Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 864 | | Number of Logic Elements/Cells | 3888 | | Total RAM Bits | 49152 | | Number of I/O | 260 | | Number of Gates | 164674 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 352-LBGA Exposed Pad, Metal | | Supplier Device Package | 352-MBGA (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv150-4bg352c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 2: Virtex Input/Output Block (IOB) Table 1: Supported Select I/O Standards | I/O Standard | Input Reference
Voltage (V _{REF}) | Output Source
Voltage (V _{CCO}) | Board Termination
Voltage (V _{TT}) | 5 V Tolerant | |--------------------|--|--|---|--------------| | LVTTL 2 – 24 mA | N/A | 3.3 | N/A | Yes | | LVCMOS2 | N/A | 2.5 | N/A | Yes | | PCI, 5 V | N/A | 3.3 | N/A | Yes | | PCI, 3.3 V | N/A | 3.3 | N/A | No | | GTL | 0.8 | N/A | 1.2 | No | | GTL+ | 1.0 | N/A | 1.5 | No | | HSTL Class I | 0.75 | 1.5 | 0.75 | No | | HSTL Class III | 0.9 | 1.5 | 1.5 | No | | HSTL Class IV | 0.9 | 1.5 | 1.5 | No | | SSTL3 Class I &II | 1.5 | 3.3 | 1.5 | No | | SSTL2 Class I & II | 1.25 | 2.5 | 1.25 | No | | CTT | 1.5 | 3.3 | 1.5 | No | | AGP | 1.32 | 3.3 | N/A | No | ### Input Path A buffer In the Virtex IOB input path routes the input signal either directly to internal logic or through an optional input flip-flop. An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signalling standards supported. In some of these standards the input buffer utilizes a user-supplied threshold voltage, V_{REF}. The need to supply V_{REF} imposes constraints on which standards can used in close proximity to each other. See I/O Banking, page 3. There are optional pull-up and pull-down resistors at each user I/O input for use after configuration. Their value is in the range 50 k Ω – 100 k Ω . ### **Output Path** The output path includes a 3-state output buffer that drives the output signal onto the pad. The output signal can be routed to the buffer directly from the internal logic or through an optional IOB output flip-flop. The 3-state control of the output can also be routed directly from the internal logic or through a flip-flip that provides synchronous enable and disable. Each output driver can be individually programmed for a wide range of low-voltage signalling standards. Each output buffer can source up to 24 mA and sink up to 48mA. Drive strength and slew rate controls minimize bus transients. In most signalling standards, the output High voltage depends on an externally supplied V_{CCO} voltage. The need to supply V_{CCO} imposes constraints on which standards can be used in close proximity to each other. See **I/O Banking**, page 3. An optional weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage on the pad and weakly drives the pin High or Low to match the input signal. If the pin is connected to a multiple-source signal, the weak keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. Because the weak-keeper circuit uses the IOB input buffer to monitor the input level, an appropriate V_{REF} voltage must be provided if the signalling standard requires one. The provision of this voltage must comply with the I/O banking rules. ### I/O Banking Some of the I/O standards described above require V_{CCO} and/or V_{REF} voltages. These voltages externally and connected to device pins that serve groups of IOBs, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. Eight I/O banks result from separating each edge of the FPGA into two banks, as shown in Figure 3. Each bank has multiple $V_{\rm CCO}$ pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. X8778_b Figure 3: Virtex I/O Banks Within a bank, output standards can be mixed only if they use the same V_{CCO} . Compatible standards are shown in Table 2. GTL and GTL+ appear under all voltages because their open-drain outputs do not depend on V_{CCO} . Table 2: Compatible Output Standards | V _{CCO} | Compatible Standards | |------------------|--| | 3.3 V | PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+ | | 2.5 V | SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+ | | 1.5 V | HSTL I, HSTL III, HSTL IV, GTL, GTL+ | Some input standards require a user-supplied threshold voltage, V_{REF} In this case, certain user-I/O pins are automatically configured as inputs for the V_{REF} voltage. Approximately one in six of the I/O pins in the bank assume this role The V_{REF} pins within a bank are interconnected internally and consequently only one V_{REF} voltage can be used within each bank. All V_{REF} pins in the bank, however, must be connected to the external voltage source for correct operation. Within a bank, inputs that require V_{REF} can be mixed with those that do not. However, only one V_{REF} voltage can be used within a bank. Input buffers that use V_{REF} are not 5 V tolerant. LVTTL, LVCMOS2, and PCI 33 MHz 5 V, are 5 V tolerant. The V_{CCO} and V_{REF} pins for each bank appear in the device Pinout tables and diagrams. The diagrams also show the bank affiliation of each I/O. Within a given package, the number of V_{REF} and V_{CCO} pins can vary depending on the size of device. In larger devices, more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O. In smaller devices, some V_{CCO} pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the V_{CCO} voltage to permit migration to a larger device if necessary. In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO} . In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously. ### **Configurable Logic Block** The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4. Figure 5 shows a more detailed view of a single slice. In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs. ### Look-Up Tables Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing. ### Storage Elements The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators. In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice. Figure 4: 2-Slice Virtex CLB In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data. Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes. ### Instruction Set The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5. ## Data Registers The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins. The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device. The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO. Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE). ### Bit Sequence The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits. From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11. BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area. Figure 10: Virtex Series Boundary Scan Logic Table 8: Master/Slave Serial Mode Programming Switching | | Description | Figure
References | Symbol | Values | Units | |-------|--|----------------------|--------------------------------------|--------------|----------| | | DIN setup/hold, slave mode | 1/2 | T_{DCC}/T_{CCD} | 5.0 / 0 | ns, min | | | DIN setup/hold, master mode | 1/2 | T _{DSCK} /T _{CKDS} | 5.0 / 0 | ns, min | | | DOUT | 3 | T _{CCO} | 12.0 | ns, max | | CCLK | High time | 4 | T _{CCH} | 5.0 | ns, min | | OOLIK | Low time | 5 | T _{CCL} | 5.0 | ns, min | | | Maximum Frequency | | F _{CC} | 66 | MHz, max | | | Frequency Tolerance, master mode with respect to nominal | | | +45%
-30% | | Note 1: If none of the Virtex FPGAs have been selected to drive DONE, an external pull-up resistor of 330 Ω should be added to the common DONE line. (For Spartan-XL devices, add a 4.7K Ω pull-up resistor.) This pull-up is not needed if the DriveDONE attribute is set. If used, DriveDONE should be selected only for the last device in the configuration chain. xcv_12_050103 Figure 12: Master/Slave Serial Mode Circuit Diagram Figure 13: Slave-Serial Mode Programming Switching Characteristics - At the rising edge of CCLK: If BUSY is Low, the data is accepted on this clock. If BUSY is High (from a previous write), the data is not accepted. Acceptance will instead occur on the first clock after BUSY goes Low, and the data must be held until this has happened. - 4. Repeat steps 2 and 3 until all the data has been sent. - 5. De-assert $\overline{\text{CS}}$ and $\overline{\text{WRITE}}$. A flowchart for the write operation appears in Figure 17. Note that if CCLK is slower than f_{CCNH} , the FPGA never asserts BUSY. In this case, the above handshake is unnecessary, and data can simply be entered into the FPGA every CCLK cycle. Figure 16: Write Operations # **DC Characteristics Over Recommended Operating Conditions** | Symbol | Description | 1 | Device | Min | Max | Units | |---------------------|--|-------------------------------------|---------|----------|------|-------| | V _{DRINT} | Data Retention V _{CCINT} Voltage | | All | 2.0 | | V | | 21 | (below which configuration data can be | e lost) | | | | | | V_{DRIO} | Data Retention V _{CCO} Voltage (below which configuration data can be | All | 1.2 | | V | | | I _{CCINTQ} | Quiescent V _{CCINT} supply current ^(1,3) | | XCV50 | | 50 | mA | | | | | XCV100 | | 50 | mA | | | | | XCV150 | | 50 | mA | | | | | XCV200 | | 75 | mA | | | | | XCV300 | | 75 | mA | | | | | XCV400 | | 75 | mA | | | | | XCV600 | | 100 | mA | | | | | XCV800 | | 100 | mA | | | | | XCV1000 | | 100 | mA | | Iccoq | Quiescent V _{CCO} supply current ⁽¹⁾ | | XCV50 | | 2 | mA | | | | | XCV100 | | 2 | mA | | | | | XCV150 | | 2 | mA | | | | | XCV200 | | 2 | mA | | | | | XCV300 | | 2 | mA | | | | | XCV400 | | 2 | mA | | | | | XCV600 | | 2 | mA | | | | | XCV800 | | 2 | mA | | | | | XCV1000 | | 2 | mA | | I _{REF} | V _{REF} current per V _{REF} pin | | All | | 20 | μΑ | | ΙL | Input or output leakage current | | All | -10 | +10 | μΑ | | C _{IN} | Input capacitance (sample tested) | BGA, PQ, HQ, packages | All | | 8 | pF | | I _{RPU} | Pad pull-up (when selected) @ V _{in} = 0 tested) | V, V _{CCO} = 3.3 V (sample | All | Note (2) | 0.25 | mA | | I _{RPD} | Pad pull-down (when selected) @ V _{in} = | = 3.6 V (sample tested) | | Note (2) | 0.15 | mA | - 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating. - 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits. - 3. Multiply I_{CCINTQ} limit by two for industrial grade. # **Virtex Switching Characteristics** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Virtex devices unless otherwise noted. ## **IOB Input Switching Characteristics** Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in , page 6. | | | | | Speed | Grade | | | |--|---------|---------------------|------|-------|-------|-----|---------| | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | | Propagation Delays | | | | | | | | | Pad to I output, no delay | All | T _{IOPI} | 0.39 | 0.8 | 0.9 | 1.0 | ns, max | | Pad to I output, with delay | XCV50 | T _{IOPID} | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV100 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV150 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV200 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV300 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV400 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV600 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV800 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | | XCV1000 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | Pad to output IQ via transparent latch, no delay | All | T _{IOPLI} | 0.8 | 1.6 | 1.8 | 2.0 | ns, max | | Pad to output IQ via transparent | XCV50 | T _{IOPLID} | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | latch, with delay | XCV100 | | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | | XCV150 | | 2.0 | 3.9 | 4.3 | 4.9 | ns, max | | | XCV200 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV300 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV400 | | 2.1 | 4.1 | 4.6 | 5.3 | ns, max | | | XCV600 | | 2.1 | 4.2 | 4.7 | 5.4 | ns, max | | | XCV800 | | 2.2 | 4.4 | 4.9 | 5.6 | ns, max | | | XCV1000 | | 2.3 | 4.5 | 5.1 | 5.8 | ns, max | | Sequential Delays | | | · | | | | | | Clock CLK | All | | | | | | | | Minimum Pulse Width, High | | T _{CH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | | T _{CL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Clock CLK to output IQ | | T _{IOCKIQ} | 0.2 | 0.7 | 0.7 | 8.0 | ns, max | # Calculation of T_{ioop} as a Function of Capacitance T_{ioop} is the propagation delay from the O Input of the IOB to the pad. The values for T_{ioop} were based on the standard capacitive load (CsI) for each I/O standard as listed in Table 2. Table 2: Constants for Calculating T_{ioop} | Standard | Csl
(pF) | fl
(ns/pF) | |----------------------------------|-------------|---------------| | LVTTL Fast Slew Rate, 2mA drive | 35 | 0.41 | | LVTTL Fast Slew Rate, 4mA drive | 35 | 0.20 | | LVTTL Fast Slew Rate, 6mA drive | 35 | 0.13 | | LVTTL Fast Slew Rate, 8mA drive | 35 | 0.079 | | LVTTL Fast Slew Rate, 12mA drive | 35 | 0.044 | | LVTTL Fast Slew Rate, 16mA drive | 35 | 0.043 | | LVTTL Fast Slew Rate, 24mA drive | 35 | 0.033 | | LVTTL Slow Slew Rate, 2mA drive | 35 | 0.41 | | LVTTL Slow Slew Rate, 4mA drive | 35 | 0.20 | | LVTTL Slow Slew Rate, 6mA drive | 35 | 0.100 | | LVTTL Slow Slew Rate, 8mA drive | 35 | 0.086 | | LVTTL Slow Slew Rate, 12mA drive | 35 | 0.058 | | LVTTL Slow Slew Rate, 16mA drive | 35 | 0.050 | | LVTTL Slow Slew Rate, 24mA drive | 35 | 0.048 | | LVCMOS2 | 35 | 0.041 | | PCI 33MHz 5V | 50 | 0.050 | | PCI 33MHZ 3.3 V | 10 | 0.050 | | PCI 66 MHz 3.3 V | 10 | 0.033 | | GTL | 0 | 0.014 | | GTL+ | 0 | 0.017 | | HSTL Class I | 20 | 0.022 | | HSTL Class III | 20 | 0.016 | | HSTL Class IV | 20 | 0.014 | | SSTL2 Class I | 30 | 0.028 | | SSTL2 Class II | 30 | 0.016 | | SSTL3 Class I | 30 | 0.029 | | SSTL3 Class II | 30 | 0.016 | | СТТ | 20 | 0.035 | | AGP | 10 | 0.037 | #### Notes: - I/O parameter measurements are made with the capacitance values shown above. See Application Note XAPP133 on <u>www.xilinx.com</u> for appropriate terminations. - I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it. For other capacitive loads, use the formulas below to calculate the corresponding T_{ioop} . $$T_{ioop} = T_{ioop} + T_{opadjust} + (C_{load} - C_{sl}) * fl$$ Where: $T_{opadjust}$ is reported above in the Output Delay Adjustment section. C_{load} is the capacitive load for the design. Table 3: Delay Measurement Methodology | Standard | ν _L (1) | V _H ⁽¹⁾ | Meas.
Point | V _{REF}
Typ ⁽²⁾ | |----------------|--|--|------------------|--| | LVTTL | 0 | 3 | 1.4 | - | | LVCMOS2 | 0 | 2.5 | 1.125 | - | | PCI33_5 | Pe | er PCI Spec | | - | | PCI33_3 | Pe | er PCI Spec | | - | | PCI66_3 | Pe | er PCI Spec | | - | | GTL | V _{REF} -0.2 | V _{REF} +0.2 | V _{REF} | 0.80 | | GTL+ | V _{REF} -0.2 | V _{REF} +0.2 | V _{REF} | 1.0 | | HSTL Class I | V _{REF} -0.5 | V _{REF} +0.5 | V _{REF} | 0.75 | | HSTL Class III | V _{REF} -0.5 | V _{REF} +0.5 | V _{REF} | 0.90 | | HSTL Class IV | V _{REF} -0.5 | V _{REF} +0.5 | V _{REF} | 0.90 | | SSTL3 I & II | V _{REF} -1.0 | V _{REF} +1.0 | V _{REF} | 1.5 | | SSTL2 I & II | V _{REF} -0.75 | V _{REF} +0.75 | V_{REF} | 1.25 | | CTT | V _{REF} -0.2 | V _{REF} +0.2 | V _{REF} | 1.5 | | AGP | V _{REF} – (0.2xV _{CCO}) | V _{REF} + (0.2xV _{CCO}) | V _{REF} | Per
AGP
Spec | - Input waveform switches between V_Land V_H. - 2. Measurements are made at VREF (Typ), Maximum, and Minimum. Worst-case values are reported. - I/O parameter measurements are made with the capacitance values shown in Table 2. See Application Note XAPP133 on www.xilinx.com for appropriate terminations. - 4. I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it. # **CLB SelectRAM Switching Characteristics** | | | Speed Grade | | | | | | |--|----------------------------------|-------------|------------|-----------|---------|---------|--| | Description | Symbol | Min | -6 | -5 | -4 | Units | | | Sequential Delays | | | | | | | | | Clock CLK to X/Y outputs (WE active) 16 x 1 mode | T _{SHCKO16} | 1.2 | 2.3 | 2.6 | 3.0 | ns, max | | | Clock CLK to X/Y outputs (WE active) 32 x 1 mode | T _{SHCKO32} | 1.2 | 2.7 | 3.1 | 3.5 | ns, max | | | Shift-Register Mode | | | | | | | | | Clock CLK to X/Y outputs | T _{REG} | 1.2 | 3.7 | 4.1 | 4.7 | ns, max | | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Se | tup Time / | Hold Time | T. | · | | | F/G address inputs | T _{AS} /T _{AH} | 0.25 / 0 | 0.5 / 0 | 0.6 / 0 | 0.7 / 0 | ns, min | | | BX/BY data inputs (DIN) | T _{DS} /T _{DH} | 0.34 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | | CE input (WE) | T _{WS} /T _{WH} | 0.38 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | | Shift-Register Mode | | 1 | | , | 1 | 1 | | | BX/BY data inputs (DIN) | T _{SHDICK} | 0.34 | 0.7 | 0.8 | 0.9 | ns, min | | | CE input (WS) | T _{SHCECK} | 0.38 | 0.8 | 0.9 | 1.0 | ns, min | | | Clock CLK | | - | | | 1 | 1 | | | Minimum Pulse Width, High | T _{WPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | | Minimum Pulse Width, Low | T _{WPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | | Minimum clock period to meet address write cycle time | T _{WC} | 2.4 | 4.8 | 5.4 | 6.2 | ns, min | | | Shift-Register Mode | | | | | | | | | Minimum Pulse Width, High | T _{SRPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | | Minimum Pulse Width, Low | T _{SRPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # **Virtex Pin-to-Pin Output Parameter Guidelines** All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. # Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DLL | | | | Speed Grade | | | | | |---|-----------------------|---------|-------------|-----|-----|-----|---------| | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | LVTTL Global Clock Input to Output Delay using | T _{ICKOFDLL} | XCV50 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | Output Flip-flop, 12 mA, Fast Slew Rate, with DLL. For data output with different standards, adjust | | XCV100 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | delays with the values shown in Output Delay | | XCV150 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | Adjustments. | | XCV200 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV300 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV400 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV600 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV800 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV1000 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | #### Notes: - 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3. - 3. DLL output jitter is already included in the timing calculation. # Global Clock Input-to-Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DLL | | | | Speed Grade | | | | | |---|--------------------|---------|-------------|-----|-----|-----|---------| | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | LVTTL Global Clock Input to Output Delay using | T _{ICKOF} | XCV50 | 1.5 | 4.6 | 5.1 | 5.7 | ns, max | | Output Flip-flop, 12 mA, Fast Slew Rate, without DLL. For data output with different standards, adjust delays with the values shown in Input and Output | | XCV100 | 1.5 | 4.6 | 5.1 | 5.7 | ns, max | | | | XCV150 | 1.5 | 4.7 | 5.2 | 5.8 | ns, max | | Delay Adjustments. For I/O standards requiring V _{RFF} , such as GTL, | | XCV200 | 1.5 | 4.7 | 5.2 | 5.8 | ns, max | | GTL+, SSTL, HSTL, CTT, and AGO, an additional | | XCV300 | 1.5 | 4.7 | 5.2 | 5.9 | ns, max | | 600 ps must be added. | | XCV400 | 1.5 | 4.8 | 5.3 | 6.0 | ns, max | | | | XCV600 | 1.6 | 4.9 | 5.4 | 6.0 | ns, max | | | | XCV800 | 1.6 | 4.9 | 5.5 | 6.2 | ns, max | | | | XCV1000 | 1.7 | 5.0 | 5.6 | 6.3 | ns, max | - Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - 2. Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3. # **Virtex Pin-to-Pin Input Parameter Guidelines** All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted # Global Clock Set-Up and Hold for LVTTL Standard, with DLL | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | | |--|--|---------|-------------|-----------|-----------|-----------|------------|--|--| | Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in Input Delay Adjustments. | | | | | | | | | | | No Delay
