Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 600 | | Number of Logic Elements/Cells | 2700 | | Total RAM Bits | 40960 | | Number of I/O | 166 | | Number of Gates | 108904 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv100-5pq240i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Revision History** | Date | Version | Revision | |-------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99-02/99 | 1.2-1.3 | Both versions updated package drawings and specs. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See Virtex Data Sheet section. | | 03/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | # **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) Each block SelectRAM cell, as illustrated in Figure 6, is a fully synchronous dual-ported 4096-bit RAM with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion. Figure 6: Dual-Port Block SelectRAM Table 4 shows the depth and width aspect ratios for the block SelectRAM. Table 4: Block SelectRAM Port Aspect Ratios | Width | Depth | ADDR Bus | Data Bus | |-------|-------|------------|------------| | 1 | 4096 | ADDR<11:0> | DATA<0> | | 2 | 2048 | ADDR<10:0> | DATA<1:0> | | 4 | 1024 | ADDR<9:0> | DATA<3:0> | | 8 | 512 | ADDR<8:0> | DATA<7:0> | | 16 | 256 | ADDR<7:0> | DATA<15:0> | The Virtex block SelectRAM also includes dedicated routing to provide an efficient interface with both CLBs and other block SelectRAMs. Refer to XAPP130 for block SelectRAM timing waveforms. # **Programmable Routing Matrix** It is the longest delay path that limits the speed of any worst-case design. Consequently, the Virtex routing architecture and its place-and-route software were defined in a single optimization process. This joint optimization minimizes long-path delays, and consequently, yields the best system performance. The joint optimization also reduces design compilation times because the architecture is software-friendly. Design cycles are correspondingly reduced due to shorter design iteration times. Figure 7: Virtex Local Routing # **Local Routing** The VersaBlock provides local routing resources, as shown in Figure 7, providing the following three types of connections. - Interconnections among the LUTs, flip-flops, and GRM - Internal CLB feedback paths that provide high-speed connections to LUTs within the same CLB, chaining them together with minimal routing delay - Direct paths that provide high-speed connections between horizontally adjacent CLBs, eliminating the delay of the GRM. ers with a common user interface regardless of their choice of entry and verification tools. The XDM software simplifies the selection of implementation options with pull-down menus and on-line help. Application programs ranging from schematic capture to Placement and Routing (PAR) can be accessed through the XDM software. The program command sequence is generated prior to execution, and stored for documentation. Several advanced software features facilitate Virtex design. RPMs, for example, are schematic-based macros with relative location constraints to guide their placement. They help ensure optimal implementation of common functions. For HDL design entry, the Xilinx FPGA Foundation development system provides interfaces to the following synthesis design environments. - Synopsys (FPGA Compiler, FPGA Express) - Exemplar (Spectrum) - Synplicity (Synplify) For schematic design entry, the Xilinx FPGA Foundation and alliance development system provides interfaces to the following schematic-capture design environments. - Mentor Graphics V8 (Design Architect, QuickSim II) - Viewlogic Systems (Viewdraw) Third-party vendors support many other environments. A standard interface-file specification, Electronic Design Interchange Format (EDIF), simplifies file transfers into and out of the development system. Virtex FPGAs supported by a unified library of standard functions. This library contains over 400 primitives and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, multiplexers, shift registers, and barrel shifters. The "soft macro" portion of the library contains detailed descriptions of common logic functions, but does not contain any partitioning or placement