E·XFL

AMD Xilinx - XCV150-6FG256C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	864
Number of Logic Elements/Cells	3888
Total RAM Bits	49152
Number of I/O	176
Number of Gates	164674
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcv150-6fg256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2: Virtex Input/Output Block (IOB)

				1
I/O Standard	Input Reference Voltage (V _{REF})	Output Source Voltage (V _{CCO})	Board Termination Voltage (V _{TT})	5 V Tolerant
LVTTL 2 – 24 mA	N/A	3.3	N/A	Yes
LVCMOS2	N/A	2.5	N/A	Yes
PCI, 5 V	N/A	3.3	N/A	Yes
PCI, 3.3 V	N/A	3.3	N/A	No
GTL	0.8	N/A	1.2	No
GTL+	1.0	N/A	1.5	No
HSTL Class I	0.75	1.5	0.75	No
HSTL Class III	0.9	1.5	1.5	No
HSTL Class IV	0.9	1.5	1.5	No
SSTL3 Class I &II	1.5	3.3	1.5	No
SSTL2 Class I & II	1.25	2.5	1.25	No
CTT	1.5	3.3	1.5	No
AGP	1.32	3.3	N/A	No

Table 1: Supported Select I/O Standards

more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O.

In smaller devices, some $V_{\rm CCO}$ pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the $V_{\rm CCO}$ voltage to permit migration to a larger device if necessary.

In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO}. In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously.

Configurable Logic Block

The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4.

Figure 5 shows a more detailed view of a single slice.

In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions

of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs.

Look-Up Tables

Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM.

The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing.

Storage Elements

The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators.

In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice.

Figure 4: 2-Slice Virtex CLB

Figure 5: Detailed View of Virtex Slice

Additional Logic

The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs.

Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs.

Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources.

Arithmetic Logic

Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB.

The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation.

The dedicated carry path can also be used to cascade function generators for implementing wide logic functions.

BUFTs

Each Virtex CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See **Dedicated Routing**, page 7. Each Virtex BUFT has an independent 3-state control pin and an independent input pin.

Block SelectRAM

Virtex FPGAs incorporate several large block SelectRAM memories. These complement the distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs.

Block SelectRAM memory blocks are organized in columns. All Virtex devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, and a total of 32 blocks.

Table 3 shows the amount of block SelectRAM memory that is available in each Virtex device.

Table 3: Virtex Block SelectRAM Amounts

Device	# of Blocks	Total Block SelectRAM Bits
XCV50	8	32,768
XCV100	10	40,960
XCV150	12	49,152
XCV200	14	57,344
XCV300	16	65,536
XCV400	20	81,920
XCV600	24	98,304
XCV800	28	114,688
XCV1000	32	131,072

General Purpose Routing

Most Virtex signals are routed on the general purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing hierarchy. The general routing resources are located in horizontal and vertical routing channels associated with the rows and columns CLBs. The general-purpose routing resources are listed below.

- Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix through which horizontal and vertical routing resources connect, and is also the means by which the CLB gains access to the general purpose routing.
- 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions.
- 12 buffered Hex lines route GRM signals to another GRMs six-blocks away in each one of the four directions. Organized in a staggered pattern, Hex lines can be driven only at their endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). One third of the Hex lines are bidirectional, while the remaining ones are uni-directional.

 12 Longlines are buffered, bidirectional wires that distribute signals across the device quickly and efficiently. Vertical Longlines span the full height of the device, and horizontal ones span the full width of the device.

I/O Routing

Virtex devices have additional routing resources around their periphery that form an interface between the CLB array and the IOBs. This additional routing, called the VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other system components can be manufactured while the logic design is still in progress.

Dedicated Routing

Some classes of signal require dedicated routing resources to maximize performance. In the Virtex architecture, dedicated routing resources are provided for two classes of signal.

- Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable bus lines are provided per CLB row, permitting multiple busses within a row, as shown in Figure 8.
- Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB.

Figure 8: BUFT Connections to Dedicated Horizontal Bus Lines

Global Routing

Global Routing resources distribute clocks and other signals with very high fanout throughout the device. Virtex devices include two tiers of global routing resources referred to as primary global and secondary local clock routing resources.

