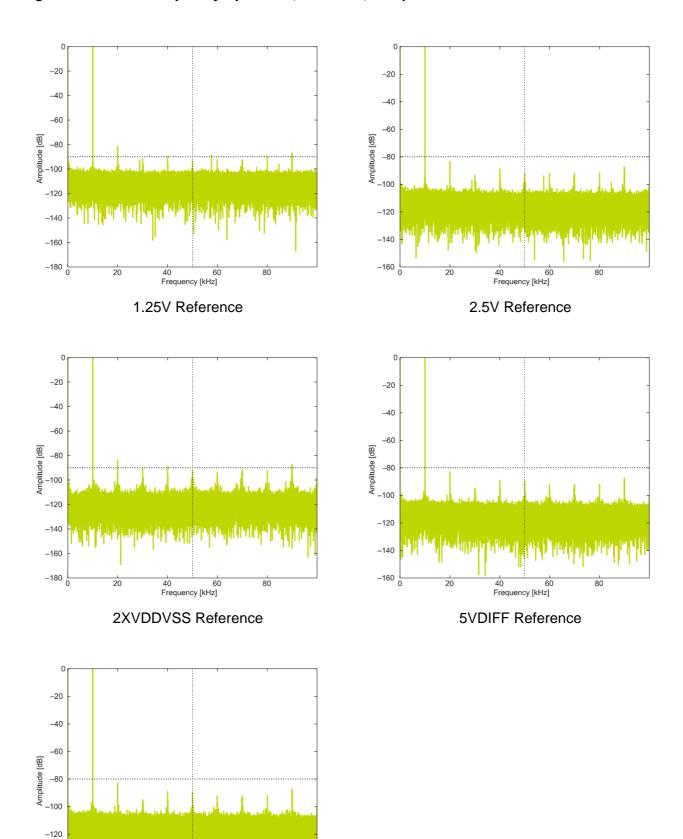
<sup>&</sup>lt;sup>1</sup>See Minimum Load Capacitance (C<sub>LFXOL</sub>) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio

For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

#### 3.9.2 HFXO

Table 3.9. HFXO

| Symbol              | Parameter                                                            | Condition                                                                          | Min | Тур | Max  | Unit |
|---------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|-----|------|------|
| f <sub>HFXO</sub>   | Supported nominal crystal Frequency                                  |                                                                                    | 4   |     | 48   | MHz  |
|                     | Supported crystal                                                    | Crystal frequency 48 MHz                                                           |     |     | 50   | Ohm  |
| ESR <sub>HFXO</sub> | equivalent series re-                                                | Crystal frequency 32 MHz                                                           |     | 30  | 60   | Ohm  |
|                     | sistance (ESR)                                                       | Crystal frequency 4 MHz                                                            |     | 400 | 1500 | Ohm  |
| g <sub>mHFXO</sub>  | The transconductance of the HFXO input transistor at crystal startup | HFXOBOOST in CMU_CTRL equals 0b11                                                  | 20  |     |      | mS   |
| C <sub>HFXOL</sub>  | Supported crystal external load range                                |                                                                                    | 5   |     | 25   | pF   |
| l                   | Current consumption for HFXO after startup                           | 4 MHz: ESR=400 Ohm,<br>C <sub>L</sub> =20 pF, HFXOBOOST in<br>CMU_CTRL equals 0b11 |     | 85  |      | μА   |
| I <sub>HFXO</sub>   |                                                                      | 32 MHz: ESR=30 Ohm,<br>C <sub>L</sub> =10 pF, HFXOBOOST in<br>CMU_CTRL equals 0b11 |     | 165 |      | μΑ   |
| t <sub>HFXO</sub>   | Startup time                                                         | 32 MHz: ESR=30 Ohm,<br>C <sub>L</sub> =10 pF, HFXOBOOST in<br>CMU_CTRL equals 0b11 |     | 400 |      | μs   |




| Symbol               | Parameter                                          | Condition                                                            | Min | Тур | Max | Unit |
|----------------------|----------------------------------------------------|----------------------------------------------------------------------|-----|-----|-----|------|
|                      |                                                    | 200 kSamples/s, 12 bit, single ended, internal 1.25V reference       |     | 62  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, single ended, internal 2.5V reference        |     | 63  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, single ended, V <sub>DD</sub> reference      |     | 67  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, internal 1.25V reference       |     | 63  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, internal 2.5V reference        |     | 66  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, 5V reference                   |     | 66  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, V <sub>DD</sub> reference      | 63  | 66  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, 2xV <sub>DD</sub> reference    |     | 70  |     | dB   |
|                      |                                                    | 1 MSamples/s, 12 bit, single<br>ended, internal 1.25V refer-<br>ence |     | 58  |     | dB   |
|                      |                                                    | 1 MSamples/s, 12 bit, single ended, internal 2.5V reference          |     | 62  |     | dB   |
|                      |                                                    | 1 MSamples/s, 12 bit, single ended, V <sub>DD</sub> reference        |     | 64  |     | dB   |
|                      |                                                    | 1 MSamples/s, 12 bit, differential, internal 1.25V reference         |     | 60  |     | dB   |
|                      |                                                    | 1 MSamples/s, 12 bit, differential, internal 2.5V reference          |     | 64  |     | dB   |
|                      |                                                    | 1 MSamples/s, 12 bit, differential, 5V reference                     |     | 54  |     | dB   |
|                      |                                                    | 1 MSamples/s, 12 bit, differential, V <sub>DD</sub> reference        |     | 66  |     | dB   |
| SINAD <sub>ADC</sub> | SIgnal-to-Noise<br>And Distortion-ratio<br>(SINAD) | 1 MSamples/s, 12 bit, differential, 2xV <sub>DD</sub> reference      |     | 68  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, single ended, internal 1.25V reference       |     | 61  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, single ended, internal 2.5V reference        |     | 65  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, single ended, V <sub>DD</sub> reference      |     | 66  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, internal 1.25V reference       |     | 63  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, internal 2.5V reference        |     | 66  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, 5V reference                   |     | 66  |     | dB   |
|                      |                                                    | 200 kSamples/s, 12 bit, differential, V <sub>DD</sub> reference      | 62  | 65  |     | dB   |



