Welcome to **E-XFL.COM** # **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 864 | | Number of Logic Elements/Cells | 3888 | | Total RAM Bits | 49152 | | Number of I/O | 260 | | Number of Gates | 164674 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 456-BBGA | | Supplier Device Package | 456-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv150-5fg456i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## Virtex Device/Package Combinations and Maximum I/O Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) | Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 | |---------|-------|--------|--------|--------|--------|--------|--------|--------|---------| | CS144 | 94 | 94 | | | | | | | | | TQ144 | 98 | 98 | | | | | | | | | PQ240 | 166 | 166 | 166 | 166 | 166 | | | | | | HQ240 | | | | | | 166 | 166 | 166 | | | BG256 | 180 | 180 | 180 | 180 | | | | | | | BG352 | | | 260 | 260 | 260 | | | | | | BG432 | | | | | 316 | 316 | 316 | 316 | | | BG560 | | | | | | 404 | 404 | 404 | 404 | | FG256 | 176 | 176 | 176 | 176 | | | | | | | FG456 | | | 260 | 284 | 312 | | | | | | FG676 | | | | | | 404 | 444 | 444 | | | FG680 | | | | | | | 512 | 512 | 512 | ## **Virtex Ordering Information** Figure 1: Virtex Ordering Information ## **Revision History** | Date | Version | Revision | |-------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99-02/99 | 1.2-1.3 | Both versions updated package drawings and specs. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T <sub>IJITCC</sub> parameter, changed T <sub>OJIT</sub> to T <sub>OPHASE</sub> . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V <sub>CCO</sub> in CS144 package on p.43. | | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | <ul> <li>Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices.</li> <li>Corrected Units column in table under IOB Input Switching Characteristics.</li> <li>Added values to table under CLB SelectRAM Switching Characteristics.</li> </ul> | | 10/00 | 2.4 | <ul> <li>Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18.</li> <li>Corrected BG256 Pin Function Diagram.</li> </ul> | | 04/01 | 2.5 | <ul> <li>Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL.</li> <li>Converted file to modularized format. See Virtex Data Sheet section.</li> </ul> | | 03/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) #### Input Path A buffer In the Virtex IOB input path routes the input signal either directly to internal logic or through an optional input flip-flop. An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signalling standards supported. In some of these standards the input buffer utilizes a user-supplied threshold voltage, V<sub>REF</sub>. The need to supply V<sub>REF</sub> imposes constraints on which standards can used in close proximity to each other. See I/O Banking, page 3. There are optional pull-up and pull-down resistors at each user I/O input for use after configuration. Their value is in the range 50 k $\Omega$ – 100 k $\Omega$ . ### **Output Path** The output path includes a 3-state output buffer that drives the output signal onto the pad. The output signal can be routed to the buffer directly from the internal logic or through an optional IOB output flip-flop. The 3-state control of the output can also be routed directly from the internal logic or through a flip-flip that provides synchronous enable and disable. Each output driver can be individually programmed for a wide range of low-voltage signalling standards. Each output buffer can source up to 24 mA and sink up to 48mA. Drive strength and slew rate controls minimize bus transients. In most signalling standards, the output High voltage depends on an externally supplied $V_{CCO}$ voltage. The need to supply $V_{CCO}$ imposes constraints on which standards can be used in close proximity to each other. See **I/O Banking**, page 3. An optional weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage on the pad and weakly drives the pin High or Low to match the input signal. If the pin is connected to a multiple-source signal, the weak keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. Because the weak-keeper circuit uses the IOB input buffer to monitor the input level, an appropriate $V_{\text{REF}}$ voltage must be provided if the signalling standard requires one. The provision of this voltage must comply with the I/O banking rules. #### I/O Banking Some of the I/O standards described above require $V_{CCO}$ and/or $V_{REF}$ voltages. These voltages externally and connected to device pins that serve groups of IOBs, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. Eight I/O banks result from separating each edge of the FPGA into two banks, as shown in Figure 3. Each bank has multiple $V_{\rm CCO}$ pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. X8778\_b Figure 3: Virtex I/O Banks Within a bank, output standards can be mixed only if they use the same $V_{CCO}$ . Compatible standards are shown in Table 2. GTL and GTL+ appear under all voltages because their open-drain outputs do not depend on $V_{CCO}$ . Table 2: Compatible Output Standards | V <sub>CCO</sub> | Compatible Standards | |------------------|----------------------------------------------------| | 3.3 V | PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+ | | 2.5 V | SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+ | | 1.5 V | HSTL I, HSTL III, HSTL IV, GTL, GTL+ | Some input standards require a user-supplied threshold voltage, $V_{REF}$ In this case, certain user-I/O pins are automatically configured as inputs for the $V_{REF}$ voltage. Approximately one in six of the I/O pins in the bank assume this role The $V_{REF}$ pins within a bank are interconnected internally and consequently only one $V_{REF}$ voltage can be used within each bank. All $V_{REF}$ pins in the bank, however, must be connected to the external voltage source for correct operation. Within a bank, inputs that require $V_{REF}$ can be mixed with those that do not. However, only one $V_{REF}$ voltage can be used within a bank. Input buffers that use $V_{REF}$ are not 5 V tolerant. LVTTL, LVCMOS2, and PCI 33 MHz 5 V, are 5 V tolerant. The $V_{CCO}$ and $V_{REF}$ pins for each bank appear in the device Pinout tables and diagrams. The diagrams also show the bank affiliation of each I/O. Within a given package, the number of $V_{REF}$ and $V_{CCO}$ pins can vary depending on the size of device. In larger devices, Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is selected either from these pads or from signals in the general purpose routing. Figure 9: Global Clock Distribution Network ### Delay-Locked Loop (DLL) Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input. In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices. In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock. See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information. ### **Boundary Scan** Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the $\rm V_{CCO}$ for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and $\rm V_{CCO}$ . Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off. Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins. Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed. Table 8: Master/Slave Serial Mode Programming Switching | | Description | Figure<br>References | Symbol | Values | Units | |-------|----------------------------------------------------------|----------------------|--------------------------------------|--------------|----------| | | DIN setup/hold, slave mode | 1/2 | T <sub>DCC</sub> /T <sub>CCD</sub> | 5.0 / 0 | ns, min | | | DIN setup/hold, master mode | 1/2 | T <sub>DSCK</sub> /T <sub>CKDS</sub> | 5.0 / 0 | ns, min | | | DOUT | 3 | T <sub>CCO</sub> | 12.0 | ns, max | | CCLK | High time | 4 | T <sub>CCH</sub> | 