- The primary global routing resources are four dedicated global nets with dedicated input pins that are designed to distribute high-fanout clock signals with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock pins. The primary global nets can only be driven by global buffers. There are four global buffers, one for each global net.
- The secondary local clock routing resources consist of 24 backbone lines, 12 across the top of the chip and 12 across bottom. From these lines, up to 12 unique signals per column can be distributed via the 12 longlines in the column. These secondary resources are more flexible than the primary resources since they are not restricted to routing only to clock pins.

Clock Distribution

Virtex provides high-speed, low-skew clock distribution through the primary global routing resources described above. A typical clock distribution net is shown in Figure 9.

Four global buffers are provided, two at the top center of the device and two at the bottom center. These drive the four primary global nets that in turn drive any clock pin.

In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data.

Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

Instruction Set

The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5.

Data Registers

The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins.

The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device. The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO.

Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE).

Bit Sequence

The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits.

From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11.

BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area.

Figure 10: Virtex Series Boundary Scan Logic

www.xilinx.com 1-800-255-7778

- At the rising edge of CCLK: If BUSY is Low, the data is accepted on this clock. If BUSY is High (from a previous write), the data is not accepted. Acceptance will instead occur on the first clock after BUSY goes Low, and the data must be held until this has happened.
- 4. Repeat steps 2 and 3 until all the data has been sent.
- 5. De-assert $\overline{\text{CS}}$ and $\overline{\text{WRITE}}$.

A flowchart for the write operation appears in Figure 17. Note that if CCLK is slower than f_{CCNH} , the FPGA never asserts BUSY. In this case, the above handshake is unnecessary, and data can simply be entered into the FPGA every CCLK cycle.

Figure 16: Write Operations

XILINX[®]

Data Stream Format

Virtex devices are configured by sequentially loading frames of data. Table 11 lists the total number of bits required to configure each device. For more detailed information, see application note XAPP151 "Virtex Configuration Architecture Advanced Users Guide".

Table 1	11:	Virtex	Bit-Stream	Lengths
---------	-----	--------	-------------------	---------

Device	# of Configuration Bits
XCV50	559,200
XCV100	781,216
XCV150	1,040,096
XCV200	1,335,840
XCV300	1,751,808
XCV400	2,546,048
XCV600	3,607,968
XCV800	4,715,616
XCV1000	6,127,744

Readback

The configuration data stored in the Virtex configuration memory can be readback for verification. Along with the configuration data it is possible to readback the contents all flip-flops/latches, LUTRAMs, and block RAMs. This capability is used for real-time debugging.

For more detailed information, see Application Note XAPP138: *Virtex FPGA Series Configuration and Readback*, available online at <u>www.xilinx.com</u>.

Revision History

Date	Version	Revision
11/98	1.0	Initial Xilinx release.
01/99	1.2	Updated package drawings and specs.
02/99	1.3	Update of package drawings, updated specifications.
05/99	1.4	Addition of package drawings and specifications.
05/99	1.5	Replaced FG 676 & FG680 package drawings.
07/99	1.6	Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments.
09/99	1.7	Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T_{IJITCC} parameter, changed T_{OJIT} to T_{OPHASE} .
01/00	1.8	Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V_{CCO} in CS144 package on p.43.

Virtex[™] 2.5 V Field Programmable Gate Arrays

Power-On Power Supply Requirements

Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device⁽¹⁾ from 0 V. The current is highest at the fastest suggested ramp rate (0 V to nominal voltage in 2 ms) and is lowest at the slowest allowed ramp rate (0 V to nominal voltage in 50 ms). For more details on power supply requirements, see Application Note XAPP158 on <u>www.xilinx.com</u>.

Product	Description ⁽²⁾	Current Requirement ^(1,3)		
Virtex Family, Commercial Grade	Minimum required current supply	500 mA		
Virtex Family, Industrial Grade	Minimum required current supply	2 A		

Notes:

1. Ramp rate used for this specification is from 0 - 2.7 VDC. Peak current occurs on or near the internal power-on reset threshold of 1.0V and lasts for less than 3 ms.

- 2. Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above.
- 3. Larger currents can result if ramp rates are forced to be faster.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed output currents over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum V_{CCO} for each standard with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

Input/Output		V _{IL}	V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{ОН}
Standard	V, min	V, max	V, min	V, max	V, Max	V, Min	mA	mA
LVTTL ⁽¹⁾	- 0.5	0.8	2.0	5.5	0.4	2.4	24	-24
LVCMOS2	- 0.5	.7	1.7	5.5	0.4	1.9	12	-12
PCI, 3.3 V	- 0.5	44% V _{CCINT}	60% V _{CCINT}	V _{CCO} + 0.5	10% V _{CCO}	90% V _{CCO}	Note 2	Note 2
PCI, 5.0 V	- 0.5	0.8	2.0	5.5	0.55	2.4	Note 2	Note 2
GTL	- 0.5	V _{REF} – 0.05	V _{REF} + 0.05	3.6	0.4	n/a	40	n/a
GTL+	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.6	n/a	36	n/a
HSTL I ⁽³⁾	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	$V_{CCO} - 0.4$	8	-8
HSTL III	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	$V_{CCO} - 0.4$	24	-8
HSTL IV	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	$V_{CCO} - 0.4$	48	-8
SSTL3 I	- 0.5	V _{REF} – 0.2	V _{REF} + 0.2	3.6	V _{REF} – 0.6	V _{REF} + 0.6	8	-8
SSTL3 II	- 0.5	V _{REF} – 0.2	V _{REF} + 0.2	3.6	V _{REF} – 0.8	V _{REF} + 0.8	16	-16
SSTL2 I	- 0.5	V _{REF} – 0.2	V _{REF} + 0.2	3.6	V _{REF} – 0.61	V _{REF} + 0.61	7.6	-7.6
SSTL2 II	- 0.5	V _{REF} – 0.2	V _{REF} + 0.2	3.6	V _{REF} – 0.80	V _{REF} + 0.80	15.2	-15.2
СТТ	- 0.5	V _{REF} – 0.2	V _{REF} + 0.2	3.6	V _{REF} – 0.4	V _{REF} + 0.4	8	-8
AGP	- 0.5	$V_{REF} - 0.2$	V _{REF} + 0.2	3.6	10% V _{CCO}	90% V _{CCO}	Note 2	Note 2

Notes:

1. V_{OL} and V_{OH} for lower drive currents are sample tested.

2. Tested according to the relevant specifications.

 DC input and output levels for HSTL18 (HSTL I/O standard with V_{CCO} of 1.8 V) are provided in an HSTL white paper on <u>www.xilinx.com</u>.

IOB Input Switching Characteristics Standard Adjustments

			Speed Grade				
Description	Symbol	Standard ⁽¹⁾	Min	-6	-5	-4	Units
Data Input Delay Adjustments							
Standard-specific data input delay	T _{ILVTTL}	LVTTL	0	0	0	0	ns
adjustments	T _{ILVCMOS2}	LVCMOS2	-0.02	-0.04	-0.04	-0.05	ns
	T _{IPCI33_3}	PCI, 33 MHz, 3.3 V	-0.05	-0.11	-0.12	-0.14	ns
	T _{IPCI33_5}	PCI, 33 MHz, 5.0 V	0.13	0.25	0.28	0.33	ns
	T _{IPCI66_3}	PCI, 66 MHz, 3.3 V	-0.05	-0.11	-0.12	-0.14	ns
	T _{IGTL}	GTL	0.10	0.20	0.23	0.26	ns
	T _{IGTLP}	GTL+	0.06	0.11	0.12	0.14	ns
	T _{IHSTL}	HSTL	0.02	0.03	0.03	0.04	ns
	T _{ISSTL2}	SSTL2	-0.04	-0.08	-0.09	-0.10	ns
	T _{ISSTL3}	SSTL3	-0.02	-0.04	-0.05	-0.06	ns
	T _{ICTT}	СТТ	0.01	0.02	0.02	0.02	ns
	T _{IAGP}	AGP	-0.03	-0.06	-0.07	-0.08	ns

Notes:

1. Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3.

IOB Output Switching Characteristics

Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays with the values shown in **IOB Output Switching Characteristics Standard Adjustments**, page 9.

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Propagation Delays						
O input to Pad	T _{IOOP}	1.2	2.9	3.2	3.5	ns, max
O input to Pad via transparent latch	T _{IOOLP}	1.4	3.4	3.7	4.0	ns, max
3-State Delays						
T input to Pad high-impedance ⁽¹⁾	T _{IOTHZ}	1.0	2.0	2.2	2.4	ns, max
T input to valid data on Pad	T _{IOTON}	1.4	3.1	3.3	3.7	ns, max
T input to Pad high-impedance via transparent latch ⁽¹⁾	T _{IOTLPHZ}	1.2	2.4	2.6	3.0	ns, max
T input to valid data on Pad via transparent latch	T _{IOTLPON}	1.6	3.5	3.8	4.2	ns, max
GTS to Pad high impedance ⁽¹⁾	T _{GTS}	2.5	4.9	5.5	6.3	ns, max
Sequential Delays						
Clock CLK						
Minimum Pulse Width, High	Т _{СН}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low	T _{CL}	0.8	1.5	1.7	2.0	ns, min

IOB Output Switching Characteristics Standard Adjustments

Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown.