## 3.10.1 Typical performance

Figure 3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C



**VDD** Reference

-140

-160 L



Figure 3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C

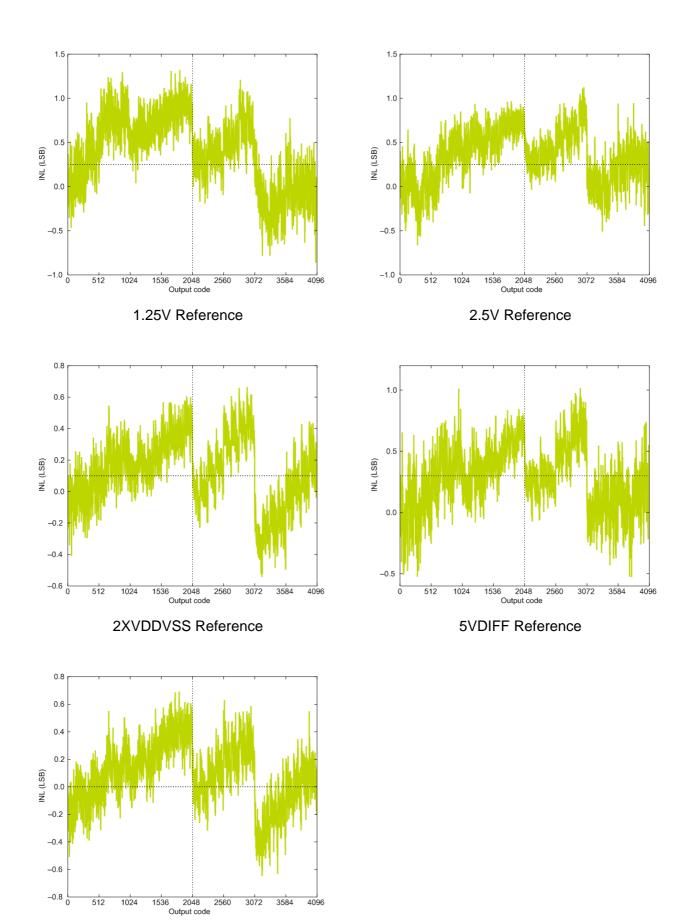
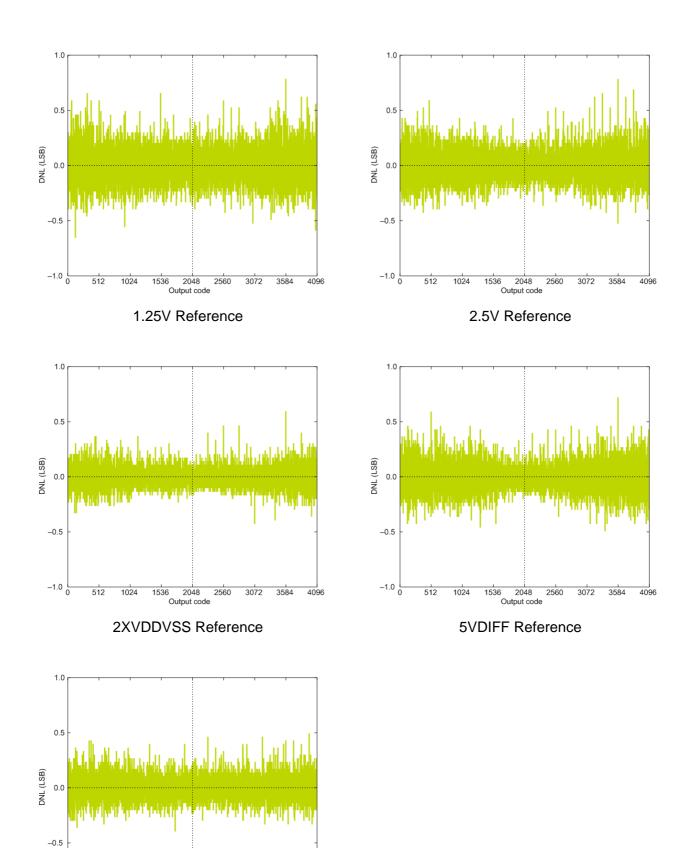






