Welcome to **E-XFL.COM** Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 600 | | Number of Logic Elements/Cells | 2700 | | Total RAM Bits | 40960 | | Number of I/O | 180 | | Number of Gates | 108904 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 256-BBGA | | Supplier Device Package | 256-PBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv100-5bg256i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong DS003-2 (v4.0) March 1, 2013 # Virtex[™] 2.5 V Field Programmable Gate Arrays #### **Product Specification** The output buffer and all of the IOB control signals have independent polarity controls. vao_b.eps Figure 1: Virtex Architecture Overview All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage protection are provided, one that permits 5 V compliance, and one that does not. For 5 V compliance, a Zener-like structure connected to ground turns on when the output rises to approximately 6.5 V. When PCI 3.3 V compliance is required, a conventional clamp diode is connected to the output supply voltage, $V_{\rm CCO}$. Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each pad. Prior to configuration, all pins not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs can optionally be pulled up. The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins will float. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration. All Virtex IOBs support IEEE 1149.1-compatible boundary scan testing. # **Architectural Description** # **Virtex Array** The Virtex user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing logic - IOBs provide the interface between the package pins and the CLBs CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM. The VersaRing[™] I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking. The Virtex architecture also includes the following circuits that connect to the GRM. - Dedicated block memories of 4096 bits each - Clock DLLs for clock-distribution delay compensation and clock domain control - 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device. ## Input/Output Block The Virtex IOB, Figure 2, features SelectIO™ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1. The three IOB storage elements function either as edge-triggered D-type flip-flops or as level sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop. In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear. © 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. #### Input Path A buffer In the Virtex IOB input path routes the input signal either directly to internal logic or through an optional input flip-flop. An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signalling standards supported. In some of these standards the input buffer utilizes a user-supplied threshold voltage, V_{REF}. The need to supply V_{REF} imposes constraints on which standards can used in close proximity to each other. See I/O Banking, page 3. There are optional pull-up and pull-down resistors at each user I/O input for use after configuration. Their value is in the range 50 k Ω – 100 k Ω . #### **Output Path** The output path includes a 3-state output buffer that drives the output signal onto the pad. The output signal can be routed to the buffer directly from the internal logic or through an optional IOB output flip-flop. The 3-state control of the output can also be routed directly from the internal logic or through a flip-flip that provides synchronous enable and disable. Each output driver can be individually programmed for a wide range of low-voltage signalling standards. Each output buffer can source up to 24 mA and sink up to 48mA. Drive strength and slew rate controls minimize bus transients. In most signalling standards, the output High voltage depends on an externally supplied V_{CCO} voltage. The need to supply V_{CCO} imposes constraints on which standards can be used in close proximity to each other. See **I/O Banking**, page 3. An optional weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage on the pad and weakly drives the pin High or Low to match the input signal. If the pin is connected to a multiple-source signal, the weak keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. Because the weak-keeper circuit uses the IOB input buffer to monitor the input level, an appropriate V_{REF} voltage must be provided if the signalling standard requires one. The provision of this voltage must comply with the I/O banking rules. #### I/O