			Speed Grade		Unit		
Description	Symbol	Standard ⁽¹⁾	Min	-6	-5	-4	S
Output Delay Adjustments							
Standard-specific adjustments for	T _{OLVTTL_S2}	LVTTL, Slow, 2 mA	4.2	14.7	15.8	17.0	ns
output delays terminating at pads (based on standard capacitive load	T _{OLVTTL_S4}	4 mA	2.5	7.5	8.0	8.6	ns
Csl)	T _{OLVTTL_S6}	6 mA	1.8	4.8	5.1	5.6	ns
	T _{OLVTTL_S8}	8 mA	1.2	3.0	3.3	3.5	ns
	T _{OLVTTL_S12}	12 mA	1.0	1.9	2.1	2.2	ns
	T _{OLVTTL_S16}	16 mA	0.9	1.7	1.9	2.0	ns
	T _{OLVTTL_S24}	24 mA	0.8	1.3	1.4	1.6	ns
	T _{OLVTTL_F2}	LVTTL, Fast, 2mA	1.9	13.1	14.0	15.1	ns
	T _{OLVTTL_F4}	4 mA	0.7	5.3	5.7	6.1	ns
	T _{OLVTTL_F6}	6 mA	0.2	3.1	3.3	3.6	ns
	T _{OLVTTL_F8}	8 mA	0.1	1.0	1.1	1.2	ns
	T _{OLVTTL_F12}	12 mA	0	0	0	0	ns
	T _{OLVTTL_F16}	16 mA	-0.10	-0.05	-0.05	-0.05	ns
	T _{OLVTTL_F24}	24 mA	-0.10	-0.20	-0.21	-0.23	ns
	T _{OLVCMOS2}	LVCMOS2	0.10	0.10	0.11	0.12	ns
	T _{OPCI33_3}	PCI, 33 MHz, 3.3 V	0.50	2.3	2.5	2.7	ns
	T _{OPCI33_5}	PCI, 33 MHz, 5.0 V	0.40	2.8	3.0	3.3	ns
	T _{OPCI66_3}	PCI, 66 MHz, 3.3 V	0.10	-0.40	-0.42	-0.46	ns
	T _{OGTL}	GTL	0.6	0.50	0.54	0.6	ns
	T _{OGTLP}	GTL+	0.7	0.8	0.9	1.0	ns
	T _{OHSTL_I}	HSTL I	0.10	-0.50	-0.53	-0.5	ns
	T _{OHSTL_III}	HSTL III	-0.10	-0.9	-0.9	-1.0	ns
	T _{OHSTL_IV}	HSTL IV	-0.20	-1.0	-1.0	-1.1	ns
	T _{OSSTL2_I}	SSTL2 I	-0.10	-0.50	-0.53	-0.5	ns
	T _{OSSLT2_II}	SSTL2 II	-0.20	-0.9	-0.9	-1.0	ns
	T _{OSSTL3_I}	SSTL3 I	-0.20	-0.50	-0.53	-0.5	ns
	T _{OSSTL3_II}	SSTL3 II	-0.30	-1.0	-1.0	-1.1	ns
	T _{OCTT}	СТТ	0	-0.6	-0.6	-0.6	ns
	T _{OAGP}	AGP	0	-0.9	-0.9	-1.0	ns

Notes:

1. Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see Table 2 and Table 3.

Clock Distribution Guidelines

			Speed Grade		de	
Description	Device	Symbol	-6	-5	-4	Units
Global Clock Skew ⁽¹⁾			·	<u>.</u>	·	
Global Clock Skew between IOB Flip-flops	XCV50	T _{GSKEWIOB}	0.10	0.12	0.14	ns, max
	XCV100		0.12	0.13	0.15	ns, max
	XCV150		0.12	0.13	0.15	ns, max
	XCV200		0.13	0.14	0.16	ns, max
	XCV300		0.14	0.16	0.18	ns, max
	XCV400		0.13	0.13	0.14	ns, max
	XCV600		0.14	0.15	0.17	ns, max
	XCV800		0.16	0.17	0.20	ns, max
	XCV1000		0.20	0.23	0.25	ns, max

Notes:

1. These clock-skew delays are provided for guidance only. They reflect the delays encountered in a typical design under worst-case conditions. Precise values for a particular design are provided by the timing analyzer.

