

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1176
Number of Logic Elements/Cells	5292
Total RAM Bits	57344
Number of I/O	176
Number of Gates	236666
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcv200-4fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Virtex Architecture

Virtex devices feature a flexible, regular architecture that comprises an array of configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all interconnected by a rich hierarchy of fast, versatile routing resources. The abundance of routing resources permits the Virtex family to accommodate even the largest and most complex designs.

Virtex FPGAs are SRAM-based, and are customized by loading configuration data into internal memory cells. In some modes, the FPGA reads its own configuration data from an external PROM (master serial mode). Otherwise, the configuration data is written into the FPGA (Select-MAPTM, slave serial, and JTAG modes).

The standard Xilinx Foundation™ and Alliance Series™ Development systems deliver complete design support for Virtex, covering every aspect from behavioral and schematic entry, through simulation, automatic design translation and implementation, to the creation, downloading, and readback of a configuration bit stream.

Higher Performance

Virtex devices provide better performance than previous generations of FPGA. Designs can achieve synchronous system clock rates up to 200 MHz including I/O. Virtex inputs and outputs comply fully with PCI specifications, and interfaces can be implemented that operate at 33 MHz or 66 MHz. Additionally, Virtex supports the hot-swapping requirements of Compact PCI.

Xilinx thoroughly benchmarked the Virtex family. While performance is design-dependent, many designs operated internally at speeds in excess of 100 MHz and can achieve 200 MHz. Table 2 shows performance data for representative circuits, using worst-case timing parameters.

Table 2: Performance for Common Circuit Functions

Function	Bits	Virtex -6
Register-to-Register		
Adder	16	5.0 ns
Audei	64	7.2 ns
Pipelined Multiplier	8 x 8	5.1 ns
	16 x 16	6.0 ns
Address Decoder	16	4.4 ns
	64	6.4 ns
16:1 Multiplexer		5.4 ns
Parity Tree	9	4.1 ns
	18	5.0 ns
	36	6.9 ns
Chip-to-Chip		
HSTL Class IV		200 MHz
LVTTL,16mA, fast slew		180 MHz

Each block SelectRAM cell, as illustrated in Figure 6, is a fully synchronous dual-ported 4096-bit RAM with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion.

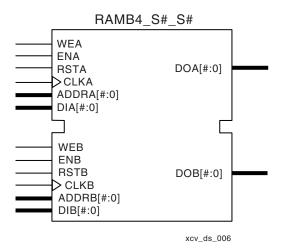


Figure 6: Dual-Port Block SelectRAM

Table 4 shows the depth and width aspect ratios for the block SelectRAM.

Table 4: Block SelectRAM Port Aspect Ratios

Width	Depth	ADDR Bus	Data Bus
1	4096	ADDR<11:0>	DATA<0>
2	2048	ADDR<10:0>	DATA<1:0>
4	1024	ADDR<9:0>	DATA<3:0>
8	512	ADDR<8:0>	DATA<7:0>
16	256	ADDR<7:0>	DATA<15:0>

The Virtex block SelectRAM also includes dedicated routing to provide an efficient interface with both CLBs and other block SelectRAMs. Refer to XAPP130 for block SelectRAM timing waveforms.

Programmable Routing Matrix

It is the longest delay path that limits the speed of any worst-case design. Consequently, the Virtex routing architecture and its place-and-route software were defined in a single optimization process. This joint optimization minimizes long-path delays, and consequently, yields the best system performance.

The joint optimization also reduces design compilation times because the architecture is software-friendly. Design cycles are correspondingly reduced due to shorter design iteration times.

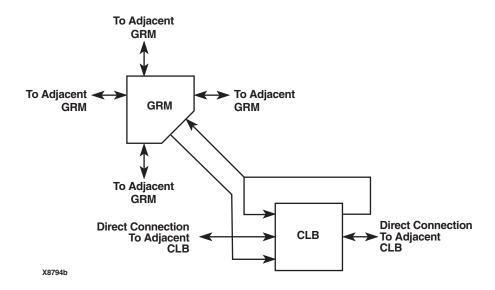


Figure 7: Virtex Local Routing

Local Routing

The VersaBlock provides local routing resources, as shown in Figure 7, providing the following three types of connections.

- Interconnections among the LUTs, flip-flops, and GRM
- Internal CLB feedback paths that provide high-speed connections to LUTs within the same CLB, chaining them together with minimal routing delay
- Direct paths that provide high-speed connections between horizontally adjacent CLBs, eliminating the delay of the GRM.

In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data.

Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

Instruction Set

The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5.

Data Registers

The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins.

The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device.

The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO.

Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE).

Bit Sequence

The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits.

From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11.

BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area.

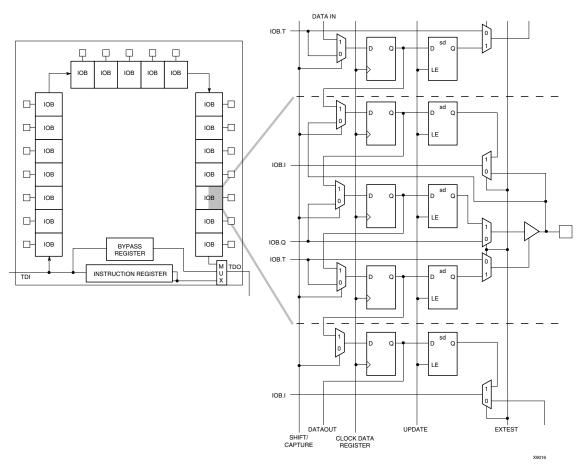
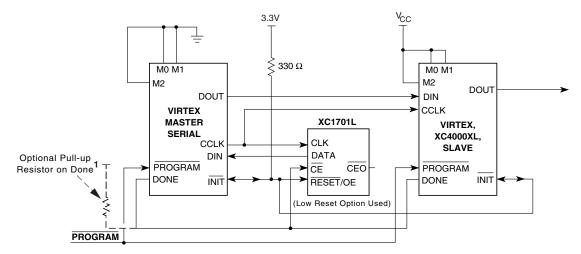



Figure 10: Virtex Series Boundary Scan Logic

Table 8: Master/Slave Serial Mode Programming Switching

	Description	Figure References	Symbol	Values	Units
	DIN setup/hold, slave mode	1/2	T _{DCC} /T _{CCD}	5.0 / 0	ns, min
	DIN setup/hold, master mode	1/2	T _{DSCK} /T _{CKDS}	5.0 / 0	ns, min
	DOUT	3	T _{CCO}	12.0	ns, max
CCLK	High time	4	T _{CCH}	5.0	ns, min
OOLIK	Low time	5	T _{CCL}	5.0	ns, min
	Maximum Frequency		F _{CC}	66	MHz, max
	Frequency Tolerance, master mode with respect to nominal			+45% -30%	

Note 1: If none of the Virtex FPGAs have been selected to drive DONE, an external pull-up resistor of 330 Ω should be added to the common DONE line. (For Spartan-XL devices, add a 4.7K Ω pull-up resistor.) This pull-up is not needed if the DriveDONE attribute is set. If used, DriveDONE should be selected only for the last device in the configuration chain.

xcv_12_050103

Figure 12: Master/Slave Serial Mode Circuit Diagram

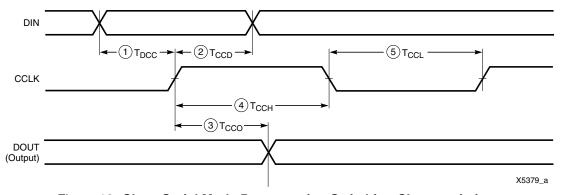


Figure 13: Slave-Serial Mode Programming Switching Characteristics

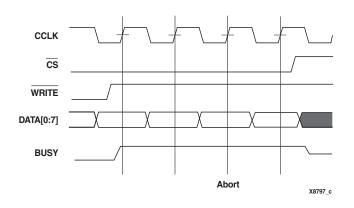


Figure 18: SelectMAP Write Abort Waveforms

Boundary-Scan Mode

In the boundary-scan mode, configuration is done through the IEEE 1149.1 Test Access Port. Note that the PROGRAM pin must be pulled High prior to reconfiguration. A Low on the PROGRAM pin resets the TAP controller and no JTAG operations can be performed.

Configuration through the TAP uses the CFG_IN instruction. This instruction allows data input on TDI to be converted into data packets for the internal configuration bus.

The following steps are required to configure the FPGA through the boundary-scan port (when using TCK as a start-up clock).

- Load the CFG_IN instruction into the boundary-scan instruction register (IR)
- 2. Enter the Shift-DR (SDR) state
- 3. Shift a configuration bitstream into TDI
- 4. Return to Run-Test-Idle (RTI)
- Load the JSTART instruction into IR
- 6. Enter the SDR state
- 7. Clock TCK through the startup sequence
- 8. Return to RTI

Configuration and readback via the TAP is always available. The boundary-scan mode is selected by a <101> or 001> on the mode pins (M2, M1, M0). For details on TAP characteristics, refer to XAPP139.

Configuration Sequence

The configuration of Virtex devices is a three-phase process. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process.

Configuration is automatically initiated on power-up unless it is delayed by the user, as described below. The configuration process can also be initiated by asserting $\overline{\mathsf{PROGRAM}}$.

The end of the memory-clearing phase is signalled by INIT going High, and the completion of the entire process is signalled by DONE going High.

The power-up timing of configuration signals is shown in Figure 19. The corresponding timing characteristics are listed in Table 10.

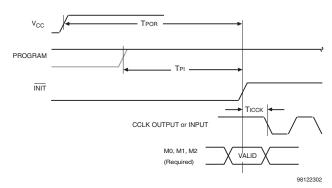


Figure 19: Power-Up Timing Configuration Signals

Table 10: Power-up Timing Characteristics

Description	Symbol	Value	Units
Power-on Reset	T _{POR}	2.0	ms, max
Program Latency	T _{PL}	100.0	μs, max
CCLK (output) Delay	T _{ICCK}	0.5	μs, min
		4.0	μs, max
Program Pulse Width	T _{PROGRAM}	300	ns, min

Delaying Configuration

INIT can be held Low using an open-drain driver. An open-drain is required since INIT is a bidirectional open-drain pin that is held Low by the FPGA while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded.

Start-Up Sequence

The default Start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary.

One CCLK cycle later, the Global Set/Reset (GSR) and Global Write Enable (GWE) signals are released. This permits the internal storage elements to begