

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	864
Number of Logic Elements/Cells	3888
Total RAM Bits	49152
Number of I/O	176
Number of Gates	164674
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcv150-5fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Virtex Device/Package Combinations and Maximum I/O

Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins)

Package	XCV50	XCV100	XCV150	XCV200	XCV300	XCV400	XCV600	XCV800	XCV1000
CS144	94	94							
TQ144	98	98							
PQ240	166	166	166	166	166				
HQ240						166	166	166	
BG256	180	180	180	180					
BG352			260	260	260				
BG432					316	316	316	316	
BG560						404	404	404	404
FG256	176	176	176	176					
FG456			260	284	312				
FG676						404	444	444	
FG680							512	512	512

Virtex Ordering Information

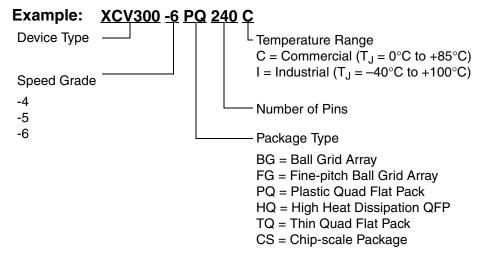


Figure 1: Virtex Ordering Information

more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O.

In smaller devices, some V_{CCO} pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the V_{CCO} voltage to permit migration to a larger device if necessary.

In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO} . In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously.

Configurable Logic Block

The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4.

Figure 5 shows a more detailed view of a single slice.

In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions

of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs.

Look-Up Tables

Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM.

The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing.

Storage Elements

The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators.

In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice.

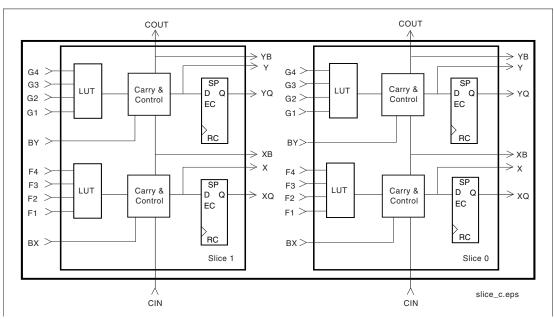


Figure 4: 2-Slice Virtex CLB

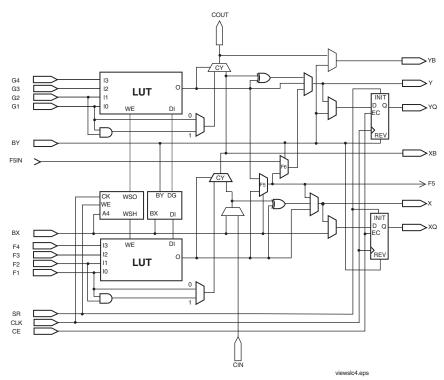


Figure 5: Detailed View of Virtex Slice

Additional Logic

The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs.

Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs.

Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources.

Arithmetic Logic

Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB.

The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation.

The dedicated carry path can also be used to cascade function generators for implementing wide logic functions.

BUFTs

Each Virtex CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See **Dedicated Routing**, page 7. Each Virtex BUFT has an independent 3-state control pin and an independent input pin.

Block SelectRAM

Virtex FPGAs incorporate several large block SelectRAM memories. These complement the distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs.

Block SelectRAM memory blocks are organized in columns. All Virtex devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, and a total of 32 blocks.

Table 3 shows the amount of block SelectRAM memory that is available in each Virtex device.

Table 3: Virtex Block SelectRAM Amounts

Device	# of Blocks	Total Block SelectRAM Bits
XCV50	8	32,768
XCV100	10	40,960
XCV150	12	49,152
XCV200	14	57,344
XCV300	16	65,536
XCV400	20	81,920
XCV600	24	98,304
XCV800	28	114,688
XCV1000	32	131,072

General Purpose Routing

Most Virtex signals are routed on the general purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing hierarchy. The general routing resources are located in horizontal and vertical routing channels associated with the rows and columns CLBs. The general-purpose routing resources are listed below.

- Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix through which horizontal and vertical routing resources connect, and is also the means by which the CLB gains access to the general purpose routing.
- 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions.
- 12 buffered Hex lines route GRM signals to another GRMs six-blocks away in each one of the four directions. Organized in a staggered pattern, Hex lines can be driven only at their endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). One third of the Hex lines are bidirectional, while the remaining ones are uni-directional.

 12 Longlines are buffered, bidirectional wires that distribute signals across the device quickly and efficiently. Vertical Longlines span the full height of the device, and horizontal ones span the full width of the device.

I/O Routing

Virtex devices have additional routing resources around their periphery that form an interface between the CLB array and the IOBs. This additional routing, called the VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other system components can be manufactured while the logic design is still in progress.

Dedicated Routing

Some classes of signal require dedicated routing resources to maximize performance. In the Virtex architecture, dedicated routing resources are provided for two classes of signal.

- Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable bus lines are provided per CLB row, permitting multiple busses within a row, as shown in Figure 8.
- Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB.

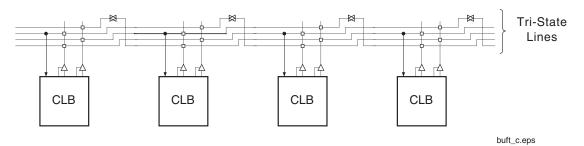


Figure 8: BUFT Connections to Dedicated Horizontal Bus Lines

Global Routing

Global Routing resources distribute clocks and other signals with very high fanout throughout the device. Virtex devices include two tiers of global routing resources referred to as primary global and secondary local clock routing resources.

• The primary global routing resources are four dedicated global nets with dedicated input pins that are designed to distribute high-fanout clock signals with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock pins. The primary global nets can only be driven by global buffers. There are four global buffers, one for each global net. The secondary local clock routing resources consist of 24 backbone lines, 12 across the top of the chip and 12 across bottom. From these lines, up to 12 unique signals per column can be distributed via the 12 longlines in the column. These secondary resources are more flexible than the primary resources since they are not restricted to routing only to clock pins.

Clock Distribution

Virtex provides high-speed, low-skew clock distribution through the primary global routing resources described above. A typical clock distribution net is shown in Figure 9.

Four global buffers are provided, two at the top center of the device and two at the bottom center. These drive the four primary global nets that in turn drive any clock pin.

In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data.

Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

Instruction Set

The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5.

Data Registers

The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins.

The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device.

The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO.

Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE).

Bit Sequence

The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits.

From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11.

BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area.

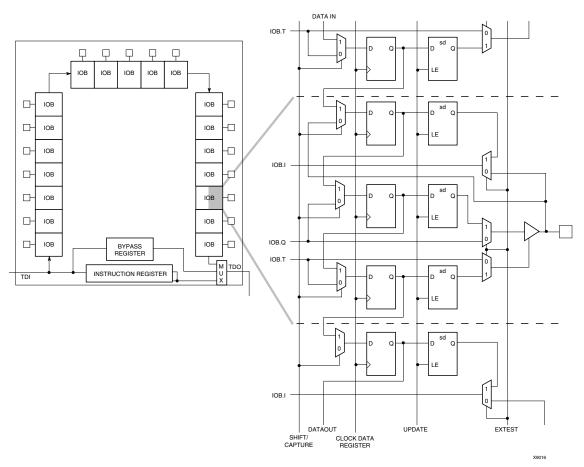


Figure 10: Virtex Series Boundary Scan Logic

ers with a common user interface regardless of their choice of entry and verification tools. The XDM software simplifies the selection of implementation options with pull-down menus and on-line help.

Application programs ranging from schematic capture to Placement and Routing (PAR) can be accessed through the XDM software. The program command sequence is generated prior to execution, and stored for documentation.

Several advanced software features facilitate Virtex design. RPMs, for example, are schematic-based macros with relative location constraints to guide their placement. They help ensure optimal implementation of common functions.

For HDL design entry, the Xilinx FPGA Foundation development system provides interfaces to the following synthesis design environments.

- Synopsys (FPGA Compiler, FPGA Express)
- Exemplar (Spectrum)
- Synplicity (Synplify)

For schematic design entry, the Xilinx FPGA Foundation and alliance development system provides interfaces to the following schematic-capture design environments.

- Mentor Graphics V8 (Design Architect, QuickSim II)
- Viewlogic Systems (Viewdraw)

Third-party vendors support many other environments.

A standard interface-file specification, Electronic Design Interchange Format (EDIF), simplifies file transfers into and out of the development system.

Virtex FPGAs supported by a unified library of standard functions. This library contains over 400 primitives and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, multiplexers, shift registers, and barrel shifters.

The "soft macro" portion of the library contains detailed descriptions of common logic functions, but does not contain any partitioning or placement information. The performance of these macros depends, therefore, on the partitioning and placement obtained during implementation.

RPMs, on the other hand, do contain predetermined partitioning and placement information that permits optimal implementation of these functions. Users can create their own library of soft macros or RPMs based on the macros and primitives in the standard library.

The design environment supports hierarchical design entry, with high-level schematics that comprise major functional blocks, while lower-level schematics define the logic in these blocks. These hierarchical design elements are automatically combined by the implementation tools. Different design entry tools can be combined within a hierarchical

design, thus allowing the most convenient entry method to be used for each portion of the design.

Design Implementation

The place-and-route tools (PAR) automatically provide the implementation flow described in this section. The partitioner takes the EDIF net list for the design and maps the logic into the architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines the best locations for these blocks based on their interconnections and the desired performance. Finally, the router interconnects the blocks.

The PAR algorithms support fully automatic implementation of most designs. For demanding applications, however, the user can exercise various degrees of control over the process. User partitioning, placement, and routing information is optionally specified during the design-entry process. The implementation of highly structured designs can benefit greatly from basic floor planning.

The implementation software incorporates Timing Wizard® timing-driven placement and routing. Designers specify timing requirements along entire paths during design entry. The timing path analysis routines in PAR then recognize these user-specified requirements and accommodate them.

Timing requirements are entered on a schematic in a form directly relating to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system along entire signal paths is automatically tailored to user-generated specifications. Specific timing information for individual nets is unnecessary.

Design Verification

In addition to conventional software simulation, FPGA users can use in-circuit debugging techniques. Because Xilinx devices are infinitely reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors.

The development system supports both software simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database, and back-annotates this information into the net list for use by the simulator. Alternatively, the user can verify timing-critical portions of the design using the TRACE® static timing analyzer.

For in-circuit debugging, the development system includes a download and readback cable. This cable connects the FPGA in the target system to a PC or workstation. After downloading the design into the FPGA, the designer can single-step the logic, readback the contents of the flip-flops, and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes.

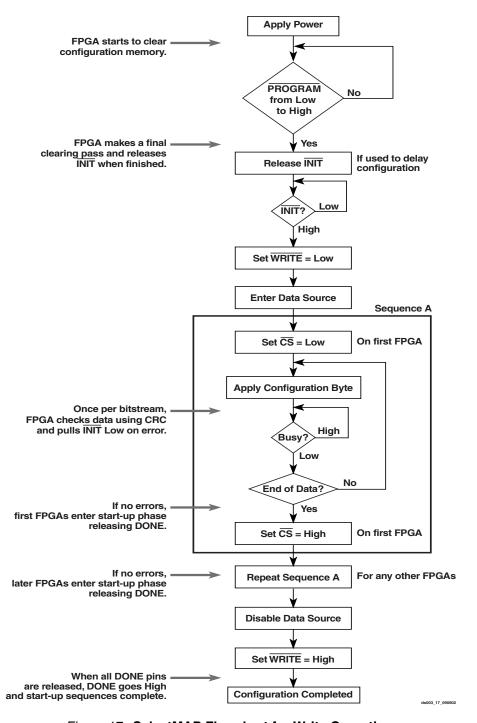


Figure 17: SelectMAP Flowchart for Write Operation

Abort

During a given assertion of $\overline{\text{CS}}$, the user cannot switch from a write to a read, or vice-versa. This action causes the current packet command to be aborted. The device will remain BUSY until the aborted operation has completed. Following an abort, data is assumed to be unaligned to word boundar-

ies, and the FPGA requires a new synchronization word prior to accepting any new packets.

To initiate an abort during a write operation, de-assert WRITE. At the rising edge of CCLK, an abort is initiated, as shown in Figure 18.

DC Characteristics Over Recommended Operating Conditions

Symbol	Description	1	Device	Min	Max	Units
V _{DRINT}	Data Retention V _{CCINT} Voltage		All	2.0		V
21	(below which configuration data can be	e lost)				
V_{DRIO}	Data Retention V _{CCO} Voltage (below which configuration data can be	e lost)	All	1.2		V
I _{CCINTQ}	Quiescent V _{CCINT} supply current ^(1,3)		XCV50		50 50 50 75 75 75 100 100 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mA
			XCV100		50	mA
			XCV150		50	mA
	Quiescent V _{CCINT} supply current ^(1,3)		XCV200		75	mA
			XCV300		75	mA
			XCV400		75	mA
			XCV600		100	mA
			XCV800		100	mA
			XCV1000		100	mA
Iccoq	Quiescent V _{CCO} supply current ⁽¹⁾		XCV50		2	mA
			XCV100		2	mA
			XCV150		2	mA
			XCV200		2	mA
			XCV300		2	mA
			XCV400		2	mA
			XCV600		2	mA
			XCV800		2	mA
			XCV1000		2	mA
I _{REF}	V _{REF} current per V _{REF} pin		All		20	μΑ
ΙL	Input or output leakage current		All	-10	+10	μΑ
C _{IN}	Input capacitance (sample tested)	BGA, PQ, HQ, packages	All		8	pF
I _{RPU}	Pad pull-up (when selected) @ V _{in} = 0 tested)	V, V _{CCO} = 3.3 V (sample	All	Note (2)	0.25	mA
I _{RPD}	Pad pull-down (when selected) @ V _{in} =	= 3.6 V (sample tested)		Note (2)	0.15	mA

- 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating.
- 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits.
- 3. Multiply I_{CCINTQ} limit by two for industrial grade.

			Speed Grade				
Description	Device	Symbol	Min	-6	-5	-4	Units
Setup and Hold Times with resp register ⁽¹⁾	ect to Clock (CLK at IOB input		Setup	Time / Hol	d Time	
Pad, no delay	All	T _{IOPICK} /T _{IOICKP}	0.8 / 0	1.6 / 0	1.8 / 0	2.0 / 0	ns, min
Pad, with delay	XCV50	T _{IOPICKD} /T _{IOICKPD}	1.9 / 0	3.7 / 0	4.1 / 0	4.7 / 0	ns, min
	XCV100		1.9 / 0	3.7 / 0	4.1 / 0	4.7 / 0	ns, min
	XCV150		1.9 / 0	3.8 / 0	4.3 / 0	4.9 / 0	ns, min
	XCV200		2.0 / 0	3.9 / 0	4.4 / 0	5.0 / 0	ns, min
	XCV300		2.0 / 0	3.9 / 0	4.4 / 0	5.0 / 0	ns, min
	XCV400		2.1 / 0	4.1 / 0	4.6 / 0	5.3 / 0	ns, min
	XCV600		2.1 / 0	4.2 / 0	4.7 / 0	5.4 / 0	ns, min
	XCV800		2.2 / 0	4.4 / 0	4.9 / 0	5.6 / 0	ns, min
	XCV1000		2.3 / 0	4.5 / 0	5.0 / 0	5.8 / 0	ns, min
ICE input	All	T _{IOICECK} /T _{IOCKICE}	0.37/ 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, max
Set/Reset Delays							
SR input (IFF, synchronous)	All	T _{IOSRCKI}	0.49	1.0	1.1	1.3	ns, max
SR input to IQ (asynchronous)	All	T _{IOSRIQ}	0.70	1.4	1.6	1.8	ns, max
GSR to output IQ	All	T _{GSRQ}	4.9	9.7	10.9	12.5	ns, max

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

^{2.} Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3.

		Speed Grade					
Description	Symbol	Min	-6	-5	-4	Units	
Clock CLK to Pad delay with OBUFT enabled (non-3-state)	T _{IOCKP}	1.0	2.9	3.2	3.5	ns, max	
Clock CLK to Pad high-impedance (synchronous) ⁽¹⁾	T _{IOCKHZ}	1.1	2.3	2.5	2.9	ns, max	
Clock CLK to valid data on Pad delay, plus enable delay for OBUFT	T _{IOCKON}	1.5	3.4	3.7	4.1	ns, max	
Setup and Hold Times before/after Clock	old Times before/after Clock CLK ⁽²⁾			Time / Hold	Time	1	
O input	T _{IOOCK} /T _{IOCKO}	0.51 / 0	1.1 / 0	1.2 / 0	1.3 / 0	ns, min	
OCE input	T _{IOOCECK} /T _{IOCKOCE}	0.37 / 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, min	
SR input (OFF)	T _{IOSRCKO} /T _{IOCKOSR}	0.52 / 0	1.1 / 0	1.2 / 0	1.4 / 0	ns, min	
3-State Setup Times, T input	T _{IOTCK} /T _{IOCKT}	0.34 / 0	0.7 / 0	0.8 / 0	0.9 / 0	ns, min	
3-State Setup Times, TCE input	T _{IOTCECK} /T _{IOCKTCE}	0.41 / 0	0.9 / 0	0.9 / 0	1.1 / 0	ns, min	
3-State Setup Times, SR input (TFF)	T _{IOSRCKT} /T _{IOCKTSR}	0.49 / 0	1.0 / 0	1.1 / 0	1.3 / 0	ns, min	
Set/Reset Delays							
SR input to Pad (asynchronous)	T _{IOSRP}	1.6	3.8	4.1	4.6	ns, max	
SR input to Pad high-impedance (asynchronous) ⁽¹⁾	T _{IOSRHZ}	1.6	3.1	3.4	3.9	ns, max	
SR input to valid data on Pad (asynchronous)	T _{IOSRON}	2.0	4.2	4.6	5.1	ns, max	
GSR to Pad	T _{IOGSRQ}	4.9	9.7	10.9	12.5	ns, max	

- 1. 3-state turn-off delays should not be adjusted.
- 2. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

CLB Arithmetic Switching Characteristics

Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment listed. Precise values are provided by the timing analyzer.

			Speed	Grade		
Description	Symbol	Min	-6	-5	-4	Units
Combinatorial Delays					•	•
F operand inputs to X via XOR	T _{OPX}	0.37	0.8	0.9	1.0	ns, max
F operand input to XB output	T _{OPXB}	0.54	1.1	1.3	1.4	ns, max
F operand input to Y via XOR	T _{OPY}	0.8	1.5	1.7	2.0	ns, max
F operand input to YB output	T _{OPYB}	0.8	1.5	1.7	2.0	ns, max
F operand input to COUT output	T _{OPCYF}	0.6	1.2	1.3	1.5	ns, max
G operand inputs to Y via XOR	T _{OPGY}	0.46	1.0	1.1	1.2	ns, max
G operand input to YB output	T _{OPGYB}	0.8	1.6	1.8	2.1	ns, max
G operand input to COUT output	T _{OPCYG}	0.7	1.3	1.4	1.6	ns, max
BX initialization input to COUT	T _{BXCY}	0.41	0.9	1.0	1.1	ns, max
CIN input to X output via XOR	T _{CINX}	0.21	0.41	0.46	0.53	ns, max
CIN input to XB	T _{CINXB}	0.02	0.04	0.05	0.06	ns, max
CIN input to Y via XOR	T _{CINY}	0.23	0.46	0.52	0.6	ns, max
CIN input to YB	T _{CINYB}	0.23	0.45	0.51	0.6	ns, max
CIN input to COUT output	T _{BYP}	0.05	0.09	0.10	0.11	ns, max
Multiplier Operation						•
F1/2 operand inputs to XB output via AND	T _{FANDXB}	0.18	0.36	0.40	0.46	ns, max
F1/2 operand inputs to YB output via AND	T _{FANDYB}	0.40	0.8	0.9	1.1	ns, max
F1/2 operand inputs to COUT output via AND	T _{FANDCY}	0.22	0.43	0.48	0.6	ns, max
G1/2 operand inputs to YB output via AND	T _{GANDYB}	0.25	0.50	0.6	0.7	ns, max
G1/2 operand inputs to COUT output via AND	T _{GANDCY}	0.07	0.13	0.15	0.17	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾		Set	up Time / F	lold Time	•	•
CIN input to FFX	T _{CCKX} /T _{CKCX}	0.50 / 0	1.0 / 0	1.2 / 0	1.3 / 0	ns, min
CIN input to FFY	T _{CCKY} /T _{CKCY}	0.53 / 0	1.1 / 0	1.2 / 0	1.4 / 0	ns, min

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

Virtex Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted.

Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DLL

			Speed Grade				
Description	Symbol	Device	Min	-6	-5	-4	Units
LVTTL Global Clock Input to Output Delay using Output Flip-flop, 12 mA, Fast Slew Rate, with DLL. For data output with different standards, adjust delays with the values shown in Output Delay Adjustments.	T _{ICKOFDLL}	XCV50	1.0	3.1	3.3	3.6	ns, max
		XCV100	1.0	3.1	3.3	3.6	ns, max
		XCV150	1.0	3.1	3.3	3.6	ns, max
		XCV200	1.0	3.1	3.3	3.6	ns, max
		XCV300	1.0	3.1	3.3	3.6	ns, max
		XCV400	1.0	3.1	3.3	3.6	ns, max
		XCV600	1.0	3.1	3.3	3.6	ns, max
		XCV800	1.0	3.1	3.3	3.6	ns, max
		XCV1000	1.0	3.1	3.3	3.6	ns, max

Notes:

- 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3.
- 3. DLL output jitter is already included in the timing calculation.