Clock Distribution Switching Characteristics

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
GCLK IOB and Buffer						
Global Clock PAD to output.	T _{GPIO}	0.33	0.7	0.8	0.9	ns, max
Global Clock Buffer I input to O output	T _{GIO}	0.34	0.7	0.8	0.9	ns, max

CLB Switching Characteristics

Delays originating at F/G inputs vary slightly according to the input used. The values listed below are worst-case. Precise values are provided by the timing analyzer.

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Combinatorial Delays						
4-input function: F/G inputs to X/Y outputs	T _{ILO}	0.29	0.6	0.7	0.8	ns, max
5-input function: F/G inputs to F5 output	T _{IF5}	0.32	0.7	0.8	0.9	ns, max
5-input function: F/G inputs to X output	T _{IF5X}	0.36	0.8	0.8	1.0	ns, max
6-input function: F/G inputs to Y output via F6 MUX	T _{IF6Y}	0.44	0.9	1.0	1.2	ns, max
6-input function: F5IN input to Y output	T _{F5INY}	0.17	0.32	0.36	0.42	ns, max
Incremental delay routing through transparent latch to XQ/YQ outputs	T _{IFNCTL}	0.31	0.7	0.7	0.8	ns, max
BY input to YB output	T _{BYYB}	0.27	0.53	0.6	0.7	ns, max
Sequential Delays						
FF Clock CLK to XQ/YQ outputs	т _{ско}	0.54	1.1	1.2	1.4	ns, max
Latch Clock CLK to XQ/YQ outputs	Т _{СКLО}	0.6	1.2	1.4	1.6	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾		Setup T	ime / Hol	d Time		
4-input function: F/G Inputs	Т _{ІСК} /Т _{СКІ}	0.6 / 0	1.2/0	1.4/0	1.5 / 0	ns, min
5-input function: F/G inputs	T _{IF5CK} /T _{CKIF5}	0.7 / 0	1.3/0	1.5 / 0	1.7 / 0	ns, min
6-input function: F5IN input	T _{F5INCK} /T _{CKF5IN} 0.46		1.0/0	1.1/0	1.2 / 0	ns, min
6-input function: F/G inputs via F6 MUX	T _{IF6CK} /T _{CKIF6}	0.8/0	1.5 / 0	1.7/0	1.9 / 0	ns, min
BX/BY inputs	T _{DICK} /T _{CKDI}	0.30 / 0	0.6 / 0	0.7 / 0	0.8 / 0	ns, min
CE input	T _{CECK} /T _{CKCE}	0.37 / 0	0.8/0	0.9/0	1.0 / 0	ns, min
SR/BY inputs (synchronous)	T _{RCK} T _{CKR}	0.33 / 0	0.7 / 0	0.8/0	0.9 / 0	ns, min
Clock CLK						
Minimum Pulse Width, High	Т _{СН}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low	T _{CL}	0.8	1.5	1.7	2.0	ns, min
Set/Reset						
Minimum Pulse Width, SR/BY inputs	T _{RPW}	1.3	2.5	2.8	3.3	ns, min
Delay from SR/BY inputs to XQ/YQ outputs (asynchronous)	T _{RQ}	0.54	1.1	1.3	1.4	ns, max
Delay from GSR to XQ/YQ outputs	T _{IOGSRQ}	4.9	9.7	10.9	12.5	ns, max
Toggle Frequency (MHz) (for export control)	F _{TOG} (MHz)	625	333	294	250	MHz

Notes:

1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

Block RAM Switching Characteristics

	Speed Grade					
Description	Symbol	Min	-6	-5	-4	Units
Sequential Delays						
Clock CLK to DOUT output	Т _{ВСКО}	1.7	3.4	3.8	4.3	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾		Setu	p Time / H	old Time		
ADDR inputs	T _{BACK} /T _{BCKA}	0.6 / 0	1.2/0	1.3/0	1.5 / 0	ns, min
DIN inputs	T _{BDCK} /T _{BCKD}	0.6 / 0	1.2/0	1.3/0	1.5 / 0	ns, min
EN input	T _{BECK} /T _{BCKE}	1.3/0	2.6 / 0	3.0 / 0	3.4 / 0	ns, min
RST input	T _{BRCK} /T _{BCKR}	1.3 / 0	2.5 / 0	2.7 / 0	3.2 / 0	ns, min
WEN input	T _{BWCK} /T _{BCKW}	1.2 / 0	2.3/0	2.6 / 0	3.0 / 0	ns, min
Clock CLK						
Minimum Pulse Width, High	T _{BPWH}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low	T _{BPWL}	0.8	1.5	1.7	2.0	ns, min
CLKA -> CLKB setup time for different ports	T _{BCCS}		3.0	3.5	4.0	ns, min