information. The performance of these macros depends, therefore, on the partitioning and placement obtained during implementation. RPMs, on the other hand, do contain predetermined partitioning and placement information that permits optimal implementation of these functions. Users can create their own library of soft macros or RPMs based on the macros and primitives in the standard library. The design environment supports hierarchical design entry, with high-level schematics that comprise major functional blocks, while lower-level schematics define the logic in these blocks. These hierarchical design elements are automatically combined by the implementation tools. Different design entry tools can be combined within a hierarchical design, thus allowing the most convenient entry method to be used for each portion of the design. # **Design Implementation** The place-and-route tools (PAR) automatically provide the implementation flow described in this section. The partitioner takes the EDIF net list for the design and maps the logic into the architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines the best locations for these blocks based on their interconnections and the desired performance. Finally, the router interconnects the blocks. The PAR algorithms support fully automatic implementation of most designs. For demanding applications, however, the user can exercise various degrees of control over the process. User partitioning, placement, and routing information is optionally specified during the design-entry process. The implementation of highly structured designs can benefit greatly from basic floor planning. The implementation software incorporates Timing Wizard® timing-driven placement and routing. Designers specify timing requirements along entire paths during design entry. The timing path analysis routines in PAR then recognize these user-specified requirements and accommodate them. Timing requirements are entered on a schematic in a form directly relating to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system along entire signal paths is automatically tailored to user-generated specifications. Specific timing information for individual nets is unnecessary. # **Design Verification** In addition to conventional software simulation, FPGA users can use in-circuit debugging techniques. Because Xilinx devices are infinitely reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors. The development system supports both software simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database, and back-annotates this information into the net list for use by the simulator. Alternatively, the user can verify timing-critical portions of the design using the TRACE® static timing analyzer. For in-circuit debugging, the development system includes a download and readback cable. This cable connects the FPGA in the target system to a PC or workstation. After downloading the design into the FPGA, the designer can single-step the logic, readback the contents of the flip-flops, and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes. ### Master-Serial Mode In master-serial mode, the CCLK output of the FPGA drives a Xilinx Serial PROM that feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the rising CCLK edge. The interface is identical to slave-serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Switching to a lower frequency is prohibited. The CCLK frequency is set using the ConfigRate option in the bitstream generation software. The maximum CCLK frequency that can be selected is 60 MHz. When selecting a CCLK frequency, ensure that the serial PROM and any daisy-chained FPGAs are fast enough to support the clock rate. On power-up, the CCLK frequency is 2.5 MHz. This frequency is used until the ConfigRate bits have been loaded when the frequency changes to the selected ConfigRate. Unless a different frequency is specified in the design, the default ConfigRate is 4 MHz. Figure 12 shows a full master/slave system. In this system, the left-most device operates in master-serial mode. The remaining devices operate in slave-serial mode. The SPROM RESET pin is driven by $\overline{\text{INIT}}$, and