Banking Some of the I/O standards described above require V_{CCO} and/or V_{REF} voltages. These voltages externally and connected to device pins that serve groups of IOBs, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. Eight I/O banks result from separating each edge of the FPGA into two banks, as shown in Figure 3. Each bank has multiple $V_{\rm CCO}$ pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. X8778_b Figure 3: Virtex I/O Banks Within a bank, output standards can be mixed only if they use the same V_{CCO} . Compatible standards are shown in Table 2. GTL and GTL+ appear under all voltages because their open-drain outputs do not depend on V_{CCO} . Table 2: Compatible Output Standards | V _{CCO} | Compatible Standards | |------------------|--| | 3.3 V | PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+ | | 2.5 V | SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+ | | 1.5 V | HSTL I, HSTL III, HSTL IV, GTL, GTL+ | Some input standards require a user-supplied threshold voltage, V_{REF} In this case, certain user-I/O pins are automatically configured as inputs for the V_{REF} voltage. Approximately one in six of the I/O pins in the bank assume this role The V_{REF} pins within a bank are interconnected internally and consequently only one V_{REF} voltage can be used within each bank. All V_{REF} pins in the bank, however, must be connected to the external voltage source for correct operation. Within a bank, inputs that require V_{REF} can be mixed with those that do not. However, only one V_{REF} voltage can be used within a bank. Input buffers that use V_{REF} are not 5 V tolerant. LVTTL, LVCMOS2, and PCI 33 MHz 5 V, are 5 V tolerant. The V_{CCO} and V_{REF} pins for each bank appear in the device Pinout tables and diagrams. The diagrams also show the bank affiliation of each I/O. Within a given package, the number of V_{REF} and V_{CCO} pins can vary depending on the size of device. In larger devices, more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the
largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O. In smaller devices, some V_{CCO} pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the V_{CCO} voltage to permit migration to a larger device if necessary. In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO} . In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously. #### **Configurable Logic Block** The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4. Figure 5 shows a more detailed view of a single slice. In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs. #### Look-Up Tables Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing. #### Storage Elements The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators. In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice. Figure 4: 2-Slice Virtex CLB Figure 11: Boundary Scan Bit Sequence Table 5: Boundary Scan Instructions | Boundary-Scan
Command | Binary
Code(4:0) | Description | |--------------------------|---------------------|--| | EXTEST | 00000 | Enables boundary-scan EXTEST operation | | SAMPLE/PRELOAD | 00001 | Enables boundary-scan
SAMPLE/PRELOAD
operation | | USER 1 | 00010 | Access user-defined register 1 | | USER 2 | 00011 | Access user-defined register 2 | | CFG_OUT | 00100 | Access the configuration bus for read operations. | | CFG_IN | 00101 | Access the configuration bus for write operations. | | INTEST | 00111 | Enables boundary-scan INTEST operation | | USERCODE | 01000 | Enables shifting out
USER code | | IDCODE | 01001 | Enables shifting out of ID Code | | HIGHZ | 01010 | 3-states output pins while enabling the Bypass Register | | JSTART | 01100 | Clock the start-up
sequence when
StartupClk is TCK | | BYPASS | 11111 | Enables BYPASS | | RESERVED | All other codes | Xilinx reserved instructions | #### Identification Registers The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1 where v = the die version number f = the family code (03h for Virtex family) a = the number of CLB rows (ranges from 010h for XCV50 to 040h for XCV1000) c = the company code (49h for Xilinx) The USERCODE register is supported. By using the USER-CODE, a user-programmable identification code can be loaded and shifted out for examination. The identification code is embedded in the bitstream during bitstream generation and is valid only after configuration. Table 6: IDCODEs Assigned to Virtex FPGAs | FPGA | IDCODE | |---------|-----------| | XCV50 | v0610093h | | XCV100 | v0614093h | | XCV150 | v0618093h | | XCV200 | v061C093h | | XCV300 | v0620093h | | XCV400 | v0628093h | | XCV600 | v0630093h | | XCV800 | v0638093h | | XCV1000 | v0640093h | #### Including Boundary Scan in a Design Since the boundary scan pins are dedicated, no special element needs to be added to the design unless an internal data register (USER1 or USER2) is desired. If an internal data register is used, insert the boundary scan symbol and connect the necessary pins as appropriate. # **Development System** Virtex FPGAs are supported by the Xilinx Foundation and Alliance CAE tools. The basic methodology for Virtex design consists of three interrelated steps: design entry, implementation, and verification. Industry-standard tools are used for design entry and simulation (for example, Synopsys FPGA Express), while Xilinx provides proprietary architecture-specific tools for implementation. The Xilinx development system is integrated under the Xilinx Design Manager (XDM™) software, providing design- ers with a common user interface regardless of their choice of entry and verification tools. The XDM software simplifies the selection of implementation options with pull-down menus and on-line help. Application programs ranging from schematic capture to Placement and Routing (PAR) can be accessed through the XDM software. The program command sequence is generated prior to execution, and stored for documentation. Several advanced software features facilitate Virtex design. RPMs, for example, are schematic-based macros with relative location constraints to guide their placement. They help ensure optimal implementation of common functions. For HDL design entry, the Xilinx FPGA Foundation development system provides interfaces to the following synthesis design environments. - Synopsys (FPGA Compiler, FPGA Express) - Exemplar (Spectrum) - Synplicity (Synplify) For schematic design entry, the Xilinx FPGA Foundation and alliance development system provides interfaces to the following schematic-capture design environments. - Mentor Graphics V8 (Design Architect, QuickSim II) - Viewlogic Systems (Viewdraw) Third-party vendors support many other environments. A standard interface-file specification, Electronic Design Interchange Format (EDIF), simplifies file transfers into and out of the development system. Virtex FPGAs supported by a unified library of standard functions. This library contains over 400 primitives and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, multiplexers, shift registers, and barrel shifters. The "soft macro" portion of the library contains detailed descriptions of common logic functions, but does not contain any partitioning or placement information. The performance of these macros depends, therefore, on the partitioning and placement obtained during implementation. RPMs, on the other hand, do contain predetermined partitioning and placement information that permits optimal implementation of these functions. Users can create their own library of soft macros or RPMs based on the macros and primitives in the standard library. The design environment supports hierarchical design entry, with high-level schematics that comprise major functional blocks, while lower-level schematics define the logic in these blocks. These hierarchical design elements are automatically combined by the implementation tools. Different design entry tools can be combined within a hierarchical design, thus allowing the most convenient entry method to be used for each portion of the design. ## **Design Implementation** The place-and-route tools (PAR) automatically provide the implementation flow described in this section. The partitioner takes the EDIF net list for the design and maps the logic into the architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines the best locations for these blocks based on their interconnections and the desired performance. Finally, the router interconnects the blocks. The PAR algorithms support fully automatic implementation of most designs. For demanding applications, however, the user can exercise various degrees of control over the process. User partitioning, placement, and routing information is optionally specified during the design-entry process. The implementation of highly structured designs can benefit greatly from basic floor planning. The implementation software incorporates Timing