Notes:

1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

TBUF Switching Characteristics

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Combinatorial Delays						
IN input to OUT output	Τ _{ΙΟ}	0	0	0	0	ns, max
TRI input to OUT output high-impedance	T _{OFF}	0.05	0.09	0.10	0.11	ns, max
TRI input to valid data on OUT output	T _{ON}	0.05	0.09	0.10	0.11	ns, max

JTAG Test Access Port Switching Characteristics

		Speed Grade			
Description	Symbol	-6	-5	-4	Units
TMS and TDI Setup times before TCK	T _{TAPTCK}	4.0	4.0	4.0	ns, min
TMS and TDI Hold times after TCK	T _{TCKTAP}	2.0	2.0	2.0	ns, min
Output delay from clock TCK to output TDO	Т _{ТСКТДО}	11.0	11.0	11.0	ns, max
Maximum TCK clock frequency	F _{TCK}	33	33	33	MHz, max

Virtex[™] 2.5 V Field Programmable Gate Arrays

DS003-4 (v4.0) March 1, 2013

Production Product Specification

Virtex Pin Definitions

Table 1: Special Purpose Pins

Pin Name	Dedicated Pin	Direction	Description
GCK0, GCK1, GCK2, GCK3	Yes	Input	Clock input pins that connect to Global Clock Buffers. These pins become user inputs when not needed for clocks.
M0, M1, M2	Yes	Input	Mode pins are used to specify the configuration mode.
CCLK	Yes	Input or Output	The configuration Clock I/O pin: it is an input for SelectMAP and slave-serial modes, and output in master-serial mode. After configuration, it is input only, logic level = Don't Care.
PROGRAM	Yes	Input	Initiates a configuration sequence when asserted Low.
DONE	Yes	Bidirectional	Indicates that configuration loading is complete, and that the start-up sequence is in progress. The output can be open drain.
INIT	No	Bidirectional (Open-drain)	When Low, indicates that the configuration memory is being cleared. The pin becomes a user I/O after configuration.
BUSY/ DOUT	No	Output	In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration unless the SelectMAP port is retained.
			In bit-serial modes, DOUT provides header information to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration.
D0/DIN, D1, D2, D3, D4,	No	Input or Output	In SelectMAP mode, D0 - D7 are configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained.
D5, D6, D7			In bit-serial modes, DIN is the single data input. This pin becomes a user I/O after configuration.
WRITE	No	Input	In SelectMAP mode, the active-low Write Enable signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained.
CS	No	Input	In SelectMAP mode, the active-low Chip Select signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained.
TDI, TDO, TMS, TCK	Yes	Mixed	Boundary-scan Test-Access-Port pins, as defined in IEEE 1149.1.
DXN, DXP	Yes	N/A	Temperature-sensing diode pins. (Anode: DXP, cathode: DXN)
V _{CCINT}	Yes	Input	Power-supply pins for the internal core logic.
V _{CCO}	Yes	Input	Power-supply pins for the output drivers (subject to banking rules)
V _{REF}	No	Input	Input threshold voltage pins. Become user I/Os when an external threshold voltage is not needed (subject to banking rules).
GND	Yes	Input	Ground

© 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

www.xilinx.com 1-800-255-7778

Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued)