the $\overline{\text{CE}}$ input is driven by DONE. There is the potential for contention on the DONE pin, depending on the start-up sequence options chosen. Figure 14 shows the timing of master-serial configuration. Master-serial mode is selected by a <000> or <100> on the mode pins (M2, M1, M0). Table 8 shows the timing information for Figure 14. Figure 14: Master-Serial Mode Programming Switching Characteristics At power-up, V_{CC} must rise from 1.0 V to V_{CC} min in less than 50 ms, otherwise delay configuration by pulling PROGRAM Low until V_{CC} is valid. The sequence of operations necessary to configure a Virtex FPGA serially appears in Figure 15. ### SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the FPGA with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, a Chip Select (\overline{CS}) signal and a Write signal (\overline{WRITE}) . If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If WRITE is not asserted, configuration data is read out of the FPGA as part of a readback operation. In the SelectMAP mode, multiple Virtex devices can be chained in parallel. DATA pins (D7:D0), CCLK, WRITE, BUSY, PROGRAM, DONE, and INIT can be connected in parallel between all the FPGAs. Note that the data is organized with the MSB of each byte on pin DO and the LSB of each byte on D7. The CS pins are kept separate, insuring that each FPGA can be selected individually. WRITE should be Low before loading the first bitstream and returned High after the last device has been programmed. Use $\overline{\text{CS}}$ to select the appropriate FPGA for loading the bitstream and sending the configuration data. at the end of the bitstream, deselect the loaded device and select the next target FPGA by setting its $\overline{\text{CS}}$ pin High. A free-running oscillator or other externally generated signal can be used for CCLK. The BUSY signal can be ignored for frequencies below 50 MHz. For details about frequencies above 50 MHz, see XAPP138, Virtex Configuration and Readback. Once all the devices have been programmed, the DONE pin goes High. ### **Power-On Power Supply Requirements** Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device⁽¹⁾ from 0 V. The current is highest at the fastest suggested ramp rate (0 V to nominal voltage in 2 ms) and is lowest at the slowest allowed ramp rate (0 V to nominal voltage in 50 ms). For more details on power supply requirements, see Application Note XAPP158 on www.xilinx.com. | Product | Description ⁽²⁾ | Current Requirement ^(1,3) | |---------------------------------|---------------------------------|--------------------------------------| | Virtex Family, Commercial Grade | Minimum required current supply | 500 mA | | Virtex Family, Industrial Grade | Minimum required current supply | 2 A | #### Notes: - Ramp rate used for this specification is from 0 2.7 VDC. Peak current occurs on or near the internal power-on reset threshold of 1.0V and lasts for less than 3 ms. - Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above. - 3. Larger currents can result if ramp rates are forced to be faster. # **DC Input and Output Levels** Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed output currents over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum V_{CCO} for each standard with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested. | Input/Output | | V _{IL} | VI | Н | V _{OL} | V _{OH} | I _{OL} | I _{OH} | |-----------------------|--------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-----------------|-----------------| | Standard | V, min | V, max | V, min | V, max | V, Max | V, Min | mA | mA | | LVTTL ⁽¹⁾ | - 0.5 | 0.8 | 2.0 | 5.5 | 0.4 | 2.4 | 24 | -24 | | LVCMOS2 | - 0.5 | .7 | 1.7 | 5.5 | 0.4 | 1.9 | 12 | -12 | | PCI, 3.3 V | - 0.5 | 44% V _{CCINT} | 60% V _{CCINT} | V _{CCO} + 0.5 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | | PCI, 5.0 V | - 0.5 | 0.8 | 2.0 | 5.5 | 0.55 | 2.4 | Note 2 | Note 2 | | GTL | - 0.5 | V _{REF} - 0.05 | V _{REF} + 0.05 | 3.6 | 0.4 | n/a | 40 | n/a | | GTL+ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.6 | n/a | 36 | n/a | | HSTL I ⁽³⁾ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 8 | -8 | | HSTL III | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 24 | -8 | | HSTL IV | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 48 | -8 | | SSTL3 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.6 | V _{REF} + 0.6 | 8 | -8 | | SSTL3 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.8 | V _{REF} + 0.8 | 16 | -16 | | SSTL2 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.61 | V _{REF} + 0.61 | 7.6 | -7.6 | | SSTL2 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.80 | V _{REF} + 0.80 | 15.2 | -15.2 | | CTT | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.4 | V _{REF} + 0.4 | 8 | -8 | | AGP | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | - V_{OL} and V_{OH} for lower drive currents are sample tested. - 2. Tested according to the relevant specifications. - DC input and output levels for HSTL18 (HSTL I/O standard with V_{CCO} of 1.8 V) are provided in an HSTL white paper on www.xilinx.com. # **IOB Output Switching Characteristics Standard Adjustments** Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown. | | | | | Speed | Grade | | Unit | |-----------------------------------------------------------------------|-------------------------|-------------------------|-------|-------|-------|-------|------| | Description | Symbol | Standard ⁽¹⁾ | Min | -6 | -5 | -4 | s | | Output Delay Adjustments | | | | | | | | | Standard-specific adjustments for | T _{OLVTTL_S2} | LVTTL, Slow, 2 mA | 4.2 | 14.7 | 15.8 | 17.0 | ns | | output delays terminating at pads (based on standard capacitive load, | T _{OLVTTL_S4} | 4 mA | 2.5 | 7.5 | 8.0 | 8.6 | ns | | Csl) | T _{OLVTTL_S6} | 6 mA | 1.8 | 4.8 | 5.1 | 5.6 | ns | | | T _{OLVTTL_S8} | 8 mA | 1.2 | 3.0 | 3.3 | 3.5 | ns | | | T _{OLVTTL_S12} | 12 mA | 1.0 | 1.9 | 2.1 | 2.2 | ns | | | T _{OLVTTL_S16} | 16 mA | 0.9 | 1.7 | 1.9 | 2.0 | ns | | | T _{OLVTTL_S24} | 24 mA | 0.8 | 1.3 | 1.4 | 1.6 | ns | | | T _{OLVTTL_F2} | LVTTL, Fast, 2mA | 1.9 | 13.1 | 14.0 | 15.1 | ns | | | T _{OLVTTL_F4} | 4 mA | 0.7 | 5.3 | 5.7 | 6.1 | ns | | | T _{OLVTTL_F6} | 6 mA | 0.2 | 3.1 | 3.3 | 3.6 | ns | | | T _{OLVTTL_F8} | 8 mA | 0.1 | 1.0 | 1.1 | 1.2 | ns | | | T _{OLVTTL_F12} | 12 mA | 0 | 0 | 0 | 0 | ns | | | T _{OLVTTL_F16} | 16 mA | -0.10 | -0.05 | -0.05 | -0.05 | ns | | | T _{OLVTTL_F24} | 24 mA | -0.10 | -0.20 | -0.21 | -0.23 | ns | | | T _{OLVCMOS2} | LVCMOS2 | 0.10 | 0.10 | 0.11 | 0.12 | ns | | | T _{OPCl33_3} | PCI, 33 MHz, 3.3 V | 0.50 | 2.3 | 2.5 | 2.7 | ns | | | T _{OPCl33_5} | PCI, 33 MHz, 5.0 V | 0.40 | 2.8 | 3.0 | 3.3 | ns | | | T _{OPCI66_3} | PCI, 66 MHz, 3.3 V | 0.10 | -0.40 | -0.42 | -0.46 | ns | | | T _{OGTL} | GTL | 0.6 | 0.50 | 0.54 | 0.6 | ns | | | T _{OGTLP} | GTL+ | 0.7 | 0.8 | 0.9 | 1.0 | ns | | | T _{OHSTL_I} | HSTL I | 0.10 | -0.50 | -0.53 | -0.5 | ns | | | T _{OHSTL_III} | HSTL III | -0.10 | -0.9 | -0.9 | -1.0 | ns | | | T _{OHSTL_IV} | HSTL IV | -0.20 | -1.0 | -1.0 | -1.1 | ns | | | T _{OSSTL2_I} | SSTL2 I | -0.10 | -0.50 | -0.53 | -0.5 | ns | | | T _{OSSLT2_II} | SSTL2 II | -0.20 | -0.9 | -0.9 | -1.0 | ns | | | T _{OSSTL3_I} | SSTL3 I | -0.20 | -0.50 | -0.53 | -0.5 | ns | | | T _{OSSTL3_II} | SSTL3 II | -0.30 | -1.0 | -1.0 | -1.1 | ns | | | T _{OCTT} | CTT | 0 | -0.6 | -0.6 | -0.6 | ns | | | T _{OAGP} | AGP | 0 | -0.9 | -0.9 | -1.0 | ns | ^{1.} Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see Table 2 and Table 3. # **CLB Arithmetic Switching Characteristics** Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment listed. Precise values are provided by the timing analyzer. | | | | Speed | Grade | | | |------------------------------------------------------------|--------------------------------------|----------|-------------|-----------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Combinatorial Delays | | | | | • | • | | F operand inputs to X via XOR | T _{OPX} | 0.37 | 0.8 | 0.9 | 1.0 | ns, max | | F operand input to XB output | T _{OPXB} | 0.54 | 1.1 | 1.3 | 1.4 | ns, max | | F operand input to Y via XOR | T _{OPY} | 0.8 | 1.5 | 1.7 | 2.0 | ns, max | | F operand input to YB output | T _{OPYB} | 0.8 | 1.5 | 1.7 | 2.0 | ns, max | | F operand input to COUT output | T _{OPCYF} | 0.6 | 1.2 | 1.3 | 1.5 | ns, max | | G operand inputs to Y via XOR | T _{OPGY} | 0.46 | 1.0 | 1.1 | 1.2 | ns, max | | G operand input to YB output | T _{OPGYB} | 0.8 | 1.6 | 1.8 | 2.1 | ns, max | | G operand input to COUT output | T _{OPCYG} | 0.7 | 1.3 | 1.4 | 1.6 | ns, max | | BX initialization input to COUT | T _{BXCY} | 0.41 | 0.9 | 1.0 | 1.1 | ns, max | | CIN input to X output via XOR | T _{CINX} | 0.21 | 0.41 | 0.46 | 0.53 | ns, max | | CIN input to XB | T _{CINXB} | 0.02 | 0.04 | 0.05 | 0.06 | ns, max | | CIN input to Y via XOR | T _{CINY} | 0.23 | 0.46 | 0.52 | 0.6 | ns, max | | CIN input to YB | T _{CINYB} | 0.23 | 0.45 | 0.51 | 0.6 | ns, max | | CIN input to COUT output | T _{BYP} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | | Multiplier Operation | | | | | | • | | F1/2 operand inputs to XB output via AND | T _{FANDXB} | 0.18 | 0.36 | 0.40 | 0.46 | ns, max | | F1/2 operand inputs to YB output via AND | T _{FANDYB} | 0.40 | 0.8 | 0.9 | 1.1 | ns, max | | F1/2 operand inputs to COUT output via AND | T _{FANDCY} | 0.22 | 0.43 | 0.48 | 0.6 | ns, max | | G1/2 operand inputs to YB output via AND | T _{GANDYB} | 0.25 | 0.50 | 0.6 | 0.7 | ns, max | | G1/2 operand inputs to COUT output via AND | T _{GANDCY} | 0.07 | 0.13 | 0.15 | 0.17 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Set | up Time / F | lold Time | • | • | | CIN input to FFX | T _{CCKX} /T _{CKCX} | 0.50 / 0 | 1.0 / 0 | 1.2 / 0 | 1.3 / 0 | ns, min | | CIN input to FFY | T _{CCKY} /T _{CKCY} | 0.53 / 0 | 1.1 / 0 | 1.2 / 0 | 1.4 / 0 | ns, min | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # **Block RAM Switching Characteristics** | | Speed Grade | | | | | | |------------------------------------------------------------|--------------------------------------|---------|------------|----------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Sequential Delays | | | | | | | | Clock CLK to DOUT output | T _{BCKO} | 1.7 | 3.4 | 3.8 | 4.3 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Setu | p Time / H | old Time | | | | ADDR inputs | T _{BACK} /T _{BCKA} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | DIN inputs | T _{BDCK} /T _{BCKD} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | EN input | T _{BECK} /T _{BCKE} | 1.3 / 0 | 2.6 / 0 | 3.0 / 0 | 3.4 / 0 | ns, min | | RST input | T _{BRCK} /T _{BCKR} | 1.3 / 0 | 2.5 / 0 | 2.7 / 0 | 3.2 / 0 | ns, min | | WEN input | T _{BWCK} /T _{BCKW} | 1.2 / 0 | 2.3 / 0 | 2.6 / 0 | 3.0 / 0 | ns, min | | Clock CLK | | | | | | | | Minimum Pulse Width, High | T _{BPWH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | T _{BPWL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | CLKA -> CLKB setup time for different ports | T _{BCCS} | | 3.0 | 3.5 | 4.0 | ns, min | #### Notes: # **TBUF Switching Characteristics** | | | Speed Grade | | | | | |----------------------------------------|------------------|-------------|------|------|------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Combinatorial Delays | | | | | | | | IN input to OUT output | T _{IO} | 0 | 0 | 0 | 0 | ns, max | | TRI input to OUT output high-impedance | T _{OFF} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | | TRI input to valid data on OUT output | T _{ON} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | # **JTAG Test Access Port Switching Characteristics** | Description | Symbol | -6 | -5 | -4 | Units | |-------------------------------------------|---------------------|------|------|------|----------| | TMS and TDI Setup times before TCK | T _{TAPTCK} | 4.0 | 4.0 | 4.0 | ns, min | | TMS and TDI Hold times after TCK | T _{TCKTAP} | 2.0 | 2.0 | 2.0 | ns, min | | Output delay from clock TCK to output TDO | T _{TCKTDO} | 11.0 | 11.0 | 11.0 | ns, max | | Maximum TCK clock frequency | F _{TCK} | 33 | 33 | 33 | MHz, max | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # **Minimum Clock-to-Out for Virtex Devices** | | With DLL | | | | | With | out DLL | | | | | |--------------|-------------|-----|------|------|------|------|---------|------|------|-------|-------| | I/O Standard | All Devices | V50 | V100 | V150 | V200 | V300 | V400 | V600 | V800 | V1000 | Units | | *LVTTL_S2 | 5.2 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 | ns | | *LVTTL_S4 | 3.5 | 4.3 | 4.3 | 4.3 | 4.3 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | ns | | *LVTTL_S6 | 2.8 | 3.6 | 3.6 | 3.6 | 3.6 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | ns | | *LVTTL_S8 | 2.2 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.2 | 3.2 | 3.2 | ns | | *LVTTL_S12 | 2.0 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 3.0 | 3.0 | 3.0 | ns | | *LVTTL_S16 | 1.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.9 | 2.9 | 2.9 | ns | | *LVTTL_S24 | 1.8 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.8 | ns | | *LVTTL_F2 | 2.9 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.9 | 3.9 | 3.9 | ns | | *LVTTL_F4 | 1.7 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | ns | | *LVTTL_F6 | 1.2 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2 | ns | | *LVTTL_F8 | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | *LVTTL_F12 | 1.0 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | ns | | *LVTTL_F16 | 0.9 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | ns | | *LVTTL_F24 | 0.9 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | LVCMOS2 | 1.1 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | ns | | PCI33_3 | 1.5 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 | ns | | PCI33_5 | 1.4 | 2.2 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.4 | ns | | PCI66_3 | 1.1 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | ns | | GTL | 1.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | ns | | GTL+ | 1.7 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | ns | | HSTL I | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | HSTL III | 0.9 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | HSTL IV | 0.8 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | ns | | SSTL2 I | 0.9 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | ns | | SSTL2 II | 0.8 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | ns | | SSTL3 I | 0.8 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | ns | | SSTL3 II | 0.7 | 1.5 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | ns | | CTT | 1.0 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | | AGP | 1.0 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | ^{*}S = Slow Slew Rate, F = Fast Slew Rate ^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. ^{2.} Input and output timing is measured at 1.4 V for LVTTL. For other I/O standards, see Table 3. In all cases, an 8 pF external capacitive load is used. # Global Clock Set-Up and Hold for LVTTL Standard, without DLL | | | | | Speed | Grade | | | |---------------------------------------------------------------------|--------------------------------------|---------|---------|---------|--------------|---------------|------------| | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | Input Setup and Hold Time Relat standards, adjust the setup time of | | | | | For data inp | ut with diffe | rent | | Full Delay Global Clock and IFF, without | T _{PSFD} /T _{PHFD} | XCV50 | 0.6 / 0 | 2.3 / 0 | 2.6 / 0 | 2.9 / 0 | ns,
min | | DLL | | XCV100 | 0.6 / 0 | 2.3 / 0 | 2.6 / 0 | 3.0 / 0 | ns,
min | | | | XCV150 | 0.6 / 0 | 2.4 / 0 | 2.7 / 0 | 3.1 / 0 | ns,
min | | | | XCV200 | 0.7 / 0 | 2.5 / 0 | 2.8 / 0 | 3.2 / 0 | ns,
min | | | | XCV300 | 0.7 / 0 | 2.5 / 0 | 2.8 / 0 | 3.2 / 0 | ns,
min | | | | XCV400 | 0.7 / 0 | 2.6 / 0 | 2.9 / 0 | 3.3 / 0 | ns,
min | | | | XCV600 | 0.7 / 0 | 2.6 / 0 | 2.9 / 0 | 3.3 / 0 | ns,
min | | | | XCV800 | 0.7 / 0 | 2.7 / 0 | 3.1 / 0 | 3.5 / 0 | ns,
min | | | | XCV1000 | 0.7 / 0 | 2.8 / 0 | 3.1 / 0 | 3.6 / 0 | ns,
min | IFF = Input Flip-Flop or Latch #### Notes: Notes: - 1. Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. - 2. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # **Product Obsolete/Under Obsolescence** # **Virtex Pinout Information** ### **Pinout Tables** See www.xilinx.com for updates or additional pinout information. For convenience, Table 2, Table 3 and Table 4 list the locations of special-purpose and power-supply pins. Pins not listed are either user I/Os or not connected, depending on the device/package combination. See the Pinout Diagrams starting on page 17 for any pins not listed for a particular part/package combination. Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--------------------|--------|------------------------------------|------------------------------------|---| | GCK0 | All | K7 | 90 | 92 | | GCK1 | All | M7 | 93 | 89 | | GCK2 | All | A7 | 19 | 210 | | GCK3 | All | A6 | 16 | 213 | | MO | All | M1 | 110 | 60 | | M1 | All | L2 | 112 | 58 | | M2 | All | N2 | 108 | 62 | | CCLK | All | B13 | 38 | 179 | | PROGRAM | All | L12 | 72 | 122 | | DONE | All | M12 | 74 | 120 | | INIT | All | L13 | 71 | 123 | | BUSY/DOUT | All | C11 | 39 | 178 | | D0/DIN | All | C12 | 40 | 177 | | D1 | All | E10 | 45 | 167 | | D2 | All | E12 | 47 | 163 | | D3 | All | F11 | 51 | 156 | | D4 | All | H12 | 59 | 145 | | D5 | All | J13 | 63 | 138 | | D6 | All | J11 | 65 | 134 | | D7 | All | K10 | 70 | 124 | | WRITE | All | C10 | 32 | 185 | | CS | All | D10 | 33 | 184 | | TDI | All | A11 | 34 | 183 | | TDO | All | A12 | 36 | 181 | | TMS | All | B1 | 143 | 2 | | TCK | All | C3 | 2 | 239 | | V _{CCINT} | All | A9, B6, C5, G3,
G12, M5, M9, N6 | 10, 15, 25, 57, 84, 94,
99, 126 | 16, 32, 43, 77, 88, 104, 137, 148, 164, 198, 214, 225 | Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|---|---|--| | V _{CCO} | All | Banks 0 and 1:
A2, A13, D7
Banks 2 and 3:
B12, G11, M13
Banks 4 and 5:
N1, N7, N13
Banks 6 and 7:
B2, G2, M2 | No I/O Banks in this package: 1, 17, 37, 55, 73, 92, 109, 128 | No I/O Banks in this package: 15, 30, 44, 61, 76, 90, 105, 121, 136, 150, 165, 180, 197, 212, 226, 240 | | V _{RFF} Bank 0 | XCV50 | C4, D6 | 5, 13 | 218, 232 | | (V _{REF} pins are listed | XCV100/150 | + B4 | + 7 | + 229 | | incrementally. Connect | XCV200/300 | N/A | N/A | + 236 | | all pins listed for both the required device | XCV400 | N/A | N/A | + 215 | | and all smaller devices | XCV600 | N/A | N/A | + 230 | | listed in the same package.) | XCV800 | N/A | N/A | + 222 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 1 | XCV50 | A10, B8 | 22, 30 | 191, 205 | | (V _{REF} pins are listed | XCV100/150 | + D9 | + 28 | + 194 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 187 | | the required device | XCV400 | N/A | N/A | + 208 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 193 | | package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + 201 | | V _{REF} , Bank 2 | XCV50 | D11, F10 | 42, 50 | 157, 171 | | (V _{REF} pins are listed | XCV100/150 | + D13 | + 44 | + 168 | | incrementally. Connect
all pins listed for both
the required device
and all smaller devices
listed in the same | XCV200/300 | N/A | N/A | + 175 | | | XCV400 | N/A | N/A | + 154 | | | XCV600 | N/A | N/A | + 169 | | package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + 161 | Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|---------------------------------|--|--|--| | V _{REF} , Bank 6 | V _{REF} , Bank 6 XCV50 | | 116, 123 | 36, 50 | | (V _{REF} pins are listed | XCV100/150 | + J3 | + 118 | + 47 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 54 | | the required device | XCV400 | N/A | N/A | + 33 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 48 | | package.) | XCV800 | N/A | N/A | + 40 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 7 | XCV50 | D4, E1 | 133, 140 | 9, 23 | | (V _{REF} pins are listed | XCV100/150 | + D2 | + 138 | + 12 | | incrementally. Connect
all pins listed for both
the required device
and all smaller devices
listed in the same | XCV200/300 | N/A | N/A | + 5 | | | XCV400 | N/A | N/A | + 26 | | | XCV600 | N/A | N/A | + 11 | | package.) | XCV800 | N/A | N/A | + 19 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | GND | All | A1, B9, B11, C7,
D5, E4, E11, F1,
G10, J1, J12, L3,
L5, L7, L9, N12 | 9, 18, 26, 35, 46, 54, 64,
75, 83, 91, 100, 111, 120,
129, 136, 144, | 1, 8, 14, 22, 29, 37, 45, 51, 59, 69, 75, 83, 91, 98, 106, 112, 119, 129, 135, 143, 151, 158, 166, 172, 182, 190, 196, 204, 211, 219, 227, 233 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|------------|--|--|--|---| | V _{REF} , Bank 7 | XCV50 | G3, H1 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + D1 | D26, G26, | N/A | N/A | | incrementally. Connect all pins listed for both the | | | L26 | | | | required device and all | XCV200/300 | + B2 | + E24 | F28, F31, | N/A | | smaller devices listed in the same package.) | | | | J30, N30 | | | Within each bank, if input reference voltage is not required, all V _{REF} pins are | XCV400 | N/A | N/A | + R31 | E31, G31, K31,