Figure 3.21. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C

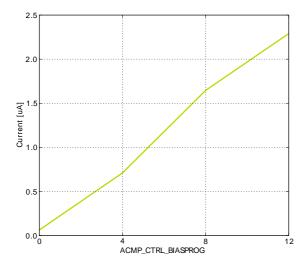


**VDD** Reference

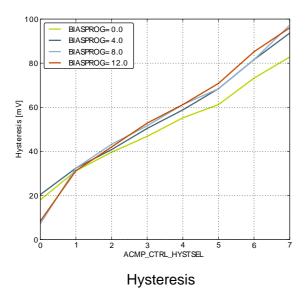
3072

3584

4096


1024

-1.0 L


512

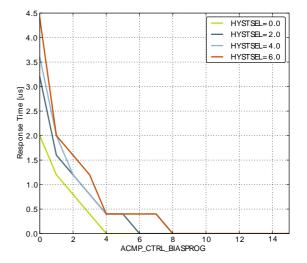



Figure 3.30. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1









Response time



## 3.14 Voltage Comparator (VCMP)

Table 3.18. VCMP

| Symbol                  | Parameter                         | Condition                                                             | Min  | Тур             | Max | Unit |
|-------------------------|-----------------------------------|-----------------------------------------------------------------------|------|-----------------|-----|------|
| V <sub>VCMPIN</sub>     | Input voltage range               |                                                                       |      | V <sub>DD</sub> |     | V    |
| V <sub>VCMPCM</sub>     | VCMP Common<br>Mode voltage range |                                                                       |      | V <sub>DD</sub> |     | V    |
|                         | Active current                    | BIASPROG=0b0000 and<br>HALFBIAS=1 in VCMPn_CTRL<br>register           |      | 0.3             | 0.6 | μΑ   |
| I <sub>VCMP</sub>       |                                   | BIASPROG=0b1111 and<br>HALFBIAS=0 in VCMPn_CTRL<br>register. LPREF=0. |      | 22              | 30  | μА   |
| t <sub>VCMPREF</sub>    | Startup time reference generator  | NORMAL                                                                |      | 10              |     | μs   |
| V                       | Officet voltage                   | Single ended                                                          | -230 | -40             | 190 | mV   |
| V <sub>VCMPOFFSET</sub> | Offset voltage                    | Differential                                                          |      | 10              |     | mV   |
| V <sub>VCMPHYST</sub>   | VCMP hysteresis                   |                                                                       |      | 40              |     | mV   |
| t <sub>VCMPSTART</sub>  | Startup time                      |                                                                       |      |                 | 10  | μs   |

The  $V_{DD}$  trigger level can be configured by setting the TRIGLEVEL field of the VCMP\_CTRL register in accordance with the following equation:

# VCMP Trigger Level as a Function of Level Setting $V_{DD \ Trigger \ Level} = 1.667 V + 0.034 \ \times TRIGLEVEL \tag{3.2}$

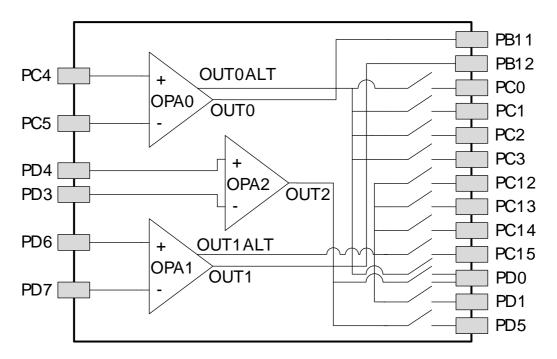
#### 3.15 I2C

Table 3.19. I2C Standard-mode (Sm)

| Symbol              | Parameter                                        | Min | Тур | Max                 | Unit |
|---------------------|--------------------------------------------------|-----|-----|---------------------|------|
| f <sub>SCL</sub>    | SCL clock frequency                              | 0   |     | 100 <sup>1</sup>    | kHz  |
| t <sub>LOW</sub>    | SCL clock low time                               | 4.7 |     |                     | μs   |
| t <sub>HIGH</sub>   | SCL clock high time                              | 4.0 |     |                     | μs   |
| t <sub>SU,DAT</sub> | SDA set-up time                                  | 250 |     |                     | ns   |
| t <sub>HD,DAT</sub> | SDA hold time                                    | 8   |     | 3450 <sup>2,3</sup> | ns   |
| t <sub>SU,STA</sub> | Repeated START condition set-up time             | 4.7 |     |                     | μs   |
| t <sub>HD,STA</sub> | (Repeated) START condition hold time             | 4.0 |     |                     | μs   |
| t <sub>su,sто</sub> | STOP condition set-up time                       | 4.0 |     |                     | μs   |
| t <sub>BUF</sub>    | Bus free time between a STOP and START condition | 4.7 |     |                     | μs   |

<sup>&</sup>lt;sup>1</sup>For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32GG Reference Manual.

<sup>&</sup>lt;sup>2</sup>The maximum SDA hold time (t<sub>HD,DAT</sub>) needs to be met only when the device does not stretch the low time of SCL (t<sub>LOW</sub>).


<sup>&</sup>lt;sup>3</sup>When transmitting data, this number is guaranteed only when I2Cn\_CLKDIV < ((3450\*10<sup>-9</sup> [s] \* f<sub>HFPERCLK</sub> [Hz]) - 4).