Pin Name	Device	CS144	TQ144	PQ/HQ240
V _{CCO}	All	Banks 0 and 1: A2, A13, D7 Banks 2 and 3: B12, G11, M13 Banks 4 and 5:	No I/O Banks in this package: 1, 17, 37, 55, 73, 92, 109, 128	No I/O Banks in this package: 15, 30, 44, 61, 76, 90, 105, 121, 136, 150, 165, 180, 197, 212, 226, 240
		N1, N7, N13 Banks 6 and 7: B2, G2, M2		
V _{REF} , Bank 0	XCV50	C4, D6	5, 13	218, 232
(V _{REF} pins are listed	XCV100/150	+ B4	+ 7	+ 229
all pins listed for both	XCV200/300	N/A	N/A	+ 236
the required device	XCV400	N/A	N/A	+ 215
listed in the same	XCV600	N/A	N/A	+ 230
package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV800	N/A	N/A	+ 222
V _{REF} , Bank 1	XCV50	A10, B8	22, 30	191, 205
(V _{REF} pins are listed	XCV100/150	+ D9	+ 28	+ 194
all pins listed for both	XCV200/300	N/A	N/A	+ 187
the required device	XCV400	N/A	N/A	+ 208
listed in the same	XCV600	N/A	N/A	+ 193
package.) Within each bank, if input reference voltage is not required, all V_{REF} pins are general I/O.	XCV800	N/A	N/A	+ 201
V _{REF} , Bank 2	XCV50	D11, F10	42, 50	157, 171
(V _{REF} pins are listed	XCV100/150	+ D13	+ 44	+ 168
all pins listed for both	XCV200/300	N/A	N/A	+ 175
the required device	XCV400	N/A	N/A	+ 154
listed in the same	XCV600	N/A	N/A	+ 169
package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV800	N/A	N/A	+ 161

Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued)

Pin Name	Device	CS144	TQ144	PQ/HQ240
V _{REF} , Bank 3	XCV50	H11, K12	60, 68	130, 144
(V _{REF} pins are listed	XCV100/150	+ J10	+ 66	+ 133
all pins listed for both	XCV200/300	N/A	N/A	+ 126
the required device	XCV400	N/A	N/A	+ 147
listed in the same	XCV600	N/A	N/A	+ 132
package.)	XCV800	N/A	N/A	+ 140
Within each bank, if input reference voltage is not required, all V_{REF} pins are general I/O.				
V _{REF} , Bank 4	XCV50	L8, L10	79, 87	97, 111
(V _{REF} pins are listed	XCV100/150	+ N10	+ 81	+ 108
all pins listed for both	XCV200/300	N/A	N/A	+ 115
the required device	XCV400	N/A	N/A	+ 94
listed in the same	XCV600	N/A	N/A	+ 109
package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general	XCV800	N/A	N/A	+ 101
V _{REF} , Bank 5	XCV50	L4, L6	96, 104	70, 84
$(V_{REF}$ pins are listed	XCV100/150	+ N4	+ 102	+ 73
incrementally. Connect	XCV200/300	N/A	N/A	+ 66
the required device	XCV400	N/A	N/A	+ 87
and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV600	N/A	N/A	+ 72
	XCV800	N/A	N/A	+ 80

Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued)

Pin Name	Device	CS144	TQ144	PQ/HQ240
V _{REF} , Bank 6	XCV50	H2, K1	116, 123	36, 50
(V _{REF} pins are listed	XCV100/150	+ J3	+ 118	+ 47
all pins listed for both	XCV200/300	N/A	N/A	+ 54
the required device	XCV400	N/A	N/A	+ 33
listed in the same	XCV600	N/A	N/A	+ 48
package.)	XCV800	N/A	N/A	+ 40
Within each bank, if input reference voltage is not required, all V_{REF} pins are general I/O.				
V _{REF} , Bank 7	XCV50	D4, E1	133, 140	9, 23
(V _{REF} pins are listed	XCV100/150	+ D2	+ 138	+ 12
all pins listed for both	XCV200/300	N/A	N/A	+ 5
the required device	XCV400	N/A	N/A	+ 26
listed in the same	XCV600	N/A	N/A	+ 11
package.)	XCV800	N/A	N/A	+ 19
Within each bank, if input reference voltage is not required, all V_{REF} pins are general I/O.				
GND	All	A1, B9, B11, C7, D5, E4, E11, F1, G10, J1, J12, L3, L5, L7, L9, N12	9, 18, 26, 35, 46, 54, 64, 75, 83, 91, 100, 111, 120, 129, 136, 144,	1, 8, 14, 22, 29, 37, 45, 51, 59, 69, 75, 83, 91, 98, 106, 112, 119, 129, 135, 143, 151, 158, 166, 172, 182, 190, 196, 204, 211, 219, 227, 233

Table 3: Virtex Pinout Tables (BGA) (Continued)

Pin Name	Device	BG256	BG352	BG432	BG560
V _{CCINT} Notes: • Superset includes all pins, including the ones in bold type. Subset excludes pins in bold type.	XCV50/100	C10, D6, D15, F4, F17, L3, L18, R4, R17, U6, U15, V10	N/A	N/A	N/A
 In BG352, for XCV300 all the V_{CCINT} pins in the superset must be connected. For XCV150/200, V_{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG432, for XCV400/600/800 all V_{CCINT} pins in the superset must be connected for YCV200 	XCV150/200/300	Same as above	A20, C14, D10, J24, K4, P2, P25, V24, W2, AC10, AE14, AE19, B16, D12, L1, L25, R23, T1, AF11, AF16	A10, A17, B23, C14, C19, K3, K29, N2, N29, T1, T29, W2, W31, AB2, AB30, AJ10, AJ16, AK13, AK19, AK22, B26, C7, F1, F30, AE29, AF1, AH8, AH24	N/A
 connected. For XCV300, V_{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG560, for XCV800/1000 all V_{CCINT} pins in the superset must be connected. For XCV400/600, V_{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) 	XCV400/600/800/1000	N/A	N/A	Same as above	A21, B14, B18, B28, C24, E9, E12, F2, H30, J1, K32, N1, N33, U5, U30, Y2, Y31, AD2, AD32, AG3, AG31, AK8, AK11, AK17, AK20, AL14, AL27, AN25, B12, C22, M3, N29, AB2, AB32, AJ13, AL 22
V _{CCO} , Bank 0	All	D7, D8	A17, B25, D19	A21, C29, D21	A22, A26, A30, B19, B32
V _{CCO} , Bank 1	All	D13, D14	A10, D7, D13	A1, A11, D11	A10, A16, B13, C3, E5
V _{CCO} , Bank 2	All	G17, H17	B2, H4, K1	C3, L1, L4	B2, D1, H1, M1, R2
V _{CCO} , Bank 3	All	N17, P17	P4, U1, Y4	AA1, AA4, AJ3	V1, AA2, AD1, AK1, AL2
V _{CCO} , Bank 4	All	U13, U14	AC8, AE2, AF10	AH11, AL1, AL11	AM2, AM15, AN4, AN8, AN12
V _{CCO} , Bank 5	All	U7, U8	AC14, AC20, AF17	AH21, AJ29, AL21	AL31, AM21, AN18, AN24, AN30
V _{CCO} , Bank 6	All	N4, P4	U26, W23, AE25	AA28, AA31, AL31	W32, AB33, AF33, AK33, AM32

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{REF} , Bank 4	XCV50	P9, T12	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect	XCV100/150	+ T11	AA13, AB16, AB19	N/A	N/A
the required device and	XCV200/300	+ R13	+ AB20	N/A	N/A
all smaller devices listed in the same package.)	XCV400	N/A	N/A	AC15, AD18, AD21, AD22, AF15	N/A
Within each bank, if input reference voltage is not required, all V _{REF} pips are general I/O	XCV600	N/A	N/A	+ AF20	AT19, AU7, AU17, AV8, AV10, AW11
pins are general i/O.	XCV800	N/A	N/A	+ AF17	+ AV14
-	XCV1000	N/A	N/A	N/A	+ AU6
V _{REF} , Bank 5	XCV50	T4, P8	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ R5	W8, Y10, AA5	N/A	N/A
all pins listed for both	XCV200/300	+ T2	+ Y6	N/A	N/A
the required device and all smaller devices listed in the same package.) Within each bank, if	XCV400	N/A	N/A	AA10, AB8, AB12, AC7, AF12	N/A
	XCV600	N/A	N/A	+ AF8	AT27, AU29, AU31, AV35, AW21, AW23
is not required, all V _{REF}	XCV800	N/A	N/A	+ AE10	+ AT25
pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AV36
V _{REF} , Bank 6	XCV50	J3, N1	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ M1	N2, R4, T3	N/A	N/A
all pins listed for both	XCV200/300	+ N2	+ Y1	N/A	N/A
the required device and all smaller devices	XCV400	N/A	N/A	AB3, R1, R4, U6, V5	N/A
package.) Within each bank, if	XCV600	N/A	N/A	+ Y1	AB35, AD37, AH39, AK39, AM39, AN36
is not required, all V _{REF}	XCV800	N/A	N/A	+ U2	+ AE39
pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AT39

PQ240/HQ240 Pin Function Diagram

Figure 3: PQ240/HQ240 Pin Function Diagram