Wizard® timing-driven placement and routing. Designers specify timing requirements along entire paths during design entry. The timing path analysis routines in PAR then recognize these user-specified requirements and accommodate them. Timing requirements are entered on a schematic in a form directly relating to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system along entire signal paths is automatically tailored to user-generated specifications. Specific timing information for individual nets is unnecessary. #### **Design Verification** In addition to conventional software simulation, FPGA users can use in-circuit debugging techniques. Because Xilinx devices are infinitely
reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors. The development system supports both software simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database, and back-annotates this information into the net list for use by the simulator. Alternatively, the user can verify timing-critical portions of the design using the TRACE® static timing analyzer. For in-circuit debugging, the development system includes a download and readback cable. This cable connects the FPGA in the target system to a PC or workstation. After downloading the design into the FPGA, the designer can single-step the logic, readback the contents of the flip-flops, and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes. # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-3 (v4.0) March 1, 2013 **Production Product Specification** # Virtex Electrical Characteristics Definition of Terms Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: **Advance**: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. **Preliminary**: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. **Production**: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information. Table 1 correlates the current status of each Virtex device with a corresponding speed file designation. Table 1: Virtex Device Speed Grade Designations | | Speed | d Grade Design | ations | |---------|---------|----------------|------------| | Device | Advance | Preliminary | Production | | XCV50 | | | -6, -5, -4 | | XCV100 | | | -6, -5, -4 | | XCV150 | | | -6, -5, -4 | | XCV200 | | | -6, -5, -4 | | XCV300 | | | -6, -5, -4 | | XCV400 | | | -6, -5, -4 | | XCV600 | | | -6, -5, -4 | | XCV800 | | | -6, -5, -4 | | XCV1000 | | | -6, -5, -4 | All specifications are subject to change without notice. # **Virtex Switching Characteristics** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Virtex devices unless otherwise noted. #### **IOB Input Switching Characteristics** Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in , page 6. | | | | | Speed | Grade | | | |--|---------|---------------------|------|-------|-------|-----|---------| | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | | Propagation Delays | | | | | | | | | Pad to I output, no delay | All | T _{IOPI} | 0.39 | 0.8 | 0.9 | 1.0 | ns, max | | Pad to I output, with delay | XCV50 | T _{IOPID} | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV100 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV150 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV200 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV300 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV400 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV600 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV800 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | | XCV1000 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | Pad to output IQ via transparent latch, no delay | All | T _{IOPLI} | 0.8 | 1.6 | 1.8 | 2.0 | ns, max | | Pad to output IQ via transparent | XCV50 | T _{IOPLID} | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | latch, with delay | XCV100 | | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | | XCV150 | | 2.0 | 3.9 | 4.3 | 4.9 | ns, max | | | XCV200 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV300 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV400 | | 2.1 | 4.1 | 4.6 | 5.3 | ns, max | | | XCV600 | | 2.1 | 4.2 | 4.7 | 5.4 | ns, max | | | XCV800 | | 2.2 | 4.4 | 4.9 | 5.6 | ns, max | | | XCV1000 | | 2.3 | 4.5 | 5.1 | 5.8 | ns, max | | Sequential Delays | | | · | | | | | | Clock CLK | All | | | | | | | | Minimum Pulse Width, High | | T _{CH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | | T _{CL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Clock CLK to output IQ | | T _{IOCKIQ} | 0.2 | 0.7 | 0.7 | 8.0 | ns, max | | Description | Symbol | Min | -6 | -5 | -4 | Units | |---|--|----------|---------|-------------|---------|---------| | Clock CLK to Pad delay with OBUFT enabled (non-3-state) | T _{IOCKP} | 1.0 | 2.9 | 3.2 | 3.5 | ns, max | | Clock CLK to Pad high-impedance (synchronous) ⁽¹⁾ | T _{IOCKHZ} | 1.1 | 2.3 | 2.5 | 2.9 | ns, max | | Clock CLK to valid data on Pad delay, plus enable delay for OBUFT | T _{IOCKON} | 1.5 | 3.4 | 3.7 | 4.1 | ns, max | | Setup and Hold Times before/after Clock | CLK ⁽²⁾ | | Setup | Time / Hold | Time | 1 | | O input | T _{IOOCK} /T _{IOCKO} | 0.51 / 0 | 1.1 / 0 | 1.2 / 0 | 1.3 / 0 | ns, min | | OCE input | T _{IOOCECK} /T _{IOCKOCE} | 0.37 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | SR input (OFF) | T _{IOSRCKO} /T _{IOCKOSR} | 0.52 / 0 | 1.1 / 0 | 1.2 / 0 | 1.4 / 0 | ns, min | | 3-State Setup Times, T input | T _{IOTCK} /T _{IOCKT} | 0.34 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | 3-State Setup Times, TCE input | T _{IOTCECK} /T _{IOCKTCE} | 0.41 / 0 | 0.9 / 0 | 0.9 / 0 | 1.1 / 0 | ns, min | | 3-State Setup Times, SR input (TFF) | T _{IOSRCKT} /T _{IOCKTSR} | 0.49 / 0 | 1.0 / 0 | 1.1 / 0 | 1.3 / 0 | ns, min | | Set/Reset Delays | | | | | | | | SR input to Pad (asynchronous) | T _{IOSRP} | 1.6 | 3.8 | 4.1 | 4.6 | ns, max | | SR input to Pad high-impedance (asynchronous) ⁽¹⁾ | T _{IOSRHZ} | 1.6 | 3.1 | 3.4 | 3.9 | ns, max | | SR input to valid data on Pad (asynchronous) | T _{IOSRON} | 2.0 | 4.2 | 4.6 | 5.1 | ns, max | | GSR to Pad | T _{IOGSRQ} | 4.9 | 9.7 | 10.9 | 12.5 | ns, max | - 1. 3-state turn-off delays should not be adjusted. - 2. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ## **Clock Distribution Guidelines** | | | | Speed Grade | | | | |--|---------|-----------------------|-------------|------|------|---------| | Description | Device | Symbol | -6 | -5 | -4 | Units | | Global Clock Skew ⁽¹⁾ | | | | | | | | Global Clock Skew between IOB Flip-flops | XCV50 | T _{GSKEWIOB} | 0.10 | 0.12 | 0.14 | ns, max | | | XCV100 | | 0.12 | 0.13 | 0.15 | ns, max | | | XCV150 | | 0.12 | 0.13 | 0.15 | ns, max | | | XCV200 | | 0.13 | 0.14 | 0.16 | ns, max | | | XCV300 | | 0.14 | 0.16 | 0.18 | ns, max | | | XCV400 | | 0.13 | 0.13 | 0.14 | ns, max | | | XCV600 | | 0.14 | 0.15 | 0.17 | ns, max | | | XCV800 | | 0.16 | 0.17 | 0.20 | ns, max | | | XCV1000 | | 0.20 | 0.23 | 0.25 | ns, max | #### Notes: ## **Clock Distribution Switching Characteristics** | | | | Speed Grade | | | | |---|-------------------|------|-------------|------------|-----|---------| | Description | Symbol | Min | -6 | - 5 | -4 | Units | | GCLK IOB and Buffer | | | | | | | | Global Clock PAD to output. | T _{GPIO} | 0.33 | 0.7 | 0.8 | 0.9 | ns, max | | Global Clock Buffer I input to O output | T _{GIO} | 0.34 | 0.7 | 0.8 | 0.9 | ns, max | ^{1.} These clock-skew delays are provided for guidance only. They reflect the delays encountered in a typical design under worst-case conditions. Precise values for a particular design are provided by the timing analyzer. ## I/O Standard Global Clock Input Adjustments | Description | Symbol | Symbol Standard ⁽¹⁾ | | -6 | -5 | -4 | Units | |--|------------------------|--------------------------------|-------|-------|-------|-------|------------| | Data Input Delay Adjustments | | | | | | | | | Standard-specific global clock input delay adjustments | T _{GPLVTTL} | LVTTL | 0 | 0 | 0 | 0 | ns,
max | | | T _{GPLVCMOS} | LVCMOS2 | -0.02 | -0.04 | -0.04 | -0.05 | ns,
max | | | T _{GPPCl33_3} | PCI, 33 MHz, 3.3
V | -0.05 | -0.11 | -0.12 | -0.14 | ns,
max | | | T _{GPPCl33_5} | PCI, 33 MHz, 5.0
V | 0.13 | 0.25 | 0.28 | 0.33 | ns,
max | | | T _{GPPCl66_3} | PCI, 66 MHz, 3.3
V | -0.05 | -0.11 | -0.12 | -0.14 | ns,
max | | | T _{GPGTL} | GTL | 0.7 | 0.8 | 0.9 | 0.9 | ns,
max | | | T _{GPGTLP} | GTL+ | 0.7 | 0.8 | 0.8 | 0.8 | ns,
max | | | T _{GPHSTL} | HSTL | 0.7 | 0.7 | 0.7 | 0.7 | ns,
max | | | T _{GPSSTL2} | SSTL2 | 0.6 | 0.52 | 0.51 | 0.50
| ns,
max | | | T _{GPSSTL3} | SSTL3 | 0.6 | 0.6 | 0.55 | 0.54 | ns,
max | | | T _{GPCTT} | СТТ | 0.7 | 0.7 | 0.7 | 0.7 | ns,
max | | | T _{GPAGP} | AGP | 0.6 | 0.54 | 0.53 | 0.52 | ns,