| Alternate                       | LOCATION |      |      |      |     |   |   |                                                                                                 |  |
|---------------------------------|----------|------|------|------|-----|---|---|-------------------------------------------------------------------------------------------------|--|
| Functionality                   | 0        | 1    | 2    | 3    | 4   | 5 | 6 | Description                                                                                     |  |
| ACMP1_CH3                       | PC11     |      |      |      |     |   |   | Analog comparator ACMP1, channel 3.                                                             |  |
| ACMP1_CH4                       | PC12     |      |      |      |     |   |   | Analog comparator ACMP1, channel 4.                                                             |  |
| ACMP1_CH5                       | PC13     |      |      |      |     |   |   | Analog comparator ACMP1, channel 5.                                                             |  |
| ACMP1_CH6                       | PC14     |      |      |      |     |   |   | Analog comparator ACMP1, channel 6.                                                             |  |
| ACMP1_CH7                       | PC15     |      |      |      |     |   |   | Analog comparator ACMP1, channel 7.                                                             |  |
| ACMP1_O                         | PF2      |      | PD7  |      |     |   |   | Analog comparator ACMP1, digital output.                                                        |  |
| ADC0_CH0                        | PD0      |      |      |      |     |   |   | Analog to digital converter ADC0, input channel number 0.                                       |  |
| ADC0_CH1                        | PD1      |      |      |      |     |   |   | Analog to digital converter ADC0, input channel number 1.                                       |  |
| ADC0_CH2                        | PD2      |      |      |      |     |   |   | Analog to digital converter ADC0, input channel number 2.                                       |  |
| ADC0_CH3                        | PD3      |      |      |      |     |   |   | Analog to digital converter ADC0, input channel number 3.                                       |  |
| ADC0_CH4                        | PD4      |      |      |      |     |   |   | Analog to digital converter ADC0, input channel number 4.                                       |  |
| ADC0_CH5                        | PD5      |      |      |      |     |   |   | Analog to digital converter ADC0, input channel number 5.                                       |  |
| ADC0_CH6                        | PD6      |      |      |      |     |   |   | Analog to digital converter ADC0, input channel number 6.                                       |  |
| ADC0_CH7                        | PD7      |      |      |      |     |   |   | Analog to digital converter ADC0, input channel number 7.                                       |  |
| BOOT_RX                         | PE11     |      |      |      |     |   |   | Bootloader RX.                                                                                  |  |
| BOOT_TX                         | PE10     |      |      |      |     |   |   | Bootloader TX.                                                                                  |  |
| BU_VIN                          | PD8      |      |      |      |     |   |   | Battery input for Backup Power Domain                                                           |  |
| CMU_CLK0                        | PA2      | PC12 | PD7  |      |     |   |   | Clock Management Unit, clock output number 0.                                                   |  |
| CMU_CLK1                        | PA1      | PD8  | PE12 |      |     |   |   | Clock Management Unit, clock output number 1.                                                   |  |
| OPAMP_N0                        | PC5      |      |      |      |     |   |   | Operational Amplifier 0 external negative input.                                                |  |
| OPAMP_N1                        | PD7      |      |      |      |     |   |   | Operational Amplifier 1 external negative input.                                                |  |
| OPAMP_N2                        | PD3      |      |      |      |     |   |   | Operational Amplifier 2 external negative input.                                                |  |
| DAC0_OUT0 /<br>OPAMP_OUT0       | PB11     |      |      |      |     |   |   | Digital to Analog Converter DAC0_OUT0 / OPAMP output channel number 0.                          |  |
| DAC0_OUT0ALT /<br>OPAMP_OUT0ALT | PC0      | PC1  | PC2  | PC3  | PD0 |   |   | Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.              |  |
| DAC0_OUT1 /<br>OPAMP_OUT1       | PB12     |      |      |      |     |   |   | Digital to Analog Converter DAC0_OUT1 / OPAMP output channel number 1.                          |  |
| DAC0_OUT1ALT /<br>OPAMP_OUT1ALT | PC12     | PC13 | PC14 | PC15 | PD1 |   |   | Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.              |  |
| OPAMP_OUT2                      | PD5      | PD0  |      |      |     |   |   | Operational Amplifier 2 output.                                                                 |  |
| OPAMP_P0                        | PC4      |      |      |      |     |   |   | Operational Amplifier 0 external positive input.                                                |  |
| OPAMP_P1                        | PD6      |      |      |      |     |   |   | Operational Amplifier 1 external positive input.                                                |  |
| OPAMP_P2                        | PD4      |      |      |      |     |   |   | Operational Amplifier 2 external positive input.                                                |  |
|                                 |          |      |      |      |     |   |   | Debug-interface Serial Wire clock input.                                                        |  |
| DBG_SWCLK                       | PF0      | PF0  | PF0  | PF0  |     |   |   | Note that this function is enabled to pin out of reset, and has a built-in pull down.           |  |
| DD 0 5:::=:=                    | DE :     | DE:  |      |      |     |   |   | Debug-interface Serial Wire data input / output.                                                |  |
| DBG_SWDIO                       | PF1      | PF1  | PF1  | PF1  |     |   |   | Note that this function is enabled to pin out of reset, and has a built-in pull up.             |  |
| DDO 61410                       | DES      | DC45 | DE:  | DE 2 |     |   |   | Debug-interface Serial Wire viewer Output.                                                      |  |
| DBG_SWO                         | PF2      | PC15 | PD1  | PD2  |     |   |   | Note that this function is not enabled after reset, and must be enabled by software to be used. |  |
| ETM_TCLK                        | PD7      |      | PC6  | PA6  |     |   |   | Embedded Trace Module ETM clock .                                                               |  |
| ETM_TD0                         | PD6      |      | PC7  | PA2  |     |   |   | Embedded Trace Module ETM data 0.                                                               |  |

