Welcome to **E-XFL.COM** # **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 6144 | | Number of Logic Elements/Cells | 27648 | | Total RAM Bits | 131072 | | Number of I/O | 512 | | Number of Gates | 1124022 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 680-LBGA Exposed Pad | | Supplier Device Package | 680-FTEBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv1000-4fg680i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 2: Virtex Input/Output Block (IOB) Table 1: Supported Select I/O Standards | I/O Standard | Input Reference
Voltage (V _{REF}) | Output Source
Voltage (V _{CCO}) | Board Termination
Voltage (V _{TT}) | 5 V Tolerant | |--------------------|------------------------------------------------|----------------------------------------------|-------------------------------------------------|--------------| | LVTTL 2 – 24 mA | N/A | 3.3 | N/A | Yes | | LVCMOS2 | N/A | 2.5 | N/A | Yes | | PCI, 5 V | N/A | 3.3 | N/A | Yes | | PCI, 3.3 V | N/A | 3.3 | N/A | No | | GTL | 0.8 | N/A | 1.2 | No | | GTL+ | 1.0 | N/A | 1.5 | No | | HSTL Class I | 0.75 | 1.5 | 0.75 | No | | HSTL Class III | 0.9 | 1.5 | 1.5 | No | | HSTL Class IV | 0.9 | 1.5 | 1.5 | No | | SSTL3 Class I &II | 1.5 | 3.3 | 1.5 | No | | SSTL2 Class I & II | 1.25 | 2.5 | 1.25 | No | | CTT | 1.5 | 3.3 | 1.5 | No | | AGP | 1.32 | 3.3 | N/A | No | more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O. In smaller devices, some V_{CCO} pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the V_{CCO} voltage to permit migration to a larger device if necessary. In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO} . In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously. ## **Configurable Logic Block** The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4. Figure 5 shows a more detailed view of a single slice. In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs. ## Look-Up Tables Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing. ## Storage Elements The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators. In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice. Figure 4: 2-Slice Virtex CLB Figure 5: Detailed View of Virtex Slice ### Additional Logic The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs. Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources. ### Arithmetic Logic Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation. The dedicated carry path can also be used to cascade function generators for implementing wide logic functions. #### **BUFTs** Each Virtex CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See **Dedicated Routing**, page 7. Each Virtex BUFT has an independent 3-state control pin and an independent input pin. #### **Block SelectRAM** Virtex FPGAs incorporate several large block SelectRAM memories. These complement the distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs. Block SelectRAM memory blocks are organized in columns. All Virtex devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, and a total of 32 blocks. Table 3 shows the amount of block SelectRAM memory that is available in each Virtex device. Table 3: Virtex Block SelectRAM Amounts | Device | # of Blocks | Total Block SelectRAM Bits | |---------|-------------|----------------------------| | XCV50 | 8 | 32,768 | | XCV100 | 10 | 40,960 | | XCV150 | 12 | 49,152 | | XCV200 | 14 | 57,344 | | XCV300 | 16 | 65,536 | | XCV400 | 20 | 81,920 | | XCV600 | 24 | 98,304 | | XCV800 | 28 | 114,688 | | XCV1000 | 32 | 131,072 | Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is selected either from these pads or from signals in the general purpose routing. Figure 9: Global Clock Distribution Network ### Delay-Locked Loop (DLL) Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input. In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices. In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock. See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information. ## **Boundary Scan** Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the $\rm V_{CCO}$ for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and $\rm V_{CCO}$. Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off. Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins. Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed. # **Configuration** Virtex devices are configured by loading configuration data into the internal configuration memory. Some of the pins used for this are dedicated configuration pins, while others can be re-used as general purpose inputs and outputs once configuration is complete. The following are dedicated pins: - Mode pins (M2, M1, M0) - Configuration clock pin (CCLK) - PROGRAM pin - DONE pin - Boundary-scan pins (TDI, TDO, TMS, TCK) Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or it can be generated externally and provided to the FPGA as an input. The PROGRAM pin must be pulled High prior to reconfiguration. Note that some configuration pins can act as outputs. For correct operation, these pins can require a V_{CCO} of 3.3 V to permit LVTTL operation. All the pins affected are in banks 2 or 3. The configuration pins needed for SelectMap (CS, Write) are located in bank 1. After Virtex devices are configured, unused IOBs function as 3-state OBUFTs with weak pull downs. For a more detailed description than that given below, see the XAPP138, Virtex Configuration and Readback. ## **Configuration Modes** Virtex supports the following four configuration modes. - Slave-serial mode - Master-serial mode - SelectMAP mode - · Boundary-scan mode The Configuration mode pins (M2, M1, M0) select among these configuration modes with the option in each case of having the IOB pins either pulled up or left floating prior to configuration. The selection codes are listed in Table 7. Configuration through the boundary-scan port is always available, independent of the mode selection. Selecting the boundary-scan mode simply turns off the other modes. The three mode pins have internal pull-up resistors, and default to a logic High if left unconnected. However, it is recommended to drive the configuration mode pins externally. Table 7: Configuration Codes | Configuration Mode | M2 | M1 | МО | CCLK Direction | Data Width | Serial D _{out} | Configuration Pull-ups | |--------------------|----|----|----|-----------------------|------------|-------------------------|------------------------| | Master-serial mode | 0 | 0 | 0 | Out | 1 | Yes | No | | Boundary-scan mode | 1 | 0 | 1 | N/A | 1 | No | No | | SelectMAP mode | 1 | 1 | 0 | In | 8 | No | No | | Slave-serial mode | 1 | 1 | 1 | In | 1 | Yes | No | | Master-serial mode | 1 | 0 | 0 | Out | 1 | Yes | Yes | | Boundary-scan mode | 0 | 0 | 1 | N/A | 1 | No | Yes | | SelectMAP mode | 0 | 1 | 0 | In | 8 | No | Yes | | Slave-serial mode | 0 | 1 | 1 | In | 1 | Yes | Yes | ### Slave-Serial Mode In slave-serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other source of serial configuration data. The serial bitstream must be setup at the DIN input pin a short time before each rising edge of an externally generated CCLK. For more information on serial PROMs, see the PROM data sheet at: http://www.xilinx.com/bvdocs/publications/ds026.pdf. Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed to the DOUT pin. The data on the DOUT pin changes on the rising edge of CCLK. The change of DOUT on the rising edge of CCLK differs from previous families, but does not cause a problem for mixed configuration chains. This change was made to improve serial configuration rates for Virtex-only chains. Figure 12 shows a full master/slave system. A Virtex device in slave-serial mode should be connected as shown in the third device from the left. Slave-serial mode is selected by applying <111> or <011> to the mode pins (M2, M1, M0). A weak pull-up on the mode pins makes slave-serial the default mode if the pins are left unconnected. However, it is recommended to drive the configuration mode pins externally. Figure 13 shows slave-serial mode programming switching characteristics. Table 8 provides more detail about the characteristics shown in Figure 13. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. ## **Virtex DC Characteristics** ## **Absolute Maximum Ratings** | Symbol | Description ⁽¹⁾ | | Units | | |--------------------|-------------------------------------------------|-----------------------------------------------|-------------|----| | V _{CCINT} | Supply voltage relative to GND ⁽²⁾ | | -0.5 to 3.0 | V | | V _{CCO} | Supply voltage relative to GND ⁽²⁾ | Supply voltage relative to GND ⁽²⁾ | | | | V _{REF} | Input Reference Voltage | -0.5 to 3.6 | V | | | V | Input voltage relative to GND ⁽³⁾ | Using V _{REF} | -0.5 to 3.6 | V | | V _{IN} | | Internal threshold | -0.5 to 5.5 | V | | V _{TS} | Voltage applied to 3-state output | | -0.5 to 5.5 | V | | V _{CC} | Longest Supply Voltage Rise Time from 1V-2.375V | | 50 | ms | | T _{STG} | Storage temperature (ambient) | | -65 to +150 | °C | | TJ | Junction temperature ⁽⁴⁾ | Plastic Packages | +125 | °C | #### Notes: - Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time can affect device reliability. - 2. Power supplies can turn on in any order. - 3. For protracted periods (e.g., longer than a day), V_{IN} should not exceed V_{CCO} by more than 3.6 V. - 4. For soldering guidelines and thermal considerations, see the "Device Packaging" information on www.xilinx.com. ## **Recommended Operating Conditions** | Symbol | Description | | | Max | Units | |-----------------------------------|---------------------------------------------------------------------------------------------|------------|----------|----------|-------| | V _{CCINT} ⁽¹⁾ | Input Supply voltage relative to GND, $T_J = 0$ °C to +85°C | Commercial | 2.5 – 5% | 2.5 + 5% | V | | CCINT` / | Input Supply voltage relative to GND, $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$ | Industrial | 2.5 – 5% | 2.5 + 5% | V | | V _{CCO} ⁽⁴⁾ | Supply voltage relative to GND, T _J = 0 °C to +85°C | Commercial | 1.4 | 3.6 | V | | , CCO, | Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C$ | Industrial | 1.4 | 3.6 | V | | T _{IN} | Input signal transition time | | | 250 | ns | #### Notes: - Correct operation is guaranteed with a minimum V_{CCINT} of 2.375 V (Nominal V_{CCINT} -5%). Below the minimum value, all delay parameters increase by 3% for each 50-mV reduction in V_{CCINT} below the specified range. - 2. At junction temperatures above those listed as Operating Conditions, delay parameters do increase. Please refer to the TRCE report. - 3. Input and output measurement threshold is \sim 50% of V_{CC} . - Min and Max values for V_{CCO} are I/O Standard dependant. ### **Power-On Power Supply Requirements** Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device⁽¹⁾ from 0 V. The current is highest at the fastest suggested ramp rate (0 V to nominal voltage in 2 ms) and is lowest at the slowest allowed ramp rate (0 V to nominal voltage in 50 ms). For more details on power supply requirements, see Application Note XAPP158 on www.xilinx.com. | Product | Description ⁽²⁾ | Current Requirement ^(1,3) | |---------------------------------|---------------------------------|--------------------------------------| | Virtex Family, Commercial Grade | Minimum required current supply | 500 mA | | Virtex Family, Industrial Grade | Minimum required current supply | 2 A | #### Notes: - Ramp rate used for this specification is from 0 2.7 VDC. Peak current occurs on or near the internal power-on reset threshold of 1.0V and lasts for less than 3 ms. - Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above. - 3. Larger currents can result if ramp rates are forced to be faster. ## **DC Input and Output Levels** Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed output currents over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum V_{CCO} for each standard with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested. | Input/Output | | V _{IL} | V _{IH} V | | V _{OL} | V _{OH} | I _{OL} | I _{OH} | |-----------------------|--------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-----------------|-----------------| | Standard | V, min | V, max | V, min | V, max | V, Max | V, Min | mA | mA | | LVTTL ⁽¹⁾ | - 0.5 | 0.8 | 2.0 | 5.5 | 0.4 | 2.4 | 24 | -24 | | LVCMOS2 | - 0.5 | .7 | 1.7 | 5.5 | 0.4 | 1.9 | 12 | -12 | | PCI, 3.3 V | - 0.5 | 44% V _{CCINT} | 60% V _{CCINT} | V _{CCO} + 0.5 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | | PCI, 5.0 V | - 0.5 | 0.8 | 2.0 | 5.5 | 0.55 | 2.4 | Note 2 | Note 2 | | GTL | - 0.5 | V _{REF} - 0.05 | V _{REF} + 0.05 | 3.6 | 0.4 | n/a | 40 | n/a | | GTL+ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.6 | n/a | 36 | n/a | | HSTL I ⁽³⁾ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 8 | -8 | | HSTL III | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 24 | -8 | | HSTL IV | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 48 | -8 | | SSTL3 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.6 | V _{REF} + 0.6 | 8 | -8 | | SSTL3 