Global Clock and IFF, with DLL | T _{PSDLL} /T _{PHDLL} | XCV50 | 0.40 / -0.4 | 1.7 /-0.4 | 1.8 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV100 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV150 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV200 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV300 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV400 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV600 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV800 | 0.40 /-0.4 | 1.7 /-0.4 | 1.9 /-0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV1000 | 0.40 /-0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | IFF = Input Flip-Flop or Latch - 2. DLL output jitter is already included in the timing calculation. - 3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ^{1.} Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. ### **DLL Timing Parameters** All devices are 100 percent functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions. | | | Speed Grade | | | | | | | |------------------------------------|----------------------|-------------|-----|-----|-----|-----|-----|-------| | | | -6 | | -5 | | -4 | | | | Description | Symbol | Min | Max | Min | Max | Min | Max | Units | | Input Clock Frequency (CLKDLLHF) | FCLKINHF | 60 | 200 | 60 | 180 | 60 | 180 | MHz | | Input Clock Frequency (CLKDLL) | FCLKINLF | 25 | 100 | 25 | 90 | 25 | 90 | MHz | | Input Clock Pulse Width (CLKDLLHF) | T _{DLLPWHF} | 2.0 | - | 2.4 | - | 2.4 | - | ns | | Input Clock Pulse Width (CLKDLL) | T _{DLLPWLF} | 2.5 | - | 3.0 | | 3.0 | - | ns | #### Notes: ### **DLL Clock Tolerance, Jitter, and Phase Information** All DLL output jitter and phase specifications determined through statistical measurement at the package pins using a clock mirror configuration and matched drivers. | | | | CLKDLLHF | | CLKDLL | | | |--|---------------------|--------------------|----------|-------|--------|-------|-------| | Description | Symbol | F _{CLKIN} | Min | Max | Min | Max | Units | | Input Clock Period Tolerance | T _{IPTOL} | | - | 1.0 | - | 1.0 | ns | | Input Clock Jitter Tolerance (Cycle to Cycle) | T _{IJITCC} | | - | ± 150 | - | ± 300 | ps | | Time Required for DLL to Acquire Lock | T _{LOCK} | > 60 MHz | ı | 20 | - | 20 | μs | | | | 50 - 60 MHz | ı | - | - | 25 | μs | | | | 40 - 50 MHz | ı | - | - | 50 | μs | | | | 30 - 40 MHz | ı | - | - | 90 | μs | | | | 25 - 30 MHz | ı | - | - | 120 | μs | | Output Jitter (cycle-to-cycle) for any DLL Clock Output (1) | T _{OJITCC} | | | ± 60 | | ± 60 | ps | | Phase Offset between CLKIN and CLKO ⁽²⁾ | T _{PHIO} | | | ± 100 | | ± 100 | ps | | Phase Offset between Clock Outputs on the DLL ⁽³⁾ | T _{PHOO} | | | ± 140 | | ± 140 | ps | | Maximum Phase Difference between CLKIN and CLKO ⁽⁴⁾ | T _{PHIOM} | | | ± 160 | | ± 160 | ps | | Maximum Phase Difference between Clock Outputs on the DLL (5) | T _{PHOOM} | | | ± 200 | | ± 200 | ps | - 1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter. - Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, excluding Output Jitter and input clock jitter. - Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL outputs, excluding Output Jitter and input clock jitter. - 4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter). - Maximum Phase Difference between Clock Outputs on the DLL is the sum of Output Jitter and Phase Offset between any DLL clock outputs, or the greatest difference between any two DLL output rising edges sue to DLL alone (excluding input clock jitter). - 6. All specifications correspond to Commercial Operating Temperatures (0°C to +85°C). ^{1.} All specifications correspond to Commercial Operating Temperatures (0°C to + 85°C). | Date | Version | Revision | |----------|---------|---| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/02/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See the Virtex Data Sheet section. | | 04/19/01 | 2.6 | Clarified TIOCKP and TIOCKON IOB Output Switching Characteristics descriptors. | | 07/19/01 | 2.7 | Under Absolute Maximum Ratings, changed (T _{SOL}) to 220 °C. | | 07/26/01 | 2.8 | Removed T _{SOL} parameter and added footnote to Absolute Maximum Ratings table. | | 10/29/01 | 2.9 | Updated the speed grade designations used in data sheets, and added Table 1, which
shows the current speed grade designation for each device. | | 02/01/02 | 3.0 | Added footnote to DC Input and Output Levels table. | | 07/19/02 | 3.1 | Removed mention of MIL-M-38510/605 specification. Added link to xapp158 from the Power-On Power Supply Requirements section. | | 09/10/02 | 3.2 | Added Clock CLK to IOB Input Switching Characteristics and IOB Output Switching
Characteristics. | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | # **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|------------|----------|---------------------|---------------------------|------------------------------------| | V _{REF} , Bank 3 | XCV50 | M18, V20 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + R19 | R4, V4, Y3 | N/A | N/A | | incrementally. Connect all pins listed for both the required device and all | XCV200/300 | + P18 | + AC2 | V2, AB4, AD4,
AF3 | N/A | | smaller devices listed in the | XCV400 | N/A | N/A | + U2 | V4, W5, | | same package.) | | | | | AD3, AE5, AK2 | | Within each bank, if input reference voltage is not | XCV600 | N/A | N/A | + AC3 | + AF1 | | required, all V _{REF} pins are | XCV800 | N/A | N/A | + Y3 | + AA4 | | general I/O. | XCV1000 | N/A | N/A | N/A | + AH4 | | V _{REF} , Bank 4 | XCV50 | V12, Y18 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all | XCV100/150 | + W15 | AC12, AE5,
AE8, | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + V14 | + AE4 | AJ7, AL4, AL8,
AL13 | N/A | | same package.) Within each bank, if input reference voltage is not | XCV400 | N/A | N/A | + AK15 | AL7, AL10,
AL16, AM4,
AM14 | | required, all V _{REF} pins are | XCV600 | N/A | N/A | + AK8 | + AL9 | | general I/O. | XCV800 | N/A | N/A | + AJ12 | + AK13 | | | XCV1000 | N/A | N/A | N/A | + AN3 | | V _{REF} Bank 5 | XCV50 | V9, Y3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the | XCV100/150 | + W6 | AC15, AC18,
AD20 | N/A | N/A | | required device and all smaller devices listed in the | XCV200/300 | + V7 | + AE23 | AJ18, AJ25,
AK23, AK27 | N/A | | within each bank, if input reference voltage is not | XCV400 | N/A | N/A | + AJ17 | AJ18, AJ25,
AL20, AL24,
AL29 | | required, all V _{REF} pins are general I/O. | XCV600 | N/A | N/A | + AL24 | + AM26 | | | XCV800 | N/A | N/A | + AH19 | + AN23 | | | XCV1000 | N/A | N/A | N/A | + AK28 | | V _{REF} , Bank 6 | XCV50 | M2, R3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all | XCV100/150 | + T1 | R24, Y26,
AA25, | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + T3 | + AD26 | V28, AB28,
AE30, AF28 | N/A | | same package.) Within each bank, if input | XCV400 | N/A | N/A | + U28 | V29, Y32, AD31,
AE29, AK32 | | reference voltage is not | XCV600 | N/A | N/A | + AC28 | + AE31 | | required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + Y30 | + AA30 | | yenerar 1/0. | XCV1000 | N/A | N/A | N/A | + AH30 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|------------|---|--|---|--| | V _{CCINT} | All | C3, C14, D4,
D13, E5,
E12, M5,
M12, N4,
N13, P3,
P14 | E5, E18, F6,
F17, G7, G8, G9,
G14, G15, G16,
H7, H16, J7,
J16, P7, P16,
R7, R16, T7, T8,
T9, T14, T15,
T16, U6, U17,
V5, V18 | G7, G20, H8, H19,
J9, J10, J11, J16,
J17, J18, K9, K18,
L9, L18, T9, T18,
U9, U18, V9, V10,
V11, V16, V17,
V18, W8, W19, Y7,
Y20 | AD5, AD35,
AE5, AE35, AL5,
AL35, AM5,
AM35, AR8,
AR9, AR15,
AR16, AR24,
AR25, AR31,
AR32, E8, E9,
E15, E16, E24,
E25, E31, E32,
H5, H35, J5,
J35, R5, R35,
T5, T35 | | V _{CCO} , Bank 0 | All | E8, F8 | F7, F8, F9, F10
G10, G11 | H9, H10, H11,
H12, J12, J13 | E26, E27, E29,
E30, E33, E34 | | V _{CCO} , Bank 1 | All | E9, F9 | F13, F14, F15,
F16, G12, G13 | H15, H16, H17,
H18, J14, J15 | E6, E7, E10,
E11, E13, E14 | | V _{CCO} , Bank 2 | All | H11, H12 | G17, H17, J17,
K16, K17, L16 | J19, K19, L19,
M18, M19, N18 | F5, G5, K5, L5,
N5, P5 | | V _{CCO} , Bank 3 | All | J11, J12 | M16, N16, N17,
P17, R17, T17 | P18, R18, R19,
T19, U19, V19 | AF5, AG5, AN5,
AK5, AJ5, AP5 | | V _{CCO} , Bank 4 | All | L9. M9 | T12, T13, U13,
U14, U15, U16, | V14, V15, W15,
W16, W17, W18 | AR6, AR7,
AR10, AR11,
AR13, AR14 | | V _{CCO} , Bank 5 | All | L8, M8 | T10, T11, U7,
U8, U9, U10 | V12, V13,
W9,W10, W11,
W12 | AR26, AR27,
AR29, AR30,
AR33, AR34 | | V _{CCO} , Bank 6 | All | J5, J6 | M7, N6, N7, P6,
R6, T6 | P9, R8, R9, T8,
U8, V8 | AF35, AG35,
AJ35, AK35,
AN35, AP35 | | V _{CCO} , Bank 7 | All | H5, H6 | G6, H6, J6, K6,
K7, L7 | J8, K8, L8, M8,
M9, N9 | F35, G35, K35,
L35, N35, P35 | | V _{REF} Bank 0 | XCV50 | B4, B7 | N/A | N/A | N/A | | (VREF pins are listed | XCV100/150 | + C6 | A9, C6, E8 | N/A | N/A | | incrementally. Connect
all pins listed for both
the required device and
all smaller devices | XCV200/300 | + A3 | + B4 | N/A | N/A | | | XCV400 | N/A | N/A | A12, C11, D6, E8,
G10 | | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + B7 | A33, B28, B30,
C23, C24, D33 | | input reference voltage | XCV800 | N/A | N/A | + B10 | + A26 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + D34 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|----------|---------------|----------------------------|--------------------------------| | V _{REF} Bank 1 | XCV50 | B9, C11 | N/A | N/A | N/A | | (VREF pins are listed | XCV100/150 | + E11 | A18, B13, E14 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + A14 | + A19 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | A14, C20, C21,
D15, G16 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + B19 | B6, B8, B18,
D11, D13, D17 | | input reference voltage | XCV800 | N/A | N/A | + A17 | + B14 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + B5 | | V _{REF} , Bank 2 | XCV50 | F13, H13 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + F14 | F21, H18, K21 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + E13 | + D22 | N/A | N/A | | the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV400 | N/A | N/A | F24, H23, K20,
M23, M26 | N/A | | | XCV600 | N/A | N/A | + G26 | G1, H4, J1, L2,
V5, W3 | | | XCV800 | N/A | N/A | + K25 | + N1 | | | XCV1000 | N/A | N/A | N/A | + D2 | | V _{REF} , Bank 3 | XCV50 | K16, L14 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + L13 | N21, R19, U21 | N/A | N/A | | incrementally. Connect
all pins listed for both
the required device and
all smaller devices
listed in the same
package.)
Within each bank, if | XCV200/300 | + M13 | + U20 | N/A | N/A | | | XCV400 | N/A | N/A | R23, R25, U21,
W22, W23 | N/A | | | XCV600 | N/A | N/A | + W26 | AC1, AJ2, AK3,
AL4, AR1, Y1 | | input reference voltage | XCV800 | N/A | N/A | + U25 | + AF3 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AP4 | # **BG352 Pin Function Diagram** DS003_19_100600 Figure 5: BG352 Pin Function Diagram ### **BG560 Pin Function Diagram** DS003_22_100300 Figure 7: BG560 Pin Function Diagram # **FG456 Pin Function Diagram** (Top view) Figure 9: FG456 Pin Function Diagram #### Notes: Packages FG456 and FG676 are layout compatible.