Global Clock Input-to-Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DLL

			Speed Grade				
Description	Symbol	Device	Min	-6	-5	-4	Units
LVTTL Global Clock Input to Output Delay using Output Flip-flop, 12 mA, Fast Slew Rate, without DLL. For data output with different standards, adjust delays with the values shown in Input and Output Delay Adjustments. For I/O standards requiring V _{RFF} such as GTL,	T _{ICKOF}	XCV50	1.5	4.6	5.1	5.7	ns, max
		XCV100	1.5	4.6	5.1	5.7	ns, max
		XCV150	1.5	4.7	5.2	5.8	ns, max
		XCV200	1.5	4.7	5.2	5.8	ns, max
GTL+, SSTL, HSTL, CTT, and AGO, an additional		XCV300	1.5	4.7	5.2	5.9	ns, max
600 ps must be added.		XCV400	1.5	4.8	5.3	6.0	ns, max
		XCV600	1.6	4.9	5.4	6.0	ns, max
		XCV800	1.6	4.9	5.5	6.2	ns, max
		XCV1000	1.7	5.0	5.6	6.3	ns, max

- Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- 2. Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3.

Virtex Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted

Global Clock Set-Up and Hold for LVTTL Standard, with DLL

			Speed Grade				
Description	Symbol	Device	Min	-6	-5	-4	Units
Input Setup and Hold Time Relations standards, adjust the setup time					r data input	with differen	t
No Delay Global Clock and IFF, with DLL	T _{PSDLL} /T _{PHDLL}	XCV50	0.40 / -0.4	1.7 /-0.4	1.8 /0.4	2.1 /-0.4	ns, min
		XCV100	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min
		XCV150	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min
		XCV200	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min
		XCV300	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min
		XCV400	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min
		XCV600	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min
		XCV800	0.40 /-0.4	1.7 /-0.4	1.9 /-0.4	2.1 /-0.4	ns, min
		XCV1000	0.40 /-0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min

IFF = Input Flip-Flop or Latch

- 2. DLL output jitter is already included in the timing calculation.
- 3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

^{1.} Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load.

DLL Timing Parameters

All devices are 100 percent functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions.

	Speed Grade							
		-	-6		-5		-4	
Description	Symbol	Min	Max	Min	Max	Min	Max	Units
Input Clock Frequency (CLKDLLHF)	FCLKINHF	60	200	60	180	60	180	MHz
Input Clock Frequency (CLKDLL)	FCLKINLF	25	100	25	90	25	90	MHz
Input Clock Pulse Width (CLKDLLHF)	T _{DLLPWHF}	2.0	-	2.4	-	2.4	-	ns
Input Clock Pulse Width (CLKDLL)	T _{DLLPWLF}	2.5	-	3.0		3.0	-	ns

Notes:

DLL Clock Tolerance, Jitter, and Phase Information

All DLL output jitter and phase specifications determined through statistical measurement at the package pins using a clock mirror configuration and matched drivers.

			CLK	DLLHF	CLI	KDLL	
Description	Symbol	F _{CLKIN}	Min	Max	Min	Max	Units
Input Clock Period Tolerance	T _{IPTOL}		-	1.0	-	1.0	ns
Input Clock Jitter Tolerance (Cycle to Cycle)	T _{IJITCC}		-	± 150	-	± 300	ps
Time Required for DLL to Acquire Lock	T _{LOCK}	> 60 MHz	-	20	-	20	μs
		50 - 60 MHz	-	-	-	25	μs
		40 - 50 MHz	-	-	-	50	μs
		30 - 40 MHz	-	-	-	90	μs
		25 - 30 MHz	-	-	-	120	μs
Output Jitter (cycle-to-cycle) for any DLL Clock Output (1)	T _{OJITCC}			± 60		± 60	ps
Phase Offset between CLKIN and CLKO ⁽²⁾	T _{PHIO}			± 100		± 100	ps
Phase Offset between Clock Outputs on the DLL ⁽³⁾	T _{PHOO}			± 140		± 140	ps
Maximum Phase Difference between CLKIN and CLKO ⁽⁴⁾	T _{PHIOM}			± 160		± 160	ps
Maximum Phase Difference between Clock Outputs on the DLL (5)	T _{PHOOM}			± 200		± 200	ps

- 1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter.
- Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, excluding Output Jitter and input clock jitter.
- Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL outputs, excluding Output Jitter and input clock jitter.
- 4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter).
- Maximum Phase Difference between Clock Outputs on the DLL is the sum of Output Jitter and Phase Offset between any DLL
 clock outputs, or the greatest difference between any two DLL output rising edges sue to DLL alone (excluding input clock jitter).
- 6. All specifications correspond to Commercial Operating Temperatures (0°C to +85°C).

^{1.} All specifications correspond to Commercial Operating Temperatures (0°C to + 85°C).

Product Obsolete/Under Obsolescence

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{CCINT}	All	C3, C14, D4, D13, E5, E12, M5, M12, N4, N13, P3, P14	E5, E18, F6, F17, G7, G8, G9, G14, G15, G16, H7, H16, J7, J16, P7, P16, R7, R16, T7, T8, T9, T14, T15, T16, U6, U17, V5, V18	G7, G20, H8, H19, J9, J10, J11, J16, J17, J18, K9, K18, L9, L18, T9, T18, U9, U18, V9, V10, V11, V16, V17, V18, W8, W19, Y7, Y20	AD5, AD35, AE5, AE35, AL5, AL35, AM5, AM35, AR8, AR9, AR15, AR16, AR24, AR25, AR31, AR32, E8, E9, E15, E16, E24, E25, E31, E32, H5, H35, J5, J35, R5, R35, T5, T35
V _{CCO} , Bank 0	All	E8, F8	F7, F8, F9, F10 G10, G11	H9, H10, H11, H12, J12, J13	E26, E27, E29, E30, E33, E34
V _{CCO} , Bank 1	All	E9, F9	F13, F14, F15, F16, G12, G13	H15, H16, H17, H18, J14, J15	E6, E7, E10, E11, E13, E14
V _{CCO} , Bank 2	All	H11, H12	G17, H17, J17, K16, K17, L16	J19, K19, L19, M18, M19, N18	F5, G5, K5, L5, N5, P5
V _{CCO} , Bank 3	All	J11, J12	M16, N16, N17, P17, R17, T17	P18, R18, R19, T19, U19, V19	AF5, AG5, AN5, AK5, AJ5, AP5
V _{CCO} , Bank 4	All	L9. M9	T12, T13, U13, U14, U15, U16,	V14, V15, W15, W16, W17, W18	AR6, AR7, AR10, AR11, AR13, AR14
V _{CCO} , Bank 5	All	L8, M8	T10, T11, U7, U8, U9, U10	V12, V13, W9,W10, W11, W12	AR26, AR27, AR29, AR30, AR33, AR34
V _{CCO} , Bank 6	All	J5, J6	M7, N6, N7, P6, R6, T6	P9, R8, R9, T8, U8, V8	AF35, AG35, AJ35, AK35, AN35, AP35
V _{CCO} , Bank 7	All	H5, H6	G6, H6, J6, K6, K7, L7	J8, K8, L8, M8, M9, N9	F35, G35, K35, L35, N35, P35
V _{REF} Bank 0	XCV50	B4, B7	N/A	N/A	N/A
(VREF pins are listed	XCV100/150	+ C6	A9, C6, E8	N/A	N/A
incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if	XCV200/300	+ A3	+ B4	N/A	N/A
	XCV400	N/A	N/A	A12, C11, D6, E8, G10	
	XCV600	N/A	N/A	+ B7	A33, B28, B30, C23, C24, D33
input reference voltage	XCV800	N/A	N/A	+ B10	+ A26
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ D34

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{REF} , Bank 1	XCV50	B9, C11	N/A	N/A	N/A
(VREF pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV100/150	+ E11	A18, B13, E14	N/A	N/A
	XCV200/300	+ A14	+ A19	N/A	N/A
	XCV400	N/A	N/A	A14, C20, C21, D15, G16	N/A
	XCV600	N/A	N/A	+ B19	B6, B8, B18, D11, D13, D17
	XCV800	N/A	N/A	+ A17	+ B14
	XCV1000	N/A	N/A	N/A	+ B5
V _{REF} , Bank 2	XCV50	F13, H13	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV100/150	+ F14	F21, H18, K21	N/A	N/A
	XCV200/300	+ E13	+ D22	N/A	N/A
	XCV400	N/A	N/A	F24, H23, K20, M23, M26	N/A
	XCV600	N/A	N/A	+ G26	G1, H4, J1, L2, V5, W3
	XCV800	N/A	N/A	+ K25	+ N1
	XCV1000	N/A	N/A	N/A	+ D2
V _{REF} Bank 3 (V _{REF} pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV50	K16, L14	N/A	N/A	N/A
	XCV100/150	+ L13	N21, R19, U21	N/A	N/A
	XCV200/300	+ M13	+ U20	N/A	N/A
	XCV400	N/A	N/A	R23, R25, U21, W22, W23	N/A
	XCV600	N/A	N/A	+ W26	AC1, AJ2, AK3, AL4, AR1, Y1
	XCV800	N/A	N/A	+ U25	+ AF3
	XCV1000	N/A	N/A	N/A	+ AP4