5.0 | ns, min | | OOLIK | Low time | 5 | T <sub>CCL</sub> | 5.0 | ns, min | | | Maximum Frequency | | F <sub>CC</sub> | 66 | MHz, max | | | Frequency Tolerance, master mode with respect to nominal | | | +45%<br>-30% | | Note 1: If none of the Virtex FPGAs have been selected to drive DONE, an external pull-up resistor of 330 $\Omega$ should be added to the common DONE line. (For Spartan-XL devices, add a 4.7K $\Omega$ pull-up resistor.) This pull-up is not needed if the DriveDONE attribute is set. If used, DriveDONE should be selected only for the last device in the configuration chain. xcv\_12\_050103 Figure 12: Master/Slave Serial Mode Circuit Diagram Figure 13: Slave-Serial Mode Programming Switching Characteristics - At the rising edge of CCLK: If BUSY is Low, the data is accepted on this clock. If BUSY is High (from a previous write), the data is not accepted. Acceptance will instead occur on the first clock after BUSY goes Low, and the data must be held until this has happened. - 4. Repeat steps 2 and 3 until all the data has been sent. - 5. De-assert $\overline{\text{CS}}$ and $\overline{\text{WRITE}}$ . A flowchart for the write operation appears in Figure 17. Note that if CCLK is slower than $f_{\text{CCNH}}$ , the FPGA never asserts BUSY. In this case, the above handshake is unnecessary, and data can simply be entered into the FPGA every CCLK cycle. Figure 16: Write Operations ## **Virtex Switching Characteristics** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Virtex devices unless otherwise noted. ### **IOB Input Switching Characteristics** Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in , page 6. | | | | | Speed | Grade | | | |--------------------------------------------------|---------|---------------------|------|-------|-------|-----|---------| | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | | Propagation Delays | | | | | | | | | Pad to I output, no delay | All | T <sub>IOPI</sub> | 0.39 | 0.8 | 0.9 | 1.0 | ns, max | | Pad to I output, with delay | XCV50 | T <sub>IOPID</sub> | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV100 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV150 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV200 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV300 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV400 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV600 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV800 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | | XCV1000 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | Pad to output IQ via transparent latch, no delay | All | T <sub>IOPLI</sub> | 0.8 | 1.6 | 1.8 | 2.0 | ns, max | | Pad to output IQ via transparent | XCV50 | T <sub>IOPLID</sub> | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | latch, with delay | XCV100 | | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | | XCV150 | | 2.0 | 3.9 | 4.3 | 4.9 | ns, max | | | XCV200 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV300 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV400 | | 2.1 | 4.1 | 4.6 | 5.3 | ns, max | | | XCV600 | | 2.1 | 4.2 | 4.7 | 5.4 | ns, max | | | XCV800 | | 2.2 | 4.4 | 4.9 | 5.6 | ns, max | | | XCV1000 | | 2.3 | 4.5 | 5.1 | 5.8 | ns, max | | Sequential Delays | | | · | | | | | | Clock CLK | All | | | | | | | | Minimum Pulse Width, High | | T <sub>CH</sub> | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | | T <sub>CL</sub> | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Clock CLK to output IQ | | T <sub>IOCKIQ</sub> | 0.2 | 0.7 | 0.7 | 8.0 | ns, max | | | | | Speed Grade | | | | | |--------------------------------------------------------|----------------|--------------------------------------------|-------------|---------|------------|---------|---------| | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | | Setup and Hold Times with resp register <sup>(1)</sup> | ect