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.8 | V _{REF} + 0.8 | 16 | -16 | | SSTL2 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.61 | V _{REF} + 0.61 | 7.6 | -7.6 | | SSTL2 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.80 | V _{REF} + 0.80 | 15.2 | -15.2 | | CTT | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.4 | V _{REF} + 0.4 | 8 | -8 | | AGP | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | #### Notes: - V_{OL} and V_{OH} for lower drive currents are sample tested. - 2. Tested according to the relevant specifications. - DC input and output levels for HSTL18 (HSTL I/O standard with V_{CCO} of 1.8 V) are provided in an HSTL white paper on www.xilinx.com. ## **CLB SelectRAM Switching Characteristics** | Description | Symbol | Min | -6 | -5 | -4 | Units | |------------------------------------------------------------|----------------------------------|----------|------------|-----------|---------|---------| | Sequential Delays | | | | | | | | Clock CLK to X/Y outputs (WE active) 16 x 1 mode | T _{SHCKO16} | 1.2 | 2.3 | 2.6 | 3.0 | ns, max | | Clock CLK to X/Y outputs (WE active) 32 x 1 mode | T _{SHCKO32} | 1.2 | 2.7 | 3.1 | 3.5 | ns, max | | Shift-Register Mode | | | | | | | | Clock CLK to X/Y outputs | T _{REG} | 1.2 | 3.7 | 4.1 | 4.7 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Se | tup Time / | Hold Time | T. | · | | F/G address inputs | T _{AS} /T _{AH} | 0.25 / 0 | 0.5 / 0 | 0.6 / 0 | 0.7 / 0 | ns, min | | BX/BY data inputs (DIN) | T _{DS} /T _{DH} | 0.34 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | CE input (WE) | T _{WS} /T _{WH} | 0.38 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | Shift-Register Mode | | 1 | | , | 1 | 1 | | BX/BY data inputs (DIN) | T _{SHDICK} | 0.34 | 0.7 | 0.8 | 0.9 | ns, min | | CE input (WS) | T _{SHCECK} | 0.38 | 0.8 | 0.9 | 1.0 | ns, min | | Clock CLK | | 1 | | | 1 | 1 | | Minimum Pulse Width, High | T _{WPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T _{WPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum clock period to meet address write cycle time | T _{WC} | 2.4 | 4.8 | 5.4 | 6.2 | ns, min | | Shift-Register Mode | | | | | | | | Minimum Pulse Width, High | T _{SRPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T _{SRPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | #### Notes: ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ## **Block RAM Switching Characteristics** | | Speed Grade | | | | | | |------------------------------------------------------------|--------------------------------------|---------|------------|----------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Sequential Delays | | | | | | | | Clock CLK to DOUT output | T _{BCKO} | 1.7 | 3.4 | 3.8 | 4.3 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Setu | p Time / H | old Time | | | | ADDR inputs | T _{BACK} /T _{BCKA} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | DIN inputs | T _{BDCK} /T _{BCKD} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | EN input | T _{BECK} /T _{BCKE} | 1.3 / 0 | 2.6 / 0 | 3.0 / 0 | 3.4 / 0 | ns, min | | RST input | T _{BRCK} /T _{BCKR} | 1.3 / 0 | 2.5 / 0 | 2.7 / 0 | 3.2 / 0 | ns, min | | WEN input | T _{BWCK} /T _{BCKW} | 1.2 / 0 | 2.3 / 0 | 2.6 / 0 | 3.0 / 0 | ns, min | | Clock CLK | | | | | | | | Minimum Pulse Width, High | T _{BPWH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | T _{BPWL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | CLKA -> CLKB setup time for different ports | T _{BCCS} | | 3.0 | 3.5 | 4.0 | ns, min | #### Notes: ## **TBUF Switching Characteristics** | | | Speed Grade | | | | | |----------------------------------------|------------------|-------------|------|------|------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Combinatorial Delays | | | | | | | | IN input to OUT output | T _{IO} | 0 | 0 | 0 | 0 | ns, max | | TRI input to OUT output high-impedance | T _{OFF} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | | TRI input to valid data on OUT output | T _{ON} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | ## **JTAG Test Access Port Switching Characteristics** | Description | Symbol | -6 | -5 | -4 | Units | |-------------------------------------------|---------------------|------|------|------|----------| | TMS and TDI Setup times before TCK | T _{TAPTCK} | 4.0 | 4.0 | 4.0 | ns, min | | TMS and TDI Hold times after TCK | T _{TCKTAP} | 2.0 | 2.0 | 2.0 | ns, min | | Output delay from clock TCK to output TDO | T _{TCKTDO} | 11.0 | 11.0 | 11.0 | ns, max | | Maximum TCK clock frequency | F _{TCK} | 33 | 33 | 33 | MHz, max | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. Period Tolerance: the allowed input clock period change in nanoseconds. Figure 1: Frequency Tolerance and Clock Jitter ## **Revision History** | Date | Version | Revision | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99 | 1.2 | Updated package drawings and specs. | | 02/99 | 1.3 | Update of package drawings, updated specifications. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | # **Product Obsolete/Under Obsolescence** # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-4 (v4.0) March 1, 2013 **Production Product Specification** ## **Virtex Pin Definitions** Table 1: Special Purpose Pins | Pin Name | Dedicated
Pin | Direction | Description | |--|------------------|-------------------------------|--| | GCK0, GCK1,
GCK2, GCK3 | Yes | Input | Clock input pins that connect to Global Clock Buffers. These pins become user inputs when not needed for clocks. | | M0, M1, M2 | Yes | Input | Mode pins are used to specify the configuration mode. | | CCLK | Yes | Input or
Output | The configuration Clock I/O pin: it is an input for SelectMAP and slave-serial modes, and output in master-serial mode. After configuration, it is input only, logic level = Don't Care. | | PROGRAM | Yes | Input | Initiates a configuration sequence when asserted Low. | | DONE | Yes | Bidirectional | Indicates that configuration loading is complete, and that the start-up sequence is in progress. The output can be open drain. | | INIT | No | Bidirectional
(Open-drain) | When Low, indicates that the configuration memory is being cleared. The pin becomes a user I/O after configuration. | | BUSY/
DOUT | No | Output | In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | | In bit-serial modes, DOUT provides header information to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. | | D0/DIN,
D1, D2,
D3, D4,
D5, D6, | No | Input or
Output | In SelectMAP mode, D0 - D7 are configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained. In bit-serial modes, DIN is the single data input. This pin becomes a user | | D7 | | | I/O after configuration. | | WRITE | No | Input | In SelectMAP mode, the active-low Write Enable signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | CS | No | Input | In SelectMAP mode, the active-low Chip Select signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | TDI, TDO,
TMS, TCK | Yes | Mixed | Boundary-scan Test-Access-Port pins, as defined in IEEE 1149.1. | | DXN, DXP | Yes | N/A | Temperature-sensing diode pins. (Anode: DXP, cathode: DXN) | | V _{CCINT} | Yes | Input | Power-supply pins for the internal core logic. | | V _{cco} | Yes | Input | Power-supply pins for the output drivers (subject to banking rules) | | V _{REF} | No | Input | Input threshold voltage pins. Become user I/Os when an external threshold voltage is not needed (subject to banking rules). | | GND | Yes | Input | Ground | ^{© 1999-2013} Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|------------|---|--|---|--| | V _{CCINT} | All | C3, C14, D4,
D13, E5,
E12, M5,
M12, N4,
N13, P3,
P14 | E5, E18, F6,
F17, G7, G8, G9,
G14, G15, G16,
H7, H16, J7,
J16, P7, P16,
R7, R16, T7, T8,
T9, T14, T15,
T16, U6, U17,
V5, V18 | G7, G20, H8, H19,
J9, J10, J11, J16,
J17, J18, K9, K18,
L9, L18, T9, T18,
U9, U18, V9, V10,
V11, V16, V17,
V18, W8, W19, Y7,
Y20 | AD5, AD35,
AE5, AE35, AL5,
AL35, AM5,
AM35, AR8,
AR9, AR15,
AR16, AR24,
AR25, AR31,
AR32, E8, E9,
E15, E16, E24,
E25, E31, E32,
H5, H35, J5,
J35, R5, R35,
T5, T35 | | V _{CCO} , Bank 0 | All | E8, F8 | F7, F8, F9, F10
G10, G11 | H9, H10, H11,
H12, J12, J13 | E26, E27, E29,
E30, E33, E34 | | V _{CCO} , Bank 1 | All | E9, F9 | F13, F14, F15,
F16, G12, G13 | H15, H16, H17,
H18, J14, J15 | E6, E7, E10,
E11, E13, E14 | | V _{CCO} , Bank 2 | All | H11, H12 | G17, H17, J17,
K16, K17, L16 | J19, K19, L19,
M18, M19, N18 | F5, G5, K5, L5,
N5, P5 | | V _{CCO} , Bank 3 | All | J11, J12 | M16, N16, N17,
P17, R17, T17 | P18, R18, R19,
T19, U19, V19 | AF5, AG5, AN5,
AK5, AJ5, AP5 | | V _{CCO} , Bank 4 | All | L9. M9 | T12, T13, U13,
U14, U15, U16, | V14, V15, W15,
W16, W17, W18 | AR6, AR7,
AR10, AR11,