max | ^{1.} Input timing for GPLVTTL is measured at 1.4 V. For other I/O standards, see Table 3. #### **Minimum Clock-to-Out for Virtex Devices** | | With DLL | | Without DLL | | | | | | | | | |--------------|-------------|-----|-------------|------|------|------|------|------|------|-------|-------| | I/O Standard | All Devices | V50 | V100 | V150 | V200 | V300 | V400 | V600 | V800 | V1000 | Units | | *LVTTL_S2 | 5.2 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 | ns | | *LVTTL_S4 | 3.5 | 4.3 | 4.3 | 4.3 | 4.3 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | ns | | *LVTTL_S6 | 2.8 | 3.6 | 3.6 | 3.6 | 3.6 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | ns | | *LVTTL_S8 | 2.2 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.2 | 3.2 | 3.2 | ns | | *LVTTL_S12 | 2.0 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 3.0 | 3.0 | 3.0 | ns | | *LVTTL_S16 | 1.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.9 | 2.9 | 2.9 | ns | | *LVTTL_S24 | 1.8 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.8 | ns | | *LVTTL_F2 | 2.9 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.9 | 3.9 | 3.9 | ns | | *LVTTL_F4 | 1.7 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | ns | | *LVTTL_F6 | 1.2 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2 | ns | | *LVTTL_F8 | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | *LVTTL_F12 | 1.0 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | ns | | *LVTTL_F16 | 0.9 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | ns | | *LVTTL_F24 | 0.9 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | LVCMOS2 | 1.1 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | ns | | PCI33_3 | 1.5 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 | ns | | PCI33_5 | 1.4 | 2.2 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.4 | ns | | PCI66_3 | 1.1 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | ns | | GTL | 1.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | ns | | GTL+ | 1.7 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | ns | | HSTL I | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | HSTL III | 0.9 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | HSTL IV | 0.8 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | ns | | SSTL2 I | 0.9 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | ns | | SSTL2 II | 0.8 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | ns | | SSTL3 I | 0.8 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | ns | | SSTL3 II | 0.7 | 1.5 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | ns | | CTT | 1.0 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | | AGP | 1.0 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | ^{*}S = Slow Slew Rate, F = Fast Slew Rate ^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. ^{2.} Input and output timing is measured at 1.4 V for LVTTL. For other I/O standards, see Table 3. In all cases, an 8 pF external capacitive load is used. ## **Virtex Pin-to-Pin Input Parameter Guidelines** All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted ## Global Clock Set-Up and Hold for LVTTL Standard, with DLL | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | | |--|--|---------|-------------|-----------|-----------|-----------|------------|--|--| | Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in Input Delay Adjustments. | | | | | | | | | | | No Delay
Global Clock and IFF, with DLL | T _{PSDLL} /T _{PHDLL} | XCV50 | 0.40 / -0.4 | 1.7 /-0.4 | 1.8 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV100 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV150 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV200 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV300 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV400 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV600 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV800 | 0.40 /-0.4 | 1.7 /-0.4 | 1.9 /-0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV1000 | 0.40 /-0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | IFF = Input Flip-Flop or Latch - 2. DLL output jitter is already included in the timing calculation. - 3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ^{1.} Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. Period Tolerance: the allowed input clock period change in nanoseconds. Figure 1: Frequency Tolerance and Clock Jitter # **Revision History** | Date | Version | Revision | |-------|---------|--| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99 | 1.2 | Updated package drawings and specs. | | 02/99 | 1.3 | Update of package drawings, updated specifications. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-4 (v4.0) March 1, 2013 **Production Product Specification** ## **Virtex Pin Definitions** Table 1: Special Purpose Pins | Pin Name | Dedicated