P31, T31 | | general I/O. | XCV600 | N/A | N/A | + J28 | + H32 | | | XCV800 | N/A | N/A | + M28 | + L33 | | | XCV1000 | N/A | N/A | N/A | + D31 | | GND | All | C3, C18, D4, D5, D9, D10, D11, D12, D16, D17, E4, E17, J4, J17, K4, K17, L4, L17, M4, M17, T4, T17, U4, U5, U9, U10, U11, U12, U16, U17, V3, V18 | A1, A2, A5,
A8, A14,
A19, A22,
A25, A26,
B1, B26, E1,
E26, H1,
H26, N1,
P26, W1,
W26, AB1,
AB26, AE1,
AF2, AF5,
AF8, AF13,
AF19, AF22,
AF25, AF26 | A2, A3, A7, A9, A14, A18, A23, A25, A29, A30, B1, B2, B30, B31, C1, C31, D16, G1, G31, J1, J31, P1, P31, T4, T28, V1, V31, AC1, AC31, AE1, AE31, AH16, AJ1, AJ31, AK1, AK2, AK30, AK31, AL2, AL3, AL7, AL9 AL14, AL18 AL23, AL25, AL29, AL30 | A1, A7, A12, A14, A18, A20, A24, A29, A32, A33, B1, B6, B9, B15, B23, B27, B31, C2, E1, F32, G2, G33, J32, K1, L2, M33, P1, P33, R32, T1, V33, W2, Y1, Y33, AB1, AC32, AD33, AE2, AG1, AG32, AH2, AJ33, AL32, AM3, AM7, AM11, AM19, AM25, AM28, AM33, AN1, AN2, AN5, AN10, AN14, AN16, AN20, AN22, AN27, AN33 | | GND ⁽¹⁾ | All | J9, J10,
J11, J12,
K9, K10,
K11, K12,
L9, L10,
L11, L12,
M9, M10,
M11, M12 | N/A | N/A | N/A | | No Connect | All | N/A | N/A | N/A | C31, AC2, AK4,
AL3 | ### Notes: 1. 16 extra balls (grounded) at package center. Table 4: Virtex Pinout Tables (Fine-Pitch BGA) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |-----------|--------|-------|-------|-------|-------| | GCK0 | All | N8 | W12 | AA14 | AW19 | | GCK1 | All | R8 | Y11 | AB13 | AU22 | | GCK2 | All | C9 | A11 | C13 | D21 | | GCK3 | All | B8 | C11 | E13 | A20 | | M0 | All | N3 | AB2 | AD4 | AT37 | | M1 | All | P2 | U5 | W7 | AU38 | | M2 | All | R3 | Y4 | AB6 | AT35 | | CCLK | All | D15 | B22 | D24 | E4 | | PROGRAM | All | P15 | W20 | AA22 | AT5 | | DONE | All | R14 | Y19 | AB21 | AU5 | | INIT | All | N15 | V19 | Y21 | AU2 | | BUSY/DOUT | All | C15 | C21 | E23 | E3 | | D0/DIN | All | D14 | D20 | F22 | C2 | | D1 | All | E16 | H22 | K24 | P4 | | D2 | All | F15 | H20 | K22 | P3 | | D3 | All | G16 | K20 | M22 | R1 | | D4 | All | J16 | N22 | R24 | AD3 | | D5 | All | M16 | R21 | U23 | AG2 | | D6 | All | N16 | T22 | V24 | AH1 | | D7 | All | N14 | Y21 | AB23 | AR4 | | WRITE | All | C13 | A20 | C22 | B4 | | CS | All | B13 | C19 | E21 | D5 | | TDI | All | A15 | B20 | D22 | В3 | | TDO | All | B14 | A21 | C23 | C4 | | TMS | All | D3 | D3 | F5 | E36 | | TCK | All | C4 | C4 | E6 | C36 | | DXN | All | R4 | Y5 | AB7 | AV37 | | DXP | All | P4 | V6 | Y8 | AU35 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|--------|-------|---|---|-------| | No Connect (No-connect pins are listed incrementally. All pins listed for both the required device and all larger devices listed in the same package are no connects.) | XCV800 | N/A | N/A | A2, A3, A15, A25,
B1, B6, B11, B16,
B21, B24, B26,
C1, C2, C25, C26,
F2, F6, F21, F25,
L2, L25, N25, P2,
T2, T25, AA2,
AA6, AA21, AA25,
AD1, AD2, AD25,
AE1, AE3, AE6,
AE11, AE14,
AE16, AE21,
AE24, AE26, AF2,
AF24, AF25 | N/A | | | XCV600 | N/A | N/A | same as above | N/A | | | XCV400 | N/A | N/A | + A9, A10, A13,
A16, A24, AC1,
AC25, AE12,
AE15, AF3, AF10,
AF11, AF13,
AF14, AF16,
AF18, AF23, B4,
B12, B13, B15,
B17, D1, D25,
H26, J1, K26, L1,
M1, M25, N1, N26,
P1, P26, R2, R26,
T1, T26, U26, V1 | N/A | | | XCV300 | N/A | D4, D19, W4,
W19 | N/A | N/A | | | XCV200 | N/A | + A2, A6, A12,
B11, B16, C2,
D1, D18, E17,
E19, G2, G22,
L2, L19, M2,
M21, R3, R20,
U3, U18, Y22,
AA1, AA3, AA11,
AA16, AB7,
AB12, AB21, | N/A | N/A | | | XCV150 | N/A | + A13, A14,
C8, C9, E13,
F11, H21, J1, J4,
K2, K18, K19,
M17, N1, P1, P5,
P22, R22, W13,
W15, AA9,
AA10, AB8,
AB14 | N/A | N/A | # **BG256 Pin Function Diagram** Figure 4: BG256 Pin Function Diagram # **BG432 Pin Function Diagram** DS003_21_100300 Figure 6: BG432 Pin Function Diagram # **FG456 Pin Function Diagram** (Top view) Figure 9: FG456 Pin Function Diagram ### Notes: Packages FG456 and FG676 are layout compatible.