TQ144 Pin Function Diagram

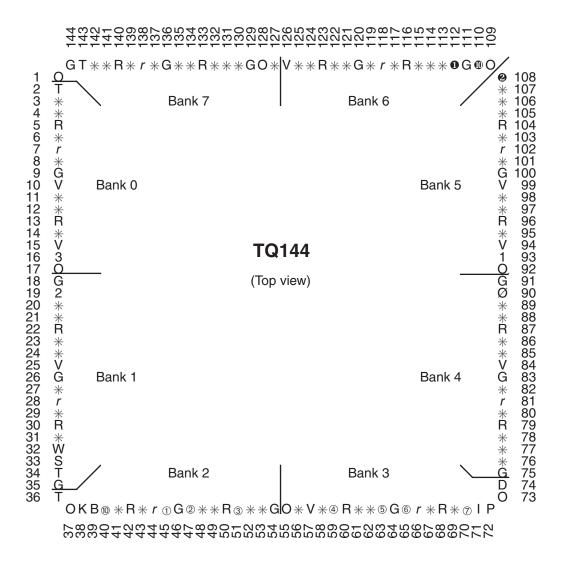


Figure 2: TQ144 Pin Function Diagram

FG256 Pin Function Diagram

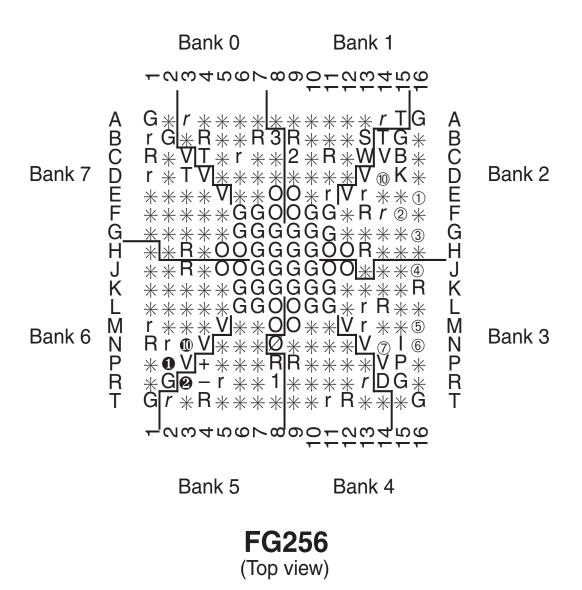


Figure 8: FG256 Pin Function Diagram

FG680 Pin Function Diagram

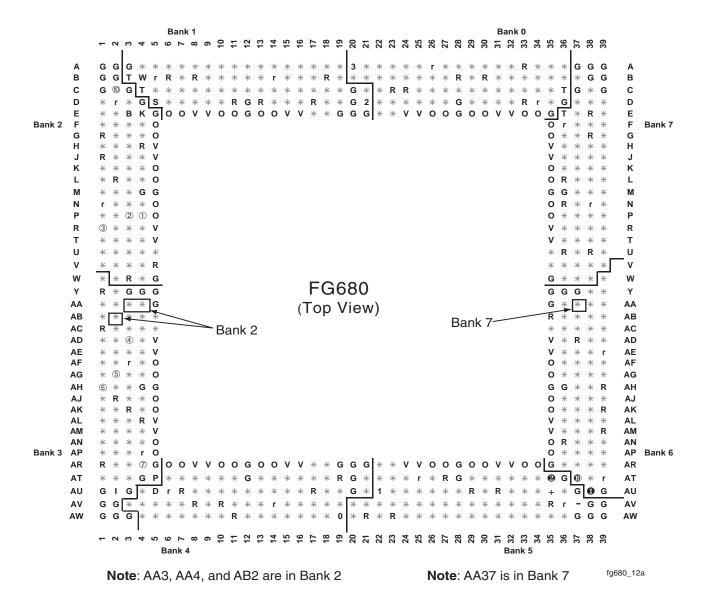


Figure 11: FG680 Pin Function Diagram