Welcome to **E-XFL.COM** **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 864 | | Number of Logic Elements/Cells | 3888 | | Total RAM Bits | 49152 | | Number of I/O | 180 | | Number of Gates | 164674 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 256-BBGA | | Supplier Device Package | 256-PBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv150-5bg256c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Virtex Architecture** Virtex devices feature a flexible, regular architecture that comprises an array of configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all interconnected by a rich hierarchy of fast, versatile routing resources. The abundance of routing resources permits the Virtex family to accommodate even the largest and most complex designs. Virtex FPGAs are SRAM-based, and are customized by loading configuration data into internal memory cells. In some modes, the FPGA reads its own configuration data from an external PROM (master serial mode). Otherwise, the configuration data is written into the FPGA (Select-MAPTM, slave serial, and JTAG modes). The standard Xilinx Foundation™ and Alliance Series™ Development systems deliver complete design support for Virtex, covering every aspect from behavioral and schematic entry, through simulation, automatic design translation and implementation, to the creation, downloading, and readback of a configuration bit stream. ## **Higher Performance** Virtex devices provide better performance than previous generations of FPGA. Designs can achieve synchronous system clock rates up to 200 MHz including I/O. Virtex inputs and outputs comply fully with PCI specifications, and interfaces can be implemented that operate at 33 MHz or 66 MHz. Additionally, Virtex supports the hot-swapping requirements of Compact PCI. Xilinx thoroughly benchmarked the Virtex family. While performance is design-dependent, many designs operated internally at speeds in excess of 100 MHz and can achieve 200 MHz. Table 2 shows performance data for representative circuits, using worst-case timing parameters. Table 2: Performance for Common Circuit Functions | Function | Bits | Virtex -6 | |-----------------------|---------|-----------| | Register-to-Register | | | | Adder | 16 | 5.0 ns | | Audei | 64 | 7.2 ns | | Pipelined Multiplier | 8 x 8 | 5.1 ns | | | 16 x 16 | 6.0 ns | | Address Decoder | 16 | 4.4 ns | | | 64 | 6.4 ns | | 16:1 Multiplexer | | 5.4 ns | | Parity Tree | 9 | 4.1 ns | | | 18 | 5.0 ns | | | 36 | 6.9 ns | | Chip-to-Chip | | | | HSTL Class IV | | 200 MHz | | LVTTL,16mA, fast slew | | 180 MHz | DS003-2 (v4.0) March 1, 2013 # Virtex[™] 2.5 V Field Programmable Gate Arrays #### **Product Specification** The output buffer and all of the IOB control signals have independent polarity controls. vao_b.eps Figure 1: Virtex Architecture Overview All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage protection are provided, one that permits 5 V compliance, and one that does not. For 5 V compliance, a Zener-like structure connected to ground turns on when the output rises to approximately 6.5 V. When PCI 3.3 V compliance is required, a conventional clamp diode is connected to the output supply voltage, $V_{\rm CCO}$. Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each pad. Prior to configuration, all pins not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs can optionally be pulled up. The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins will float. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration. All Virtex IOBs support IEEE 1149.1-compatible boundary scan testing. # **Architectural Description** ## **Virtex Array** The Virtex user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing logic - IOBs provide the interface between the package pins and the CLBs CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM. The VersaRing[™] I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking. The Virtex architecture also includes the following circuits that connect to the GRM. - Dedicated block memories of 4096 bits each - Clock DLLs for clock-distribution delay compensation and clock domain control - 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device. ## Input/Output Block The Virtex IOB, Figure 2, features SelectIO™ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1. The three IOB storage elements function either as edge-triggered D-type flip-flops or as level sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop. In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear. © 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. Table 8: Master/Slave Serial Mode Programming Switching | | Description | Figure
References | Symbol | Values | Units | |-------|--|----------------------|--------------------------------------|--------------|----------| | | DIN setup/hold, slave mode | 1/2 | T _{DCC} /T _{CCD} | 5.0 / 0 | ns, min | | | DIN setup/hold, master mode | 1/2 | T _{DSCK} /T _{CKDS} | 5.0 / 0 | ns, min | | | DOUT | 3 | T _{CCO} | 12.0 | ns, max | | CCLK | High time | 4 | T _{CCH} | 5.0 | ns, min | | OOLIK | Low time | 5 | T _{CCL} | 5.0 | ns, min | | | Maximum Frequency | | F _{CC} | 66 | MHz, max | | | Frequency Tolerance, master mode with respect to nominal | | | +45%
-30% | | Note 1: If none of the Virtex FPGAs have been selected to drive DONE, an external pull-up resistor of 330 Ω should be added to the common DONE line. (For Spartan-XL devices, add a 4.7K Ω pull-up resistor.) This pull-up is not needed if the DriveDONE attribute is set. If used, DriveDONE should be selected only for the last device in the configuration chain. xcv_12_050103 Figure 12: Master/Slave Serial Mode Circuit Diagram Figure 13: Slave-Serial Mode Programming Switching Characteristics #### Master-Serial Mode In master-serial mode, the CCLK output of the FPGA drives a Xilinx Serial PROM that feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the rising CCLK edge. The interface is identical to slave-serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Switching to a lower frequency is prohibited. The CCLK frequency is set using the ConfigRate option in the bitstream generation software. The maximum CCLK frequency that can be selected is 60 MHz. When selecting a CCLK frequency, ensure that the serial PROM and any daisy-chained FPGAs are fast enough to support the clock rate. On power-up, the CCLK frequency is 2.5 MHz. This frequency is used until the ConfigRate bits have been loaded when the frequency changes to the selected ConfigRate. Unless a different frequency is specified in the design, the default ConfigRate is 4 MHz. Figure 12 shows a full master/slave system. In this system, the left-most device operates in master-serial mode. The remaining devices operate in slave-serial mode. The SPROM RESET pin is driven by $\overline{\text{INIT}}$, and the $\overline{\text{CE}}$ input is driven by DONE. There is the potential for contention on the DONE pin, depending on the start-up sequence options chosen. Figure 14 shows the timing of master-serial configuration. Master-serial mode is selected by a <000> or <100> on the mode pins (M2, M1, M0). Table 8 shows the timing information for Figure 14. Figure 14: Master-Serial Mode Programming Switching Characteristics At power-up, V_{CC} must rise from 1.0 V to V_{CC} min in less than 50 ms, otherwise delay configuration by pulling PROGRAM Low until V_{CC} is valid. The sequence of operations necessary to configure a Virtex FPGA serially appears in Figure 15. #### SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the FPGA with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, a Chip Select (\overline{CS}) signal and a Write signal (\overline{WRITE}) . If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If WRITE is not asserted, configuration data is read out of the FPGA as part of a readback operation. In the SelectMAP mode, multiple Virtex devices can be chained in parallel. DATA pins (D7:D0), CCLK, WRITE, BUSY, PROGRAM, DONE, and INIT can be connected in parallel between all the FPGAs. Note that the data is organized with the MSB of each byte on pin DO and the LSB of each byte on D7. The CS pins are kept separate, insuring that each FPGA can be selected individually. WRITE should be Low before loading the first bitstream and returned High after the last device has been programmed. Use $\overline{\text{CS}}$ to select the appropriate FPGA for loading the bitstream and sending the configuration data. at the end of the bitstream, deselect the loaded device and select the next target FPGA by setting its $\overline{\text{CS}}$ pin High. A free-running oscillator or other externally generated signal can be used for CCLK. The BUSY signal can be ignored for frequencies below 50 MHz. For details about frequencies above 50 MHz, see XAPP138, Virtex Configuration and Readback. Once all the devices have been programmed, the DONE pin goes High. Figure 15: Serial Configuration Flowchart After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback. Retention of the SelectMAP port is selectable on a design-by-design basis when the bitstream is generated. If retention is selected, PROHIBIT constraints are required to prevent the SelectMAP-port pins from being used as user I/O. Multiple Virtex FPGAs can be configured using the Select-MAP mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, $\overline{\text{WRITE}}$, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by asserting the $\overline{\text{CS}}$ pin of each device in turn and writing the appropriate data. see Table 9 for SelectMAP Write Timing Characteristics. Table 9: SelectMAP Write Timing Characteristics | | Description | | Symbol | | Units | |------|-------------------------------------|-----|------------------------------------------|-----------|----------| | | D ₀₋₇ Setup/Hold | 1/2 | T _{SMDCC} /T _{SMCCD} | 5.0 / 1.7 | ns, min | | | CS Setup/Hold | 3/4 | T _{SMCSCC} /T _{SMCCCS} | 7.0 / 1.7 | ns, min | | CCLK | WRITE Setup/Hold | 5/6 | T _{SMCCW} /T _{SMWCC} | 7.0 / 1.7 | ns, min | | COLK | BUSY Propagation Delay | 7 | T _{SMCKBY} | 12.0 | ns, max | | | Maximum Frequency | | F _{CC} | 66 | MHz, max | | | Maximum Frequency with no handshake | | F _{CCNH} | 50 | MHz, max | #### Write Write operations send packets of configuration data into the FPGA. The sequence of operations for a multi-cycle write operation is shown below. Note that a configuration packet can be split into many such sequences. The packet does not have to complete within one assertion of \overline{CS} , illustrated in Figure 16. - 1. Assert WRITE and CS Low. Note that when CS is asserted on successive CCLKs, WRITE must remain either asserted or de-asserted. Otherwise an abort will be initiated, as described below. - 2. Drive data onto D[7:0]. Note that to avoid contention, the data source should not be enabled while \overline{CS} is Low and \overline{WRITE} is High. Similarly, while \overline{WRITE} is High, no more that one \overline{CS} should be asserted. #### **Data Stream Format** Virtex devices are configured by sequentially loading frames of data. Table 11 lists the total number of bits required to configure each device. For more detailed information, see application note XAPP151 "Virtex Configuration Architecture Advanced Users Guide". Table 11: Virtex Bit-Stream Lengths | Device | # of Configuration Bits | |---------|-------------------------| | XCV50 | 559,200 | | XCV100 | 781,216 | | XCV150 | 1,040,096 | | XCV200 | 1,335,840 | | XCV300 | 1,751,808 | | XCV400 | 2,546,048 | | XCV600 | 3,607,968 | | XCV800 | 4,715,616 | | XCV1000 | 6,127,744 | ## Readback The configuration data stored in the Virtex configuration memory can be readback for verification. Along with the configuration data it is possible to readback the contents all flip-flops/latches, LUTRAMs, and block RAMs. This capability is used for real-time debugging. For more detailed information, see Application Note XAPP138: *Virtex FPGA Series Configuration and Readback*, available online at www.xilinx.com. # **Revision History** | Date | Version | Revision | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99 | 1.2 | Updated package drawings and specs. | | 02/99 | 1.3 | Update of package drawings, updated specifications. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | ## Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-3 (v4.0) March 1, 2013 **Production Product Specification** # Virtex Electrical Characteristics Definition of Terms Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: **Advance**: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. **Preliminary**: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. **Production**: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information. Table 1 correlates the current status of each Virtex device with a corresponding speed file designation. Table 1: Virtex Device Speed Grade Designations | | Speed Grade Designations | | | | | | | |---------|--------------------------|-------------|------------|--|--|--|--| | Device | Advance | Preliminary | Production | | | | | | XCV50 | | | -6, -5, -4 | | | | | | XCV100 | | | -6, -5, -4 | | | | | | XCV150 | | | -6, -5, -4 | | | | | | XCV200 | | | -6, -5, -4 | | | | | | XCV300 | | | -6, -5, -4 | | | | | | XCV400 | | | -6, -5, -4 | | | | | | XCV600 | | | -6, -5, -4 | | | | | | XCV800 | | | -6, -5, -4 | | | | | | XCV1000 | | | -6, -5, -4 | | | | | All specifications are subject to change without notice. ## **Virtex Switching Characteristics** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Virtex devices unless otherwise noted. ## **IOB Input Switching Characteristics** Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in , page 6. | | | | | Speed | Grade | | | |--------------------------------------------------|---------|---------------------|------|-------|-------|-----|---------| | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | | Propagation Delays | | | | | | | | | Pad to I output, no delay | All | T _{IOPI} | 0.39 | 0.8 | 0.9 | 1.0 | ns, max | | Pad to I output, with delay | XCV50 | T _{IOPID} | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV100 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV150 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV200 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV300 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV400 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV600 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV800 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | | XCV1000 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | Pad to output IQ via transparent latch, no delay | All | T _{IOPLI} | 0.8 | 1.6 | 1.8 | 2.0 | ns, max | | Pad to output IQ via transparent | XCV50 | T _{IOPLID} | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | latch, with delay | XCV100 | | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | | XCV150 | | 2.0 | 3.9 | 4.3 | 4.9 | ns, max | | | XCV200 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV300 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV400 | | 2.1 | 4.1 | 4.6 | 5.3 | ns, max | | | XCV600 | | 2.1 | 4.2 | 4.7 | 5.4 | ns, max | | | XCV800 | | 2.2 | 4.4 | 4.9 | 5.6 | ns, max | | | XCV1000 | | 2.3 | 4.5 | 5.1 | 5.8 | ns, max | | Sequential Delays | | | · | | | | | | Clock CLK | All | | | | | | | | Minimum Pulse Width, High | | T _{CH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | | T _{CL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Clock CLK to output IQ | | T _{IOCKIQ} | 0.2 | 0.7 | 0.7 | 8.0 | ns, max | ## **IOB Output Switching Characteristics Standard Adjustments** Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown. | | | | | Speed | Grade | | Unit | |-----------------------------------------------------------------------|-------------------------|-------------------------|-------|-------|-------|-------|------| | Description | Symbol | Standard ⁽¹⁾ | Min | -6 | -5 | -4 | s | | Output Delay Adjustments | | | | | | | | | Standard-specific adjustments for | T _{OLVTTL_S2} | LVTTL, Slow, 2 mA | 4.2 | 14.7 | 15.8 | 17.0 | ns | | output delays terminating at pads (based on standard capacitive load, | T _{OLVTTL_S4} | 4 mA | 2.5 | 7.5 | 8.0 | 8.6 | ns | | Csl) | T _{OLVTTL_S6} | 6 mA | 1.8 | 4.8 | 5.1 | 5.6 | ns | | | T _{OLVTTL_S8} | 8 mA | 1.2 | 3.0 | 3.3 | 3.5 | ns | | | T _{OLVTTL_S12} | 12 mA | 1.0 | 1.9 | 2.1 | 2.2 | ns | | | T _{OLVTTL_S16} | 16 mA | 0.9 | 1.7 | 1.9 | 2.0 | ns | | | T _{OLVTTL_S24} | 24 mA | 0.8 | 1.3 | 1.4 | 1.6 | ns | | | T _{OLVTTL_F2} | LVTTL, Fast, 2mA | 1.9 | 13.1 | 14.0 | 15.1 | ns | | | T _{OLVTTL_F4} | 4 mA | 0.7 | 5.3 | 5.7 | 6.1 | ns | | | T _{OLVTTL_F6} | 6 mA | 0.2 | 3.1 | 3.3 | 3.6 | ns | | | T _{OLVTTL_F8} | 8 mA | 0.1 | 1.0 | 1.1 | 1.2 | ns | | | T _{OLVTTL_F12} | 12 mA | 0 | 0 | 0 | 0 | ns | | | T _{OLVTTL_F16} | 16 mA | -0.10 | -0.05 | -0.05 | -0.05 | ns | | | T _{OLVTTL_F24} | 24 mA | -0.10 | -0.20 | -0.21 | -0.23 | ns | | | T _{OLVCMOS2} | LVCMOS2 | 0.10 | 0.10 | 0.11 | 0.12 | ns | | | T _{OPCl33_3} | PCI, 33 MHz, 3.3 V | 0.50 | 2.3 | 2.5 | 2.7 | ns | | | T _{OPCl33_5} | PCI, 33 MHz, 5.0 V | 0.40 | 2.8 | 3.0 | 3.3 | ns | | | T _{OPCI66_3} | PCI, 66 MHz, 3.3 V | 0.10 | -0.40 | -0.42 | -0.46 | ns | | | T _{OGTL} | GTL | 0.6 | 0.50 | 0.54 | 0.6 | ns | | | T _{OGTLP} | GTL+ | 0.7 | 0.8 | 0.9 | 1.0 | ns | | | T _{OHSTL_I} | HSTL I | 0.10 | -0.50 | -0.53 | -0.5 | ns | | | T _{OHSTL_III} | HSTL III | -0.10 | -0.9 | -0.9 | -1.0 | ns | | | T _{OHSTL_IV} | HSTL IV | -0.20 | -1.0 | -1.0 | -1.1 | ns | | | T _{OSSTL2_I} | SSTL2 I | -0.10 | -0.50 | -0.53 | -0.5 | ns | | | T _{OSSLT2_II} | SSTL2 II | -0.20 | -0.9 | -0.9 | -1.0 | ns | | | T _{OSSTL3_I} | SSTL3 I | -0.20 | -0.50 | -0.53 | -0.5 | ns | | | T _{OSSTL3_II} | SSTL3 II | -0.30 | -1.0 | -1.0 | -1.1 | ns | | | T _{OCTT} | CTT | 0 | -0.6 | -0.6 | -0.6 | ns | | | T _{OAGP} | AGP | 0 | -0.9 | -0.9 | -1.0 | ns | #### Notes: ^{1.} Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see Table 2 and Table 3. ## **Block RAM Switching Characteristics** | | Speed Grade | | | | | | |------------------------------------------------------------|--------------------------------------|------------------------|---------|---------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Sequential Delays | | | | | | | | Clock CLK to DOUT output | T _{BCKO} | 1.7 | 3.4 | 3.8 | 4.3 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Setup Time / Hold Time | | | | | | ADDR inputs | T _{BACK} /T _{BCKA} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | DIN inputs | T _{BDCK} /T _{BCKD} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | EN input | T _{BECK} /T _{BCKE} | 1.3 / 0 | 2.6 / 0 | 3.0 / 0 | 3.4 / 0 | ns, min | | RST input | T _{BRCK} /T _{BCKR} | 1.3 / 0 | 2.5 / 0 | 2.7 / 0 | 3.2 / 0 | ns, min | | WEN input | T _{BWCK} /T _{BCKW} | 1.2 / 0 | 2.3 / 0 | 2.6 / 0 | 3.0 / 0 | ns, min | | Clock CLK | | | | | | | | Minimum Pulse Width, High | T _{BPWH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | T _{BPWL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | CLKA -> CLKB setup time for different ports | T _{BCCS} | | 3.0 | 3.5 | 4.0 | ns, min | #### Notes: ## **TBUF Switching Characteristics** | | | Speed Grade | | | | | |----------------------------------------|------------------|-------------|------|------|------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Combinatorial Delays | | | | | | | | IN input to OUT output | T _{IO} | 0 | 0 | 0 | 0 | ns, max | | TRI input to OUT output high-impedance | T _{OFF} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | | TRI input to valid data on OUT output | T _{ON} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | ## **JTAG Test Access Port Switching Characteristics** | | Speed Grade | | | | | |-------------------------------------------|---------------------|------|------|------|----------| | Description | Symbol | -6 | -5 | -4 | Units | | TMS and TDI Setup times before TCK | T _{TAPTCK} | 4.0 | 4.0 | 4.0 | ns, min | | TMS and TDI Hold times after TCK | T _{TCKTAP} | 2.0 | 2.0 | 2.0 | ns, min | | Output delay from clock TCK to output TDO | T _{TCKTDO} | 11.0 | 11.0 | 11.0 | ns, max | | Maximum TCK clock frequency | F _{TCK} | 33 | 33 | 33 | MHz, max | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ## **Minimum Clock-to-Out for Virtex Devices** | | With DLL | Without DLL | | | | | | | | | | |--------------|-------------|-------------|------|------|------|------|------|------|------|-------|-------| | I/O Standard | All Devices | V50 | V100 | V150 | V200 | V300 | V400 | V600 | V800 | V1000 | Units | | *LVTTL_S2 | 5.2 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 | ns | | *LVTTL_S4 | 3.5 | 4.3 | 4.3 | 4.3 | 4.3 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | ns | | *LVTTL_S6 | 2.8 | 3.6 | 3.6 | 3.6 | 3.6 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | ns | | *LVTTL_S8 | 2.2 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.2 | 3.2 | 3.2 | ns | | *LVTTL_S12 | 2.0 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 3.0 | 3.0 | 3.0 | ns | | *LVTTL_S16 | 1.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.9 | 2.9 | 2.9 | ns | | *LVTTL_S24 | 1.8 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.8 | ns | | *LVTTL_F2 | 2.9 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.9 | 3.9 | 3.9 | ns | | *LVTTL_F4 | 1.7 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | ns | | *LVTTL_F6 | 1.2 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2 | ns | | *LVTTL_F8 | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | *LVTTL_F12 | 1.0 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | ns | | *LVTTL_F16 | 0.9 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | ns | | *LVTTL_F24 | 0.9 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | LVCMOS2 | 1.1 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | ns | | PCI33_3 | 1.5 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 | ns | | PCI33_5 | 1.4 | 2.2 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.4 | ns | | PCI66_3 | 1.1 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | ns | | GTL | 1.