Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 864 | | Number of Logic Elements/Cells | 3888 | | Total RAM Bits | 49152 | | Number of I/O | 260 | | Number of Gates | 164674 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 456-BBGA | | Supplier Device Package | 456-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv150-6fg456c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## Virtex Device/Package Combinations and Maximum I/O Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) | Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 | |---------|-------|--------|--------|--------|--------|--------|--------|--------|---------| | CS144 | 94 | 94 | | | | | | | | | TQ144 | 98 | 98 | | | | | | | | | PQ240 | 166 | 166 | 166 | 166 | 166 | | | | | | HQ240 | | | | | | 166 | 166 | 166 | | | BG256 | 180 | 180 | 180 | 180 | | | | | | | BG352 | | | 260 | 260 | 260 | | | | | | BG432 | | | | | 316 | 316 | 316 | 316 | | | BG560 | | | | | | 404 | 404 | 404 | 404 | | FG256 | 176 | 176 | 176 | 176 | | | | | | | FG456 | | | 260 | 284 | 312 | | | | | | FG676 | | | | | | 404 | 444 | 444 | | | FG680 | | | | | | | 512 | 512 | 512 | # **Virtex Ordering Information** Figure 1: Virtex Ordering Information Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is selected either from these pads or from signals in the general purpose routing. Figure 9: Global Clock Distribution Network ## Delay-Locked Loop (DLL) Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input. In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices. In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock. See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information. ## **Boundary Scan** Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the $\rm V_{CCO}$ for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and $\rm V_{CCO}$. Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off. Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins. Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed. # **Configuration** Virtex devices are configured by loading configuration data into the internal configuration memory. Some of the pins used for this are dedicated configuration pins, while others can be re-used as general purpose inputs and outputs once configuration is complete. The following are dedicated pins: - Mode pins (M2, M1, M0) - Configuration clock pin (CCLK) - PROGRAM pin - DONE pin - Boundary-scan pins (TDI, TDO, TMS, TCK) Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or it can be generated externally and provided to the FPGA as an input. The PROGRAM pin must be pulled High prior to reconfiguration. Note that some configuration pins can act as outputs. For correct operation, these pins can require a V_{CCO} of 3.3 V to permit LVTTL operation. All the pins affected are in banks 2 or 3. The configuration pins needed for SelectMap (CS, Write) are located in bank 1. After Virtex devices are configured, unused IOBs function as 3-state OBUFTs with weak pull downs. For a more detailed description than that given below, see the XAPP138, Virtex Configuration and Readback. ## **Configuration Modes** Virtex supports the following four configuration modes. - Slave-serial mode - Master-serial mode - SelectMAP mode - · Boundary-scan mode The Configuration mode pins (M2, M1, M0) select among these configuration modes with the option in each case of having the IOB pins either pulled up or left floating prior to configuration. The selection codes are listed in Table 7. Configuration through the boundary-scan port is always available, independent of the mode selection. Selecting the boundary-scan mode simply turns off the other modes. The three mode pins have internal pull-up resistors, and default to a logic High if left unconnected. However, it is recommended to drive the configuration mode pins externally. Table 7: Configuration Codes | Configuration Mode | M2 | M1 | МО | CCLK Direction | Data Width | Serial D _{out} | Configuration Pull-ups | |--------------------|----|----|----|-----------------------|------------|-------------------------|------------------------| | Master-serial mode | 0 | 0 | 0 | Out | 1 | Yes | No | | Boundary-scan mode | 1 | 0 | 1 | N/A | 1 | No | No | | SelectMAP mode | 1 | 1 | 0 | In | 8 | No | No | | Slave-serial mode | 1 | 1 | 1 | In | 1 | Yes | No | | Master-serial mode | 1 | 0 | 0 | Out | 1 | Yes | Yes | | Boundary-scan mode | 0 | 0 | 1 | N/A | 1 | No | Yes | | SelectMAP mode | 0 | 1 | 0 | In | 8 | No | Yes | | Slave-serial mode | 0 | 1 | 1 | In | 1 | Yes | Yes | ## Slave-Serial Mode In slave-serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other source of serial configuration data. The serial bitstream must be setup at the DIN input pin a short time before each rising edge of an externally generated CCLK. For more information on serial PROMs, see the PROM data sheet at: http://www.xilinx.com/bvdocs/publications/ds026.pdf. Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed to the DOUT pin. The data on the DOUT pin changes on the rising edge of CCLK. The change of DOUT on the rising edge of CCLK differs from previous families, but does not cause a problem for mixed configuration chains. This change was made to improve serial configuration rates for Virtex-only chains. Figure 12 shows a full master/slave system. A Virtex device in slave-serial mode should be connected as shown in the third device from the left. Slave-serial mode is selected by applying <111> or <011> to the mode pins (M2, M1, M0). A weak pull-up on the mode pins makes slave-serial the default mode if the pins are left unconnected. However, it is recommended to drive the configuration mode pins externally. Figure 13 shows slave-serial mode programming switching characteristics. Table 8 provides more detail about the characteristics shown in Figure 13. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. Table 8: Master/Slave Serial Mode Programming Switching | | Description | Figure
References | Symbol | Values | Units | |-------|--|----------------------|--------------------------------------|--------------|----------| | | DIN setup/hold, slave mode | 1/2 | T _{DCC} /T _{CCD} | 5.0 / 0 | ns, min | | | DIN setup/hold, master mode | 1/2 | T _{DSCK} /T _{CKDS} | 5.0 / 0 | ns, min | | | DOUT | 3 | T _{CCO} | 12.0 | ns, max | | CCLK | High time | 4 | T _{CCH} | 5.0 | ns, min | | OOLIK | Low time | 5 | T _{CCL} | 5.0 | ns, min | | | Maximum Frequency | | F _{CC} | 66 | MHz, max | | | Frequency Tolerance, master mode with respect to nominal | | | +45%
-30% | | Note 1: If none of the Virtex FPGAs have been selected to drive DONE, an external pull-up resistor of 330 Ω should be added to the common DONE line. (For Spartan-XL devices, add a 4.7K Ω pull-up resistor.) This pull-up is not needed if the DriveDONE attribute is set. If used, DriveDONE should be selected only for the last device in the configuration chain. xcv_12_050103 Figure 12: Master/Slave Serial Mode Circuit Diagram Figure 13: Slave-Serial Mode Programming Switching Characteristics #### Master-Serial Mode In master-serial mode, the CCLK output of the FPGA drives a Xilinx Serial PROM that feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the rising CCLK edge. The interface is identical to slave-serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Switching to a lower frequency is prohibited. The CCLK frequency is set using the ConfigRate option in the bitstream generation software. The maximum CCLK frequency that can be selected is 60 MHz. When selecting a CCLK frequency, ensure that the serial PROM and any daisy-chained FPGAs are fast enough to support the clock rate. On power-up, the CCLK frequency is 2.5 MHz. This frequency is used until the ConfigRate bits have been loaded when the frequency changes to the selected ConfigRate. Unless a different frequency is specified in the design, the default ConfigRate is 4 MHz. Figure 12 shows a full master/slave system. In this system, the left-most device operates in master-serial mode. The remaining devices operate in slave-serial mode. The SPROM RESET pin is driven by $\overline{\text{INIT}}$, and the $\overline{\text{CE}}$ input is driven by DONE. There is the potential for contention on the DONE pin, depending on the start-up sequence options chosen. Figure 14 shows the timing of master-serial configuration. Master-serial mode is selected by a <000> or <100> on the mode pins (M2, M1, M0). Table 8 shows the timing information for Figure 14. Figure 14: Master-Serial Mode Programming Switching Characteristics At power-up, V_{CC} must rise from 1.0 V to V_{CC} min in less than 50 ms, otherwise delay configuration by pulling PROGRAM Low until V_{CC} is