Pin | Direction | Description | | | |--|------------------|-------------------------------|--|--|--| | GCK0, GCK1,
GCK2, GCK3 | Yes | Input | Clock input pins that connect to Global Clock Buffers. These pins become user inputs when not needed for clocks. | | | | M0, M1, M2 | Yes | Input | Mode pins are used to specify the configuration mode. | | | | CCLK | Yes | Input or
Output | The configuration Clock I/O pin: it is an input for SelectMAP and slave-serial modes, and output in master-serial mode. After configuration, it is input only, logic level = Don't Care. | | | | PROGRAM | Yes | Input | Initiates a configuration sequence when asserted Low. | | | | DONE | Yes | Bidirectional | Indicates that configuration loading is complete, and that the start-up sequence is in progress. The output can be open drain. | | | | INIT | No | Bidirectional
(Open-drain) | When Low, indicates that the configuration memory is being cleared. The pin becomes a user I/O after configuration. | | | | BUSY/
DOUT | No | Output | In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | | | | In bit-serial modes, DOUT provides header information to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. | | | | D0/DIN,
D1, D2,
D3, D4,
D5, D6, | No | Input or
Output | In SelectMAP mode, D0 - D7 are configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained. In bit-serial modes, DIN is the single data input. This pin becomes a user | | | | D7 | | | I/O after
configuration. | | | | WRITE | No | Input | In SelectMAP mode, the active-low Write Enable signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | CS | No | Input | In SelectMAP mode, the active-low Chip Select signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | TDI, TDO,
TMS, TCK | Yes | Mixed | Boundary-scan Test-Access-Port pins, as defined in IEEE 1149.1. | | | | DXN, DXP | Yes | N/A | Temperature-sensing diode pins. (Anode: DXP, cathode: DXN) | | | | V _{CCINT} | Yes | Input | Power-supply pins for the internal core logic. | | | | V _{cco} | Yes | Input | Power-supply pins for the output drivers (subject to banking rules) | | | | V _{REF} | No | Input | Input threshold voltage pins. Become user I/Os when an external threshold voltage is not needed (subject to banking rules). | | | | GND | Yes | Input | Ground | | | ^{© 1999-2013} Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|----------|---------|----------| | V _{REF} , Bank 3 | XCV50 | H11, K12 | 60, 68 | 130, 144 | | (V _{REF} pins are listed incrementally. Connect all pins listed for both | XCV100/150 | + J10 | + 66 | + 133 | | | XCV200/300 | N/A | N/A | + 126 | | the required device | XCV400 | N/A | N/A | + 147 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 132 | | package.) | XCV800 | N/A | N/A | + 140 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 4 | XCV50 | L8, L10 | 79, 87 | 97, 111 | | (V _{REF} pins are listed | XCV100/150 | + N10 | + 81 | + 108 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 115 | | the required device and all smaller devices | XCV400 | N/A | N/A | + 94 | | listed in the same | XCV600 | N/A | N/A | + 109 | | package.) | XCV800 | N/A | N/A | + 101 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 5 | XCV50 | L4, L6 | 96, 104 | 70, 84 | | (V _{REF} pins are listed | XCV100/150 | + N4 | + 102 | + 73 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 66 | | the required device | XCV400 | N/A | N/A | + 87 | | and all smaller devices listed in the same package.) | XCV600 | N/A | N/A | + 72 | | | XCV800 | N/A | N/A | + 80 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|--|--|--| | V _{REF} , Bank 6 | XCV50 | H2, K1 | 116, 123 | 36, 50 | | (V _{REF} pins are listed | XCV100/150 | + J3 | + 118 | + 47 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 54 | | the required device | XCV400 | N/A | N/A | + 33 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 48 | | package.) | XCV800 | N/A | N/A | + 40 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 7 | XCV50 | D4, E1 | 133, 140 | 9, 23 | | (V _{REF} pins are listed | XCV100/150 | + D2 | + 138 | + 12 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 5 | | the required device | XCV400 | N/A | N/A | + 26 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 11 | | package.) | XCV800 | N/A | N/A | + 19 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | GND | All | A1, B9, B11, C7,