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | ns | | GTL+ | 1.7 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | ns | | HSTL I | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | HSTL III | 0.9 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | HSTL IV | 0.8 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | ns | | SSTL2 I | 0.9 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | ns | | SSTL2 II | 0.8 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | ns | | SSTL3 I | 0.8 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | ns | | SSTL3 II | 0.7 | 1.5 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | ns | | CTT | 1.0 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | | AGP | 1.0 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | ^{*}S = Slow Slew Rate, F = Fast Slew Rate #### Notes: ^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. ^{2.} Input and output timing is measured at 1.4 V for LVTTL. For other I/O standards, see Table 3. In all cases, an 8 pF external capacitive load is used. ## **DLL Timing Parameters** All devices are 100 percent functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions. | | | | Speed Grade | | | | | | |------------------------------------|----------------------|-----|-------------|-----|-----|-----|-----|-------| | | | - | 6 | - | 5 | - | 4 | | | Description | Symbol | Min | Max | Min | Max | Min | Max | Units | | Input Clock Frequency (CLKDLLHF) | FCLKINHF | 60 | 200 | 60 | 180 | 60 | 180 | MHz | | Input Clock Frequency (CLKDLL) | FCLKINLF | 25 | 100 | 25 | 90 | 25 | 90 | MHz | | Input Clock Pulse Width (CLKDLLHF) | T _{DLLPWHF} | 2.0 | - | 2.4 | - | 2.4 | - | ns | | Input Clock Pulse Width (CLKDLL) | T _{DLLPWLF} | 2.5 | - | 3.0 | | 3.0 | - | ns | #### Notes: #### **DLL Clock Tolerance, Jitter, and Phase Information** All DLL output jitter and phase specifications determined through statistical measurement at the package pins using a clock mirror configuration and matched drivers. | | | | CLKDLLHF CLKDLL | | KDLL | | | |----------------------------------------------------------------|---------------------|--------------------|-----------------|-------|-------------|-------|-------| | Description | Symbol | F _{CLKIN} | Min | Max | Min | Max | Units | | Input Clock Period Tolerance | T _{IPTOL} | | - | 1.0 | - | 1.0 | ns | | Input Clock Jitter Tolerance (Cycle to Cycle) | T _{IJITCC} | | - | ± 150 | - | ± 300 | ps | | Time Required for DLL to Acquire Lock | T _{LOCK} | > 60 MHz | - | 20 | - | 20 | μs | | | | 50 - 60 MHz | - | - | - | 25 | μs | | | | 40 - 50 MHz | - | - | - | 50 | μs | | | | 30 - 40 MHz | - | - | - | 90 | μs | | | | 25 - 30 MHz | - | - | - | 120 | μs | | Output Jitter (cycle-to-cycle) for any DLL Clock Output (1) | T _{OJITCC} | | | ± 60 | | ± 60 | ps | | Phase Offset between CLKIN and CLKO ⁽²⁾ | T _{PHIO} | | | ± 100 | | ± 100 | ps | | Phase Offset between Clock Outputs on the DLL ⁽³⁾ | T _{PHOO} | | | ± 140 | | ± 140 | ps | | Maximum Phase Difference between CLKIN and CLKO ⁽⁴⁾ | T _{PHIOM} | | | ± 160 | | ± 160 | ps | | Maximum Phase Difference between Clock Outputs on the DLL (5) | T _{PHOOM} | | | ± 200 | | ± 200 | ps | #### Notes: - 1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter. - Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, excluding Output Jitter and input clock jitter. - Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL outputs, excluding Output Jitter and input clock jitter. - 4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter). - Maximum Phase Difference between Clock Outputs on the DLL is the sum of Output Jitter and Phase Offset between any DLL clock outputs, or the greatest difference between any two DLL output rising edges sue to DLL alone (excluding input clock jitter). - 6. All specifications correspond to Commercial Operating Temperatures (0°C to +85°C). ^{1.