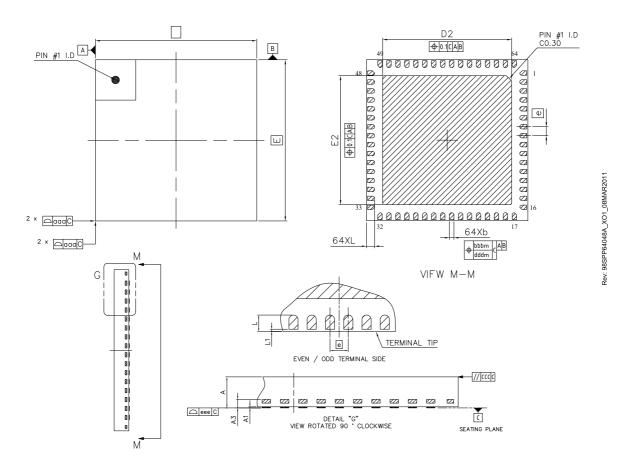



Figure 4.2. Opamp Pinout



## 4.5 QFN64 Package

Figure 4.3. QFN64



#### Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.



# **5 PCB Layout and Soldering**

# **5.1 Recommended PCB Layout**

Figure 5.1. QFN64 PCB Land Pattern

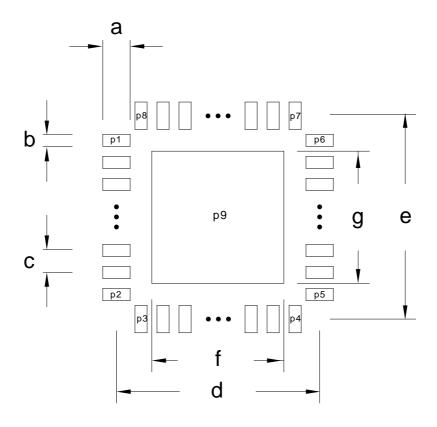



Table 5.1. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)

| Symbol | Dim. (mm) | Symbol | Pin number | Symbol | Pin number |
|--------|-----------|--------|------------|--------|------------|
| а      | 0.85      | P1     | 1          | P8     | 64         |
| b      | 0.30      | P2     | 16         | P9     | 65         |
| С      | 0.50      | P3     | 17         | -      | -          |
| d      | 8.90      | P4     | 32         | -      | -          |
| е      | 8.90      | P5     | 33         | -      | -          |
| f      | 7.20      | P6     | 48         | -      | -          |
| g      | 7.20      | P7     | 49         | -      | -          |



## A Disclaimer and Trademarks

#### A.1 Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

#### A.2 Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.