AR13, AR14 | | V _{CCO} , Bank 5 | All | L8, M8 | T10, T11, U7,
U8, U9, U10 | V12, V13,
W9,W10, W11,
W12 | AR26, AR27,
AR29, AR30,
AR33, AR34 | | V _{CCO} , Bank 6 | All | J5, J6 | M7, N6, N7, P6,
R6, T6 | P9, R8, R9, T8,
U8, V8 | AF35, AG35,
AJ35, AK35,
AN35, AP35 | | V _{CCO} , Bank 7 | All | H5, H6 | G6, H6, J6, K6,
K7, L7 | J8, K8, L8, M8,
M9, N9 | F35, G35, K35,
L35, N35, P35 | | V _{REF} Bank 0 | XCV50 | B4, B7 | N/A | N/A | N/A | | (VREF pins are listed | XCV100/150 | + C6 | A9, C6, E8 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + A3 | + B4 | N/A | N/A | | the required device and all smaller devices listed in the same | XCV400 | N/A | N/A | A12, C11, D6, E8,
G10 | | | package.) Within each bank, if | XCV600 | N/A | N/A | + B7 | A33, B28, B30,
C23, C24, D33 | | input reference voltage | XCV800 | N/A | N/A | + B10 | + A26 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + D34 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|------------|---------|---------------------|------------------------------------|--| | V _{REF} Bank 4 | XCV50 | P9, T12 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect | XCV100/150 | + T11 | AA13, AB16,
AB19 | N/A | N/A | | all pins listed for both the required device and | XCV200/300 | + R13 | + AB20 | N/A | N/A | | all smaller devices
listed in the same
package.) | XCV400 | N/A | N/A | AC15, AD18,
AD21, AD22,
AF15 | N/A | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV600 | N/A | N/A | + AF20 | AT19, AU7,
AU17, AV8,
AV10, AW11 | | pins are general i/o. | XCV800 | N/A | N/A | + AF17 | + AV14 | | | XCV1000 | N/A | N/A | N/A | + AU6 | | V _{REF} Bank 5 | XCV50 | T4, P8 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + R5 | W8, Y10, AA5 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + T2 | + Y6 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | AA10, AB8, AB12,
AC7, AF12 | N/A | | listed in the same package.) Within each bank, if input reference voltage | XCV600 | N/A | N/A | + AF8 | AT27, AU29,
AU31, AV35,
AW21, AW23 | | is not required, all V _{REF} | XCV800 | N/A | N/A | + AE10 | + AT25 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AV36 | | V _{REF} Bank 6 | XCV50 | J3, N1 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + M1 | N2, R4, T3 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + N2 | + Y1 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | AB3, R1, R4, U6,
V5 | N/A | | listed in the same package.) Within each bank, if input reference voltage | XCV600 | N/A | N/A | + Y1 | AB35, AD37,
AH39, AK39,
AM39, AN36 | | is not required, all V _{REF} | XCV800 | N/A | N/A | + U2 | + AE39 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AT39 | ## **TQ144 Pin Function Diagram** Figure 2: TQ144 Pin Function Diagram ## **BG432 Pin Function Diagram** DS003_21_100300 Figure 6: BG432 Pin Function Diagram ### **BG560 Pin Function Diagram** DS003_22_100300 Figure 7: BG560 Pin Function Diagram ## **FG256 Pin Function Diagram** Figure 8: FG256 Pin Function Diagram ## **FG676 Pin Function Diagram** Figure 10: FG676 Pin Function Diagram #### Notes: Packages FG456 and FG676 are layout compatible. ## **Revision History** | Date | Version | Revision | | | |-------------|---------|--|--|--| | 11/98 | 1.0 | Initial Xilinx release. | | | | 01/99-02/99 | 1.2-1.3 | Both versions updated package drawings and specs. | | | | 05/99 | 1.4 | Addition of package drawings and specifications. | | | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | | | | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | | | 05/00 | 2.2 | Modified Table 18. | | | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | | | 10/00 | 2.4 | Corrected pinout info for devices in the BG256, BG432, and BG560 pkgs in Table 18. Corrected BG256 Pin Function Diagram. | | | | 04/02/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See section Virtex Data Sheet, below. | | | | 04/19/01 | 2.6 | Corrected pinout information for FG676 device in Table 4. (Added AB22 pin.) | | | | 07/19/01 | 2.7 | Clarified V_{CCINT} pinout information and added AE19 pin for BG352 devices in Table 3. Changed pinouts listed for BG352 XCV400 devices in banks 0 thru 7. | | | | 07/19/02 | 2.8 | Changed pinouts listed for GND in TQ144 devices (see Table 2). | | | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | | | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)