} All specifications correspond to Commercial Operating Temperatures (0°C to + 85°C). | Date | Version | Revision | | | | | | |----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | | | | | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | | | | | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | | | | | | 05/00 | 2.2 | Modified Table 18. | | | | | | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | | | | | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | | | | | | 04/02/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See the Virtex Data Sheet section. | | | | | | | 04/19/01 | 2.6 | Clarified TIOCKP and TIOCKON IOB Output Switching Characteristics descriptors. | | | | | | | 07/19/01 | 2.7 | Under Absolute Maximum Ratings, changed (T _{SOL}) to 220 °C. | | | | | | | 07/26/01 | 2.8 | Removed T _{SOL} parameter and added footnote to Absolute Maximum Ratings table. | | | | | | | 10/29/01 | 2.9 | Updated the speed grade designations used in data sheets, and added Table 1, which
shows the current speed grade designation for each device. | | | | | | | 02/01/02 | 3.0 | Added footnote to DC Input and Output Levels table. | | | | | | | 07/19/02 | 3.1 | Removed mention of MIL-M-38510/605 specification. Added link to xapp158 from the Power-On Power Supply Requirements section. | | | | | | | 09/10/02 | 3.2 | Added Clock CLK to IOB Input Switching Characteristics and IOB Output Switching Characteristics. | | | | | | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | | | | | | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) ## **Product Obsolete/Under Obsolescence** # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-4 (v4.0) March 1, 2013 **Production Product Specification** ## **Virtex Pin Definitions** Table 1: Special Purpose Pins | Pin Name | Dedicated
Pin | Direction | Description | |--|------------------|-------------------------------|--| | GCK0, GCK1,
GCK2, GCK3 | Yes | Input | Clock input pins that connect to Global Clock Buffers. These pins become user inputs when not needed for clocks. | | M0, M1, M2 | Yes | Input | Mode pins are used to specify the configuration mode. | | CCLK | Yes | Input or
Output | The configuration Clock I/O pin: it is an input for SelectMAP and slave-serial modes, and output in master-serial mode. After configuration, it is input only, logic level = Don't Care. | | PROGRAM | Yes | Input | Initiates a configuration sequence when asserted Low. | | DONE | Yes | Bidirectional | Indicates that configuration loading is complete, and that the start-up sequence is in progress. The output can be open drain. | | INIT | No | Bidirectional
(Open-drain) | When Low, indicates that the configuration memory is being cleared. The pin becomes a user I/O after configuration. | | BUSY/
DOUT | No | Output | In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | | In bit-serial modes, DOUT provides header information to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. | | D0/DIN,
D1, D2,
D3, D4,
D5, D6,
D7 | No | Input or
Output | In SelectMAP mode, D0 - D7 are configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained. In bit-serial modes, DIN is the single data input. This pin becomes a user | | | | _ | I/O after configuration. | | WRITE | No | Input | In SelectMAP mode, the active-low Write Enable signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | CS | No | Input | In SelectMAP mode, the active-low Chip Select signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | TDI, TDO,
TMS, TCK | Yes | Mixed | Boundary-scan Test-Access-Port pins, as defined in IEEE 1149.1. | | DXN, DXP | Yes | N/A | Temperature-sensing diode pins. (Anode: DXP, cathode: DXN) | | V _{CCINT} | Yes | Input | Power-supply pins for the internal core logic. | | V _{CCO} | Yes | Input | Power-supply pins for the output drivers (subject to banking rules) | | V _{REF} | No | Input | Input threshold voltage pins. Become user I/Os when an external threshold voltage is not needed (subject to banking rules). | | GND | Yes | Input | Ground | ^{© 1999-2013} Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. ## **Virtex Pinout Information** ## **Pinout Tables** See www.xilinx.com for updates or additional pinout information. For convenience, Table 2, Table 3 and Table 4 list the locations of special-purpose and power-supply pins. Pins not listed are either user I/Os or not connected, depending on the device/package combination. See the Pinout Diagrams starting on page 17 for any pins not listed for a particular part/package combination. Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--------------------|--------|------------------------------------|------------------------------------|---| | GCK0 | All | K7 | 90 | 92 | | GCK1 | All | M7 | 93 | 89 | | GCK2 | All | A7 | 19 | 210 | | GCK3 | All | A6 | 16 | 213 | | MO | All | M1 | 110 | 60 | | M1 | All | L2 | 112 | 58 | | M2 | All | N2 | 108 | 62 | | CCLK | All | B13 | 38 | 179 | | PROGRAM | All | L12 | 72 | 122 | | DONE | All | M12 | 74 | 120 | | INIT | All | L13 | 71 | 123 | | BUSY/DOUT | All | C11 | 39 | 178 | | D0/DIN | All | C12 | 40 | 177 | | D1 | All | E10 | 45 | 167 | | D2 | All | E12 | 47 | 163 | | D3 | All | F11 | 51 | 156 | | D4 | All | H12 | 59 | 145 | | D5 | All | J13 | 63 | 138 | | D6 | All | J11 | 65 | 134 | | D7 | All | K10 | 70 | 124 | | WRITE | All | C10 | 32 | 185 | | CS | All | D10 | 33 | 184 | | TDI | All | A11 | 34 | 183 | | TDO | All | A12 | 36 | 181 | | TMS | All | B1 | 143 | 2 | | TCK | All | C3 | 2 | 239 | | V _{CCINT} | All | A9, B6, C5, G3,
G12, M5, M9, N6 | 10, 15, 25, 57, 84, 94,
99, 126 | 16, 32, 43, 77, 88, 104, 137, 148, 164, 198, 214, 225 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|------------|--|--|--|---| | V _{REF} , Bank 7 | XCV50 | G3, H1 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + D1 | D26, G26, | N/A | N/A | | incrementally. Connect all pins listed for both the | | | L26 | | | | required device and all | XCV200/300 | + B2 | + E24 | F28, F31, | N/A | | smaller devices listed in the same package.) | | | | J30, N30 | | | Within each bank, if input reference voltage is not required, all V _{REF} pins are | XCV400 | N/A | N/A | + R31 | E31, G31, K31,
P31, T31 | | general I/O. | XCV600 | N/A | N/A | + J28 | + H32 | | | XCV800 | N/A | N/A | + M28 | + L33 | | | XCV1000 | N/A | N/A | N/A | + D31 | | GND | All | C3, C18, D4, D5, D9, D10, D11, D12, D16, D17, E4, E17, J4, J17, K4, K17, L4, L17, M4, M17, T4, T17, U4, U5, U9, U10, U11, U12, U16, U17, V3, V18 | A1, A2, A5,
A8, A14,
A19, A22,
A25, A26,
B1, B26, E1,
E26, H1,
H26, N1,
P26, W1,
W26, AB1,
AB26, AF1,
AF2, AF5,
AF8, AF13,
AF19, AF22,
AF25, AF26 | A2, A3, A7, A9, A14, A18, A23, A25, A29, A30, B1, B2, B30, B31, C1, C31, D16, G1, G31, J1, J31, P1, P31, T4, T28, V1, V31, AC1, AC31, AE1, AE31, AH16, AJ1, AJ31, AK1, AK2, AK30, AK31, AL2, AL3, AL7, AL9 AL14, AL18 AL23, AL25, AL29, AL30 | A1, A7, A12, A14, A18, A20, A24, A29, A32, A33, B1, B6, B9, B15, B23, B27, B31, C2, E1, F32, G2, G33, J32, K1, L2, M33, P1, P33, R32, T1, V33, W2, Y1, Y33, AB1, AC32, AD33, AE2, AG1, AG32, AH2, AJ33, AL32, AM3, AM7, AM11, AM19, AM25, AM28, AM33, AN1, AN2, AN5, AN10, AN14, AN16, AN20, AN22, AN27, AN33 | | GND ⁽¹⁾ | All | J9, J10,
J11, J12,
K9, K10,
K11, K12,
L9, L10,
L11, L12,
M9, M10,
M11, M12 | N/A | N/A | N/A | | No Connect | All | N/A | N/A | N/A | C31, AC2, AK4,
AL3 | ## Notes: 1. 16 extra balls (grounded) at package center. ## **Pinout Diagrams** The following diagrams, CS144 Pin Function Diagram, page 17 through FG680 Pin Function Diagram, page 27, illustrate the locations of special-purpose pins on Virtex FPGAs. Table 5 lists the symbols used in these diagrams. The diagrams also show I/O-bank boundaries. Table 5: Pinout Diagram Symbols | Symbol | Pin Function | |------------|--| | * | General I/O | | * | Device-dependent general I/O, n/c on smaller devices | | V | V _{CCINT} | | V | Device-dependent V _{CCINT} , n/c on smaller devices | | 0 | V _{CCO} | | R | V _{REF} | | r | Device-dependent V _{REF} remains I/O on smaller devices | | G | Ground | | Ø, 1, 2, 3 | Global Clocks | Table 5: Pinout Diagram Symbols (Continued) | Symbol | Pin Function | |--|------------------------------------| | 0 , 0 , 2 | M0, M1, M2 | | (0), (1), (2),
(3), (4), (5), (6),
(7) | D0/DIN, D1, D2, D3, D4, D5, D6, D7 | | В | DOUT/BUSY | | D | DONE | | Р | PROGRAM | | I | INIT | | K | CCLK | | W | WRITE | | S | <u>CS</u> | | Т | Boundary-scan Test Access Port | | + | Temperature diode, anode | | _ | Temperature diode, cathode | | n | No connect | ## **CS144 Pin Function Diagram** Figure 1: CS144 Pin Function Diagram ## **BG256 Pin Function Diagram** Figure 4: BG256 Pin Function Diagram ## **FG456 Pin Function Diagram** (Top view) Figure 9: FG456 Pin Function Diagram #### Notes: Packages FG456 and FG676 are layout compatible.