to Clock ( | CLK at IOB input | | Setup | Time / Hol | d Time | | | Pad, no delay | All | T <sub>IOPICK</sub> /T <sub>IOICKP</sub> | 0.8 / 0 | 1.6 / 0 | 1.8 / 0 | 2.0 / 0 | ns, min | | Pad, with delay | XCV50 | T <sub>IOPICKD</sub> /T <sub>IOICKPD</sub> | 1.9 / 0 | 3.7 / 0 | 4.1 / 0 | 4.7 / 0 | ns, min | | | XCV100 | | 1.9 / 0 | 3.7 / 0 | 4.1 / 0 | 4.7 / 0 | ns, min | | | XCV150 | | 1.9 / 0 | 3.8 / 0 | 4.3 / 0 | 4.9 / 0 | ns, min | | | XCV200 | | 2.0 / 0 | 3.9 / 0 | 4.4 / 0 | 5.0 / 0 | ns, min | | | XCV300 | | 2.0 / 0 | 3.9 / 0 | 4.4 / 0 | 5.0 / 0 | ns, min | | | XCV400 | | 2.1 / 0 | 4.1 / 0 | 4.6 / 0 | 5.3 / 0 | ns, min | | | XCV600 | | 2.1 / 0 | 4.2 / 0 | 4.7 / 0 | 5.4 / 0 | ns, min | | | XCV800 | | 2.2 / 0 | 4.4 / 0 | 4.9 / 0 | 5.6 / 0 | ns, min | | | XCV1000 | | 2.3 / 0 | 4.5 / 0 | 5.0 / 0 | 5.8 / 0 | ns, min | | ICE input | All | T <sub>IOICECK</sub> /T <sub>IOCKICE</sub> | 0.37/ 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, max | | Set/Reset Delays | | | | | | | | | SR input (IFF, synchronous) | All | T <sub>IOSRCKI</sub> | 0.49 | 1.0 | 1.1 | 1.3 | ns, max | | SR input to IQ (asynchronous) | All | T <sub>IOSRIQ</sub> | 0.70 | 1.4 | 1.6 | 1.8 | ns, max | | GSR to output IQ | All | T <sub>GSRQ</sub> | 4.9 | 9.7 | 10.9 | 12.5 | ns, max | #### Notes: <sup>1.</sup> A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. <sup>2.</sup> Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3. ## **CLB SelectRAM Switching Characteristics** | | | Speed Grade | | | | | |------------------------------------------------------------|----------------------------------|-------------|------------|-----------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Sequential Delays | | | | | | | | Clock CLK to X/Y outputs (WE active) 16 x 1 mode | T <sub>SHCKO16</sub> | 1.2 | 2.3 | 2.6 | 3.0 | ns, max | | Clock CLK to X/Y outputs (WE active) 32 x 1 mode | T <sub>SHCKO32</sub> | 1.2 | 2.7 | 3.1 | 3.5 | ns, max | | Shift-Register Mode | | | | | | | | Clock CLK to X/Y outputs | T <sub>REG</sub> | 1.2 | 3.7 | 4.1 | 4.7 | ns, max | | Setup and Hold Times before/after Clock CLK <sup>(1)</sup> | | Se | tup Time / | Hold Time | T. | · | | F/G address inputs | T <sub>AS</sub> /T <sub>AH</sub> | 0.25 / 0 | 0.5 / 0 | 0.6 / 0 | 0.7 / 0 | ns, min | | BX/BY data inputs (DIN) | T <sub>DS</sub> /T <sub>DH</sub> | 0.34 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | CE input (WE) | T <sub>WS</sub> /T <sub>WH</sub> | 0.38 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | Shift-Register Mode | | 1 | | , | 1 | 1 | | BX/BY data inputs (DIN) | T <sub>SHDICK</sub> | 0.34 | 0.7 | 0.8 | 0.9 | ns, min | | CE input (WS) | T <sub>SHCECK</sub> | 0.38 | 0.8 | 0.9 | 1.0 | ns, min | | Clock CLK | | - | | | 1 | 1 | | Minimum Pulse Width, High | T <sub>WPH</sub> | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T <sub>WPL</sub> | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum clock period to meet address write cycle time | T <sub>WC</sub> | 2.4 | 4.8 | 5.4 | 6.2 | ns, min | | Shift-Register Mode | | | | | | | | Minimum Pulse Width, High | T <sub>SRPH</sub> | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T <sub>SRPL</sub> | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | #### Notes: <sup>1.</sup> A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. Period Tolerance: the allowed input clock period change in nanoseconds. Figure 1: Frequency Tolerance and Clock Jitter ## **Revision History** | Date | Version | Revision | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99 | 1.2 | Updated package drawings and specs. | | 02/99 | 1.3 | Update of package drawings, updated specifications. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T <sub>IJITCC</sub> parameter, changed T <sub>OJIT</sub> to T <sub>OPHASE</sub> . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V <sub>CCO</sub> in CS144 package on p.43. | ## **Product Obsolete/Under Obsolescence** ### **Virtex Pinout Information** ### **Pinout Tables** See <a href="https://www.xilinx.com">www.xilinx.com</a> for updates or additional pinout information. For convenience, Table 2, Table 3 and Table 4 list the locations of special-purpose and power-supply pins. Pins not listed are either user I/Os or not connected, depending on the device/package combination. See the Pinout Diagrams starting on page 17 for any pins not listed for a particular part/package combination. Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--------------------|--------|------------------------------------|------------------------------------|-------------------------------------------------------| | GCK0 | All | K7 | 90 | 92 | | GCK1 | All | M7 | 93 | 89 | | GCK2 | All | A7 | 19 | 210 | | GCK3 | All | A6 | 16 | 213 | | MO | All | M1 | 110 | 60 | | M1 | All | L2 | 112 | 58 | | M2 | All | N2 | 108 | 62 | | CCLK | All | B13 | 38 | 179 | | PROGRAM | All | L12 | 72 | 122 | | DONE | All | M12 | 74 | 120 | | INIT | All | L13 | 71 | 123 | | BUSY/DOUT | All | C11 | 39 | 178 | | D0/DIN | All | C12 | 40 | 177 | | D1 | All | E10 | 45 | 167 | | D2 | All | E12 | 47 | 163 | | D3 | All | F11 | 51 | 156 | | D4 | All | H12 | 59 | 145 | | D5 | All | J13 | 63 | 138 | | D6 | All | J11 | 65 | 134 | | D7 | All | K10 | 70 | 124 | | WRITE | All | C10 | 32 | 185 | | CS | All | D10 | 33 | 184 | | TDI | All | A11 | 34 | 183 | | TDO | All | A12 | 36 | 181 | | TMS | All | B1 | 143 | 2 | | TCK | All | C3 | 2 | 239 | | V <sub>CCINT</sub> | All | A9, B6, C5, G3,<br>G12, M5, M9, N6 | 10, 15, 25, 57, 84, 94,<br>99, 126 | 16, 32, 43, 77, 88, 104, 137, 148, 164, 198, 214, 225 | Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------| | V <sub>cco</sub> | All | Banks 0 and 1:<br>A2, A13, D7<br>Banks 2 and 3:<br>B12, G11, M13<br>Banks 4 and 5:<br>N1, N7, N13<br>Banks 6 and 7:<br>B2, G2, M2 | No I/O Banks in this package: 1, 17, 37, 55, 73, 92, 109, 128 | No I/O Banks in this package: 15, 30, 44, 61, 76, 90, 105, 121, 136, 150, 165, 180, 197, 212, 226, 240 | | V <sub>RFF</sub> Bank 0 | XCV50 | C4, D6 | 5, 13 | 218, 232 | | (V <sub>REF</sub> pins are listed | XCV100/150 | + B4 | + 7 | + 229 | | incrementally. Connect | XCV200/300 | N/A | N/A | + 236 | | all pins listed for both the required device | XCV400 | N/A | N/A | + 215 | | and all smaller devices | XCV600 | N/A | N/A | + 230 | | listed in the same package.) | XCV800 | N/A | N/A | + 222 | | Within each bank, if input reference voltage is not required, all V <sub>REF</sub> pins are general I/O. | | | | | | V <sub>REF</sub> , Bank 1 | XCV50 | A10, B8 | 22, 30 | 191, 205 | | (V <sub>REF</sub> pins are listed | XCV100/150 | + D9 | + 28 | + 194 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 187 | | the required device | XCV400 | N/A | N/A | + 208 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 193 | | package.) Within each bank, if input reference voltage is not required, all V <sub>REF</sub> pins are general I/O. | XCV800 | N/A | N/A | + 201 | | V <sub>REF</sub> , Bank 2 | XCV50 | D11, F10 | 42, 50 | 157, 171 | | (V <sub>REF</sub> pins are listed | XCV100/150 | + D13 | + 44 | + 168 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 175 | | the required device | XCV400 | N/A | N/A | + 154 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 169 | | package.) Within each bank, if input reference voltage is not required, all V <sub>REF</sub> pins are general I/O. | XCV800 | N/A | N/A | + 161 | Table 3: Virtex Pinout Tables (BGA) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |-----------|--------|-------|-------|-------|-------| | GCK0 | All | Y11 | AE13 | AL16 | AL17 | | GCK1 | All | Y10 | AF14 | AK16 | AJ17 | | GCK2 | All | A10 | B14 | A16 | D17 | | GCK3 | All | B10 | D14 | D17 | A17 | | MO | All | Y1 | AD24 | AH28 | AJ29 | | M1 | All | U3 | AB23 | AH29 | AK30 | | M2 | All | W2 | AC23 | AJ28 | AN32 | | CCLK | All | B19 | C3 | D4 | C4 | | PROGRAM | All | Y20 | AC4 | АН3 | AM1 | | DONE | All | W19 | AD3 | AH4 | AJ5 | | INIT | All | U18 | AD2 | AJ2 | AH5 | | BUSY/DOUT | All | D18 | E4 | D3 | D4 | | D0/DIN | All | C19 | D3 | C2 | E4 | | D1 | All | E20 | G1 | K4 | K3 | | D2 | All | G19 | J3 | K2 | L4 | | D3 | All | J19 | M3 | P4 | P3 | | D4 | All | M19 | R3 | V4 | W4 | | D5 | All | P19 | U4 | AB1 | AB5 | | D6 | All | T20 | V3 | AB3 | AC4 | | D7 | All | V19 | AC3 | AG4 | AJ4 | | WRITE | All | A19 | D5 | B4 | D6 | | CS | All | B18 | C4 | D5 | A2 | | TDI | All | C17 | В3 | В3 | D5 | | TDO | All | A20 | D4 | C4 | E6 | | TMS | All | D3 | D23 | D29 | B33 | | TCK | All | A1 | C24 | D28 | E29 | | DXN | All | W3 | AD23 | AH27 | AK29 | | DXP | All | V4 | AE24 | AK29 | AJ28 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|------------------|-----------------------|----------------------------| | V <sub>CCO</sub> , Bank 7 | All | G4, H4 | G23, K26,<br>N23 | A31, L28, L31 | C32, D33, K33,<br>N32, T33 | | V <sub>REF</sub> , Bank 0 | XCV50 | A8, B4 | N/A | N/A | N/A | | (VREF pins are listed incrementally. Connect all | XCV100/150 | + A4 | A16,C19,<br>C21 | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + A2 | + D21 | B19, D22, D24,<br>D26 | N/A | | same package.) | XCV400 | N/A | N/A | + C18 | A19, D20, | | Within each bank, if input | | | | | D26, E23, E27 | | reference voltage is not required, all V <sub>REF</sub> pins are | XCV600 | N/A | N/A | + C24 | + E24 | | general I/O. | XCV800 | N/A | N/A | + B21 | + E21 | | | XCV1000 | N/A | N/A | N/A | + D29 | | V <sub>REF</sub> Bank 1 (VREF pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not | XCV50 | A17, B12 | N/A | N/A | N/A | | | XCV100/150 | + B15 | B6, C9,<br>C12 | N/A | N/A | | | XCV200/300 | + B17 | + D6 | A13, B7,<br>C6, C10 | N/A | | | XCV400 | N/A | N/A | + B15 | A6, D7,<br>D11, D16, E15 | | required, all V <sub>REF</sub> pins are | XCV600 | N/A | N/A | + D10 | + D10 | | general I/O. | XCV800 | N/A | N/A | + B12 | + D13 | | | XCV1000 | N/A | N/A | N/A | + E7 | | V <sub>REF</sub> , Bank 2 | XCV50 | C20, J18 | N/A | N/A | N/A | | (V <sub>REF</sub> pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V <sub>REF</sub> pins are | XCV100/150 | + F19 | E2, H2,<br>M4 | N/A | N/A | | | XCV200/300 | + G18 | + D2 | E2, G3,<br>J2, N1 | N/A | | | XCV400 | N/A | N/A | + R3 | G5, H4, | | | | | | | L5, P4, R1 | | | XCV600 | N/A | N/A | + H1 | + K5 | | general I/O. | XCV800 | N/A | N/A | + M3 | + N5 | | | XCV1000 | N/A | N/A | N/A | + B3 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|---------------------|---------------------------|------------------------------------| | V <sub>REF</sub> , Bank 3 | XCV50 | M18, V20 | N/A | N/A | N/A | | (V <sub>REF</sub> pins are listed | XCV100/150 | + R19 | R4, V4, Y3 | N/A | N/A | | incrementally. Connect all pins listed for both the required device and all | XCV200/300 | + P18 | + AC2 | V2, AB4, AD4,<br>AF3 | N/A | | smaller devices listed in the | XCV400 | N/A | N/A | + U2 | V4, W5, | | same package.) | | | | | AD3, AE5, AK2 | | Within each bank, if input reference voltage is not | XCV600 | N/A | N/A | + AC3 | + AF1 | | required, all V <sub>REF</sub> pins are | XCV800 | N/A | N/A | + Y3 | + AA4 | | general I/O. | XCV1000 | N/A | N/A | N/A | + AH4 | | V <sub>REF</sub> , Bank 4 | XCV50 | V12, Y18 | N/A | N/A | N/A | | (V <sub>REF</sub> pins are listed incrementally. Connect all | XCV100/150 | + W15 | AC12, AE5,<br>AE8, | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + V14 | + AE4 | AJ7, AL4, AL8,<br>AL13 | N/A | | same package.) Within each bank, if input reference voltage is not | XCV400 | N/A | N/A | + AK15 | AL7, AL10,<br>AL16, AM4,<br>AM14 | | required, all V <sub>REF</sub> pins are | XCV600 | N/A | N/A | + AK8 | + AL9 | | general I/O. | XCV800 | N/A | N/A | + AJ12 | + AK13 | | | XCV1000 | N/A | N/A | N/A | + AN3 | | V <sub>REF</sub> , Bank 5 | XCV50 | V9, Y3 | N/A | N/A | N/A | | (V <sub>REF</sub> pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not | XCV100/150 | + W6 | AC15, AC18,<br>AD20 | N/A | N/A | | | XCV200/300 | + V7 | + AE23 | AJ18, AJ25,<br>AK23, AK27 | N/A | | | XCV400 | N/A | N/A | + AJ17 | AJ18, AJ25,<br>AL20, AL24,<br>AL29 | | required, all V <sub>REF</sub> pins are general I/O. | XCV600 | N/A | N/A | + AL24 | + AM26 | | | XCV800 | N/A | N/A | + AH19 | + AN23 | | | XCV1000 | N/A | N/A | N/A | + AK28 | | V <sub>REF</sub> , Bank 6 | XCV50 | M2, R3 | N/A | N/A | N/A | | (V <sub>REF</sub> pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input | XCV100/150 | + T1 | R24, Y26,<br>AA25, | N/A | N/A | | | XCV200/300 | + T3 | + AD26 | V28, AB28,<br>AE30, AF28 | N/A | | | XCV400 | N/A | N/A | + U28 | V29, Y32, AD31,<br>AE29, AK32 | | reference voltage is not | XCV600 | N/A | N/A | + AC28 | + AE31 | | required, all V <sub>REF</sub> pins are general I/O. | XCV800 | N/A | N/A | + Y30 | + AA30 | | general I/O. | XCV1000 | N/A | N/A | N/A | + AH30 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | No Connect (No-connect pins are listed incrementally. All pins listed for both the required device and all larger devices listed in the same package are no connects.) | XCV800 | N/A | N/A | A2, A3, A15, A25,<br>B1, B6, B11, B16,<br>B21, B24, B26,<br>C1, C2, C25, C26,<br>F2, F6, F21, F25,<br>L2, L25, N25, P2,<br>T2, T25, AA2,<br>AA6, AA21, AA25,<br>AD1, AD2, AD25,<br>AE1, AE3, AE6,<br>AE11, AE14,<br>AE16, AE21,<br>AE24, AE26, AF2,<br>AF24, AF25 | N/A | | | XCV600 | N/A | N/A | same as above | N/A | | | XCV400 | N/A | N/A | + A9, A10, A13,<br>A16, A24, AC1,<br>AC25, AE12,<br>AE15, AF3, AF10,<br>AF11, AF13,<br>AF14, AF16,<br>AF18, AF23, B4,<br>B12, B13, B15,<br>B17, D1, D25,<br>H26, J1, K26, L1,<br>M1, M25, N1, N26,<br>P1, P26, R2, R26,<br>T1, T26, U26, V1 | N/A | | | XCV300 | N/A | D4, D19, W4,<br>W19 | N/A | N/A | | | XCV200 | N/A | + A2, A6, A12,<br>B11, B16, C2,<br>D1, D18, E17,<br>E19, G2, G22,<br>L2, L19, M2,<br>M21, R3, R20,<br>U3, U18, Y22,<br>AA1, AA3, AA11,<br>AA16, AB7,<br>AB12, AB21, | N/A | N/A | | | XCV150 | N/A | + A13, A14,<br>C8, C9, E13,<br>F11, H21, J1, J4,<br>K2, K18, K19,<br>M17, N1, P1, P5,<br>P22, R22, W13,<br>W15, AA9,<br>AA10, AB8,<br>AB14 | N/A | N/A | ## **Pinout Diagrams** The following diagrams, CS144 Pin Function Diagram, page 17 through FG680 Pin Function Diagram, page 27, illustrate the locations of special-purpose pins on Virtex FPGAs. Table 5 lists the symbols used in these diagrams. The diagrams also show I/O-bank boundaries. Table 5: Pinout Diagram Symbols | Symbol | Pin Function | | | |------------|------------------------------------------------------------------|--|--| | * | General I/O | | | | * | Device-dependent general I/O, n/c on smaller devices | | | | V | V <sub>CCINT</sub> | | | | V | Device-dependent V <sub>CCINT</sub> , n/c on smaller devices | | | | 0 | V <sub>CCO</sub> | | | | R | V <sub>REF</sub> | | | | r | Device-dependent V <sub>REF</sub> remains I/O on smaller devices | | | | G | Ground | | | | Ø, 1, 2, 3 | Global Clocks | | | Table 5: Pinout Diagram Symbols (Continued) | Symbol | Pin Function | | | |----------------------------------------------|------------------------------------|--|--| | <b>0</b> , <b>0</b> , <b>2</b> | M0, M1, M2 | | | | (0), (1), (2),<br>(3), (4), (5), (6),<br>(7) | D0/DIN, D1, D2, D3, D4, D5, D6, D7 | | | | В | DOUT/BUSY | | | | D | DONE | | | | Р | PROGRAM | | | | I | INIT | | | | K | CCLK | | | | W | WRITE | | | | S | <u>CS</u> | | | | Т | Boundary-scan Test Access Port | | | | + | Temperature diode, anode | | | | _ | Temperature diode, cathode | | | | n | No connect | | | ## **CS144 Pin Function Diagram** Figure 1: CS144 Pin Function Diagram ### **BG256 Pin Function Diagram** Figure 4: BG256 Pin Function Diagram ### **FG256 Pin Function Diagram** Figure 8: FG256 Pin Function Diagram