D5, E4, E11, F1,
G10, J1, J12, L3,
L5, L7, L9, N12 | 9, 18, 26, 35, 46, 54, 64,
75, 83, 91, 100, 111, 120,
129, 136, 144, | 1, 8, 14, 22, 29, 37, 45, 51, 59, 69, 75, 83, 91, 98, 106, 112, 119, 129, 135, 143, 151, 158, 166, 172, 182, 190, 196, 204, 211, 219, 227, 233 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|---------------------|--|---|--|--| | VCCINT Notes: Superset includes all pins, including the ones in bold type. Subset excludes pins in bold type. In BG352, for XCV300 all the V _{CCINT} pins in the superset must be connected. For XCV150/200, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG432, for XCV400/600/800 all V _{CCINT} pins in the superset must be connected. For XCV300, V _{CCINT} pins in the superset must be connected. For XCV300, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG560, for XCV800/1000 all V _{CCINT} pins in the superset must be connected. For XCV400/600, V _{CCINT} pins in the superset must be connected. For XCV400/600, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) | XCV50/100 | C10, D6,
D15, F4,
F17, L3,
L18, R4,
R17, U6,
U15, V10 | N/A | N/A | N/A | | | XCV150/200/300 | Same as
above | A20, C14,
D10, J24,
K4, P2, P25,
V24, W2,
AC10, AE14,
AE19,
B16, D12,
L1, L25,
R23, T1,
AF11, AF16 | A10, A17, B23,
C14, C19, K3,
K29, N2, N29,
T1, T29, W2,
W31, AB2,
AB30, AJ10,
AJ16, AK13,
AK19, AK22,
B26, C7, F1,
F30, AE29, AF1,
AH8, AH24 | N/A | | | XCV400/600/800/1000 | N/A | N/A | Same as above | A21, B14, B18,
B28, C24, E9,
E12, F2, H30,
J1, K32, N1,
N33, U5, U30,
Y2, Y31, AD2,
AD32, AG3,
AG31, AK8,
AK11, AK17,
AK20, AL14,
AL27, AN25,
B12, C22, M3,
N29, AB2,
AB32, AJ13,
AL22 | | V _{CCO} , Bank 0 | All | D7, D8 | A17, B25,
D19 | A21, C29, D21 | A22, A26, A30,
B19, B32 | | V _{CCO} , Bank 1 | All | D13, D14 | A10, D7,
D13 | A1, A11, D11 | A10, A16, B13,
C3, E5 | | V _{CCO} , Bank 2 | All | G17, H17 | B2, H4, K1 | C3, L1, L4 | B2, D1, H1, M1,
R2 | | V _{CCO} , Bank 3 | All | N17, P17 | P4, U1, Y4 | AA1, AA4, AJ3 | V1, AA2, AD1,
AK1, AL2 | | V _{CCO} , Bank 4 | All | U13, U14 | AC8, AE2,
AF10 | AH11, AL1,
AL11 | AM2, AM15,
AN4, AN8, AN12 | | V _{CCO} , Bank 5 | All | U7, U8 | AC14, AC20,
AF17 | AH21, AJ29,
AL21 | AL31, AM21,
AN18, AN24,
AN30 | | V _{CCO} , Bank 6 | All | N4, P4 | U26, W23,
AE25 | AA28, AA31,
AL31 | W32, AB33,
AF33, AK33,
AM32 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|------------|----------|------------------|-----------------------|----------------------------| | V _{CCO} , Bank 7 | All | G4, H4 | G23, K26,
N23 | A31, L28, L31 | C32, D33, K33,
N32, T33 | | V _{REF} , Bank 0 | XCV50 | A8, B4 | N/A | N/A | N/A | | (VREF pins are listed incrementally. Connect all | XCV100/150 | + A4 | A16,C19,
C21 | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + A2 | + D21 | B19, D22, D24,
D26 | N/A | | same package.) | XCV400 | N/A | N/A | + C18 | A19, D20, | | Within each bank, if input | | | | | D26, E23, E27 | | reference voltage is not required, all V _{REF} pins are | XCV600 | N/A | N/A | + C24 | + E24 | | general I/O. | XCV800
 N/A | N/A | + B21 | + E21 | | | XCV1000 | N/A | N/A | N/A | + D29 | | V _{REF} , Bank 1 | XCV50 | A17, B12 | N/A | N/A | N/A | | (VREF pins are listed incrementally. Connect all | XCV100/150 | + B15 | B6, C9,
C12 | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + B17 | + D6 | A13, B7,
C6, C10 | N/A | | same package.) Within each bank, if input reference voltage is not | XCV400 | N/A | N/A | + B15 | A6, D7,
D11, D16, E15 | | required, all V _{REF} pins are | XCV600 | N/A | N/A | + D10 | + D10 | | general I/O. | XCV800 | N/A | N/A | + B12 | + D13 | | | XCV1000 | N/A | N/A | N/A | + E7 | | V _{REF} , Bank 2 | XCV50 | C20, J18 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the | XCV100/150 | + F19 | E2, H2,
M4 | N/A | N/A | | required device and all smaller devices listed in the | XCV200/300 | + G18 | + D2 | E2, G3,
J2, N1 | N/A | | same package.) | XCV400 | N/A | N/A | + R3 | G5, H4, | | Within each bank, if input reference voltage is not | | | | | L5, P4, R1 | | required, all V _{REF} pins are | XCV600 | N/A | N/A | + H1 | + K5 | | general I/O. | XCV800 | N/A | N/A | + M3 | + N5 | | | XCV1000 | N/A | N/A | N/A | + B3 | #### **BG560 Pin Function Diagram** DS003_22_100300 Figure 7: BG560 Pin Function Diagram ## FG680 Pin Function Diagram Figure 11: FG680 Pin Function Diagram