valid. The sequence of operations necessary to configure a Virtex FPGA serially appears in Figure 15. #### SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the FPGA with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, a Chip Select (\overline{CS}) signal and a Write signal (\overline{WRITE}) . If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If WRITE is not asserted, configuration data is read out of the FPGA as part of a readback operation. In the SelectMAP mode, multiple Virtex devices can be chained in parallel. DATA pins (D7:D0), CCLK, WRITE, BUSY, PROGRAM, DONE, and INIT can be connected in parallel between all the FPGAs. Note that the data is organized with the MSB of each byte on pin DO and the LSB of each byte on D7. The CS pins are kept separate, insuring that each FPGA can be selected individually. WRITE should be Low before loading the first bitstream and returned High after the last device has been programmed. Use $\overline{\text{CS}}$ to select the appropriate FPGA for loading the bitstream and sending the configuration data. at the end of the bitstream, deselect the loaded device and select the next target FPGA by setting its $\overline{\text{CS}}$ pin High. A free-running oscillator or other externally generated signal can be used for CCLK. The BUSY signal can be ignored for frequencies below 50 MHz. For details about frequencies above 50 MHz, see XAPP138, Virtex Configuration and Readback. Once all the devices have been programmed, the DONE pin goes High. - At the rising edge of CCLK: If BUSY is Low, the data is accepted on this clock. If BUSY is High (from a previous write), the data is not accepted. Acceptance will instead occur on the first clock after BUSY goes Low, and the data must be held until this has happened. - 4. Repeat steps 2 and 3 until all the data has been sent. - 5. De-assert $\overline{\text{CS}}$ and $\overline{\text{WRITE}}$. A flowchart for the write operation appears in Figure 17. Note that if CCLK is slower than f_{CCNH} , the FPGA never asserts BUSY. In this case, the above handshake is unnecessary, and data can simply be entered into the FPGA every CCLK cycle. Figure 16: Write Operations ### **Data Stream Format** Virtex devices are configured by sequentially loading frames of data. Table 11 lists the total number of bits required to configure each device. For more detailed information, see application note XAPP151 "Virtex Configuration Architecture Advanced Users Guide". Table 11: Virtex Bit-Stream Lengths | Device | # of Configuration Bits | |---------|-------------------------| | XCV50 | 559,200 | | XCV100 | 781,216 | | XCV150 | 1,040,096 | | XCV200 | 1,335,840 | | XCV300 | 1,751,808 | | XCV400 | 2,546,048 | | XCV600 | 3,607,968 | | XCV800 | 4,715,616 | | XCV1000 | 6,127,744 | ## Readback The configuration data stored in the Virtex configuration memory can be readback for verification. Along with the configuration data it is possible to readback the contents all flip-flops/latches, LUTRAMs, and block RAMs. This capability is used for real-time debugging. For more detailed information, see Application Note XAPP138: *Virtex FPGA Series Configuration and Readback*, available online at www.xilinx.com. # **Revision History** | Date | Version | Revision | |-------|---------|--| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99 | 1.2 | Updated package drawings and specs. | | 02/99 | 1.3 | Update of package drawings, updated specifications. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-3 (v4.0) March 1, 2013 **Production Product Specification** # Virtex Electrical Characteristics Definition of Terms Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: **Advance**: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. **Preliminary**: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. **Production**: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information. Table 1 correlates the current status of each Virtex device with a corresponding speed file designation. Table 1: Virtex Device Speed Grade Designations | | Speed | d Grade Design | ations | |---------|---------|----------------|------------| | Device | Advance | Preliminary | Production | | XCV50 | | | -6, -5, -4 | | XCV100 | | | -6, -5, -4 | | XCV150 | | | -6, -5, -4 | | XCV200 | | | -6, -5, -4 | | XCV300 | | | -6, -5, -4 | | XCV400 | | | -6, -5, -4 | | XCV600 | | | -6, -5, -4 | | XCV800 | | | -6, -5, -4 | | XCV1000 | | | -6, -5, -4 | All specifications are subject to change without notice. ## **DC Characteristics Over Recommended Operating Conditions** | Symbol | Description | 1 | Device | Min | Max | Units | |---------------------|--|-------------------------------------|---------|----------|------|-------| | V _{DRINT} | Data Retention V _{CCINT} Voltage | | All | 2.0 | | V | | 21 | (below which configuration data can be | e lost) | | | | | | V_{DRIO} | Data Retention V _{CCO} Voltage (below which configuration data can be | e lost) | All | 1.2 | | V | | I _{CCINTQ} | Quiescent V _{CCINT} supply current ^(1,3) | | XCV50 | | 50 | mA | | | | | XCV100 | | 50 | mA | | | | | XCV150 | | 50 | mA | | | | | XCV200 | | 75 | mA | | | | | XCV300 | | 75 | mA | | | | | XCV400 | | 75 | mA | | | | | XCV600 | | 100 | mA | | | | | XCV800 | | 100 | mA | | | | | XCV1000 | | 100 | mA | | Iccoq | Quiescent V _{CCO} supply current ⁽¹⁾ | | XCV50 | | 2 | mA | | | | | XCV100 | | 2 | mA | | | | | XCV150 | | 2 | mA | | | | | XCV200 | | 2 | mA | | | | | XCV300 | | 2 | mA | | | | | XCV400 | | 2 | mA | | | | | XCV600 | | 2 | mA | | | | | XCV800 | | 2 | mA | | | | | XCV1000 | | 2 | mA | | I _{REF} | V _{REF} current per V _{REF} pin | | All | | 20 | μΑ | | ΙL | Input or output leakage current | | All | -10 | +10 | μΑ | | C _{IN} | Input capacitance (sample tested) | BGA, PQ, HQ, packages | All | | 8 | pF | | I _{RPU} | Pad pull-up (when selected) @ V _{in} = 0 tested) | V, V _{CCO} = 3.3 V (sample | All | Note (2) | 0.25 | mA | | I _{RPD} | Pad pull-down (when selected) @ V _{in} = | = 3.6 V (sample tested) | | Note (2) | 0.15 | mA | - 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating. - 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits. - 3. Multiply I_{CCINTQ} limit by two for industrial grade. ## **Virtex Pin-to-Pin Output Parameter Guidelines** All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. ## Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DLL | | | | Speed Grade | | | | | |---|-----------------------|---------|-------------|-----|-----|-----|---------| | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | LVTTL Global Clock Input to Output Delay using | T _{ICKOFDLL} | XCV50 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | Output Flip-flop, 12 mA, Fast Slew Rate, with DLL. For data output with different standards, adjust | | XCV100 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | delays with the values shown in Output Delay | | XCV150 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | Adjustments. | | XCV200 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV300 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV400 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV600 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV800 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV1000 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | #### Notes: - 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3. - 3. DLL output jitter is already included in the timing calculation. ## Global Clock Input-to-Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DLL | | | | Speed Grade | | | | | |--|--------------------|---------|-------------|-----|-----|-----|---------| | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | LVTTL Global Clock Input to Output Delay using | T _{ICKOF} | XCV50 | 1.5 | 4.6 | 5.1 | 5.7 | ns, max | | Output Flip-flop, 12 mA, Fast Slew Rate, <i>without</i> DLL. For data <i>output</i> with different standards, adjust | | XCV100 | 1.5 | 4.6 | 5.1 | 5.7 | ns, max | | delays with the values shown in Input and Output | | XCV150 | 1.5 | 4.7 | 5.2 | 5.8 | ns, max | | Delay Adjustments. For I/O standards requiring V _{RFF} , such as GTL, | | XCV200 | 1.5 | 4.7 | 5.2 | 5.8 | ns, max | | GTL+, SSTL, HSTL, CTT, and AGO, an additional | | XCV300 | 1.5 | 4.7 | 5.2 | 5.9 | ns, max | | 600 ps must be added. | | XCV400 | 1.5 | 4.8 | 5.3 | 6.0 | ns, max | | | | XCV600 | 1.6 | 4.9 | 5.4 | 6.0 | ns, max | | | | XCV800 | 1.6 | 4.9 | 5.5 | 6.2 | ns, max | | | | XCV1000 | 1.7 | 5.0 | 5.6 | 6.3 | ns, max | - Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - 2. Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3. ## **Minimum Clock-to-Out for Virtex Devices** | | With DLL | | | | | With | out DLL | | | | | |--------------|-------------|-----|------|------|------|------|---------|------|------|-------|-------| | I/O Standard | All Devices | V50 | V100 | V150 | V200 | V300 | V400 | V600 | V800 | V1000 | Units | | *LVTTL_S2 | 5.2 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 | ns | | *LVTTL_S4 | 3.5 | 4.3 | 4.3 | 4.3 | 4.3 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | ns | | *LVTTL_S6 | 2.8 | 3.6 | 3.6 | 3.6 | 3.6 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | ns | | *LVTTL_S8 | 2.2 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.2 | 3.2 | 3.2 | ns | | *LVTTL_S12 | 2.0 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 3.0 | 3.0 | 3.0 | ns | | *LVTTL_S16 | 1.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.9 | 2.9 | 2.9 | ns | | *LVTTL_S24 | 1.8 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.8 | ns | | *LVTTL_F2 | 2.9 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.9 | 3.9 | 3.9 | ns | | *LVTTL_F4 | 1.7 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | ns | | *LVTTL_F6 | 1.2 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2 | ns | | *LVTTL_F8 | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | *LVTTL_F12 | 1.0 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | ns | | *LVTTL_F16 | 0.9 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | ns | | *LVTTL_F24 | 0.9 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | LVCMOS2 | 1.1 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | ns | | PCI33_3 | 1.5 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 | ns | | PCI33_5 | 1.4 | 2.2 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.4 | ns | | PCI66_3 | 1.1 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | ns | | GTL | 1.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | ns | | GTL+ | 1.7 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | ns | | HSTL I | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | HSTL III | 0.9 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | HSTL IV | 0.8 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | ns | | SSTL2 I | 0.9 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | ns | | SSTL2 II | 0.8 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | ns | | SSTL3 I | 0.8 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | ns | | SSTL3 II | 0.7 | 1.5 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | ns | | CTT | 1.0 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | | AGP | 1.0 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | ^{*}S = Slow Slew Rate, F = Fast Slew Rate ^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. ^{2.} Input and output timing is measured at 1.4 V for LVTTL. For other I/O standards, see Table 3. In all cases, an 8 pF external capacitive load is used. ## **Virtex Pin-to-Pin Input Parameter Guidelines** All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted ## Global Clock Set-Up and Hold for LVTTL Standard, with DLL | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | | |--|--|---------|-------------|-----------|-----------|-----------|------------|--|--| | Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in Input Delay Adjustments. | | | | | | | | | | | No Delay
Global Clock and IFF, with DLL | T _{PSDLL} /T _{PHDLL} | XCV50 | 0.40 / -0.4 | 1.7 /-0.4 | 1.8 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV100 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV150 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV200 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV300 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV400 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV600 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV800 | 0.40 /-0.4 | 1.7 /-0.4 | 1.9 /-0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV1000 | 0.40 /-0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | IFF = Input Flip-Flop or Latch - 2. DLL output jitter is already included in the timing calculation. - 3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ^{1.} Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. | Date | Version | Revision | | | | | |----------|---------|---|--|--|--|--| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | | | | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | | | | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | | | | | 05/00 | 2.2 | Modified Table 18. | | | | | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | | | | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | | | | | 04/02/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See the Virtex Data Sheet section. | | | | | | 04/19/01 | 2.6 | Clarified TIOCKP and TIOCKON IOB Output Switching Characteristics descriptors. | | | | | | 07/19/01 | 2.7 | Under Absolute Maximum Ratings, changed (T _{SOL}) to 220 °C. | | | | | | 07/26/01 | 2.8 | Removed T _{SOL} parameter and added footnote to Absolute Maximum Ratings table. | | | | | | 10/29/01 | 2.9 | Updated the speed grade designations used in data sheets, and added Table 1, which
shows the current speed grade designation for each device. | | | | | | 02/01/02 | 3.0 | Added footnote to DC Input and Output Levels table. | | | | | | 07/19/02 | 3.1 | Removed mention of MIL-M-38510/605 specification. Added link to xapp158 from the Power-On Power Supply Requirements section. | | | | | | 09/10/02 | 3.2 | Added Clock CLK to IOB Input Switching Characteristics and IOB Output Switching Characteristics. | | | | | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | | | | | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) # **Product Obsolete/Under Obsolescence** # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-4 (v4.0) March 1, 2013 **Production Product Specification** ## **Virtex Pin Definitions** Table 1: Special Purpose Pins | Pin Name | Dedicated
Pin | Direction | Description | | | | |--|------------------|-------------------------------|--|--|--|--| | GCK0, GCK1,
GCK2, GCK3 | Yes | Input | Clock input pins that connect to Global Clock Buffers. These pins become user inputs when not needed for clocks. | | | | | M0, M1, M2 | Yes | Input | Mode pins are used to specify the configuration mode. | | | | | CCLK | Yes | Input or
Output | The configuration Clock I/O pin: it is an input for SelectMAP and slave-serial modes, and output in master-serial mode. After configuration it is input only, logic level = Don't Care. | | | | | PROGRAM | Yes | Input | Initiates a configuration sequence when asserted Low. | | | | | DONE | Yes | Bidirectional | Indicates that configuration loading is complete, and that the start-up sequence is in progress. The output can be open drain. | | | | | INIT | No | Bidirectional
(Open-drain) | When Low, indicates that the configuration memory is being cleared. The pin becomes a user I/O after configuration. | | | | | BUSY/
DOUT | No | Output | In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | | | | | In bit-serial modes, DOUT provides header information to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. | | | | | D0/DIN,
D1, D2,
D3, D4,
D5, D6, | No | Input or
Output | In SelectMAP mode, D0 - D7 are configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained. In bit-serial modes, DIN is the single data input. This pin becomes a user | | | | | D7 | | | I/O after configuration. | | | | | WRITE | No | Input | In SelectMAP mode, the active-low Write Enable signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | | CS | No | Input | In SelectMAP mode, the active-low Chip Select signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | | TDI, TDO,
TMS, TCK | Yes | Mixed | Boundary-scan Test-Access-Port pins, as defined in IEEE 1149.1. | | | | | DXN, DXP | Yes | N/A | Temperature-sensing diode pins. (Anode: DXP, cathode: DXN) | | | | | V _{CCINT} | Yes | Input | Power-supply pins for the internal core logic. | | | | | V _{cco} | Yes | Input | Power-supply pins for the output drivers (subject to banking rules) | | | | | V _{REF} | No | Input | Input threshold voltage pins. Become user I/Os when an external threshold voltage is not needed (subject to banking rules). | | | | | GND | Yes | Input | Ground | | | | ^{© 1999-2013} Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|----------|---------|----------| | V _{REF} , Bank 3 | XCV50 | H11, K12 | 60, 68 | 130, 144 | | (V _{REF} pins are listed | XCV100/150 | + J10 | + 66 | + 133 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 126 | | the required device | XCV400 | N/A | N/A | + 147 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 132 | | package.) | XCV800 | N/A | N/A | + 140 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 4 | XCV50 | L8, L10 | 79, 87 | 97, 111 | | (V _{REF} pins are listed | XCV100/150 | + N10 | + 81 | + 108 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 115 | | the required device and all smaller devices | XCV400 | N/A | N/A | + 94 | | listed in the same | XCV600 | N/A | N/A | + 109 | | package.) | XCV800 | N/A | N/A | + 101 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 5 | XCV50 | L4, L6 | 96, 104 | 70, 84 | | (V _{REF} pins are listed | XCV100/150 | + N4 | + 102 | + 73 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 66 | | the required device | XCV400 | N/A | N/A | + 87 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 72 | | package.) | XCV800 | N/A | N/A | + 80 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|------------|----------|---------------------|---------------------------|------------------------------------| | V _{REF} , Bank 3 | XCV50 | M18, V20 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + R19 | R4, V4, Y3 | N/A | N/A | | incrementally. Connect all pins listed for both the required device and all | XCV200/300 | + P18 | + AC2 | V2, AB4, AD4,
AF3 | N/A | | smaller devices listed in the | XCV400 | N/A | N/A | + U2 | V4, W5, | | same package.) | | | | | AD3, AE5, AK2 | | Within each bank, if input reference voltage is not | XCV600 | N/A | N/A | + AC3 | + AF1 | | required, all V _{REF} pins are | XCV800 | N/A | N/A | + Y3 | + AA4 | | general I/O. | XCV1000 | N/A | N/A | N/A | + AH4 | | V _{REF} , Bank 4 | XCV50 | V12, Y18 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all | XCV100/150 | + W15 | AC12, AE5,
AE8, | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + V14 | + AE4 | AJ7, AL4, AL8,
AL13 | N/A | | same package.) Within each bank, if input reference voltage is not | XCV400 | N/A | N/A | + AK15 | AL7, AL10,
AL16, AM4,
AM14 | | required, all V _{REF} pins are | XCV600 | N/A | N/A | + AK8 | + AL9 | | general I/O. | XCV800 | N/A | N/A | + AJ12 | + AK13 | | | XCV1000 | N/A | N/A | N/A | + AN3 | | V _{REF} , Bank 5 | XCV50 | V9, Y3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the | XCV100/150 | + W6 | AC15, AC18,
AD20 | N/A | N/A | | required device and all smaller devices listed in the | XCV200/300 | + V7 | + AE23 | AJ18, AJ25,
AK23, AK27 | N/A | | within each bank, if input reference voltage is not | XCV400 | N/A | N/A | + AJ17 | AJ18, AJ25,
AL20, AL24,
AL29 | | required, all V _{REF} pins are general I/O. | XCV600 | N/A | N/A | + AL24 | + AM26 | | | XCV800 | N/A | N/A | + AH19 | + AN23 | | | XCV1000 | N/A | N/A | N/A | + AK28 | | V _{REF} , Bank 6 | XCV50 | M2, R3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all | XCV100/150 | + T1 | R24, Y26,
AA25, | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + T3 | + AD26 | V28, AB28,
AE30, AF28 | N/A | | same package.) Within each bank, if input | XCV400 | N/A | N/A | + U28 | V29, Y32, AD31,
AE29, AK32 | | reference voltage is not | XCV600 | N/A | N/A | + AC28 | + AE31 | | required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + Y30 | + AA30 | | general I/O. | XCV1000 | N/A | N/A | N/A | + AH30 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|--------|-------|---|---|-------| | No Connect (No-connect pins are listed incrementally. All pins listed for both the required device and all larger devices listed in the same package are no connects.) | XCV800 | N/A | N/A | A2, A3, A15, A25,
B1, B6, B11, B16,
B21, B24, B26,
C1, C2, C25, C26,
F2, F6, F21, F25,
L2, L25, N25, P2,
T2, T25, AA2,
AA6, AA21, AA25,
AD1, AD2, AD25,
AE1, AE3, AE6,
AE11, AE14,
AE16, AE21,
AE24, AE26, AF2,
AF24, AF25 | N/A | | | XCV600 | N/A | N/A | same as above | N/A | | | XCV400 | N/A | N/A | + A9, A10, A13,
A16, A24, AC1,
AC25, AE12,
AE15, AF3, AF10,
AF11, AF13,
AF14, AF16,
AF18, AF23, B4,
B12, B13, B15,
B17, D1, D25,
H26, J1, K26, L1,
M1, M25, N1, N26,
P1, P26, R2, R26,
T1, T26, U26, V1 | N/A | | | XCV300 | N/A | D4, D19, W4,
W19 | N/A | N/A | | | XCV200 | N/A | + A2, A6, A12,
B11, B16, C2,
D1, D18, E17,
E19, G2, G22,
L2, L19, M2,
M21, R3, R20,
U3, U18, Y22,
AA1, AA3, AA11,
AA16, AB7,
AB12, AB21, | N/A | N/A | | | XCV150 | N/A | + A13, A14,
C8, C9, E13,
F11, H21, J1, J4,
K2, K18, K19,
M17, N1, P1, P5,
P22, R22, W13,
W15, AA9,
AA10, AB8,
AB14 | N/A | N/A | ## **BG256 Pin Function Diagram** Figure 4: BG256 Pin Function Diagram ## **FG256 Pin Function Diagram** Figure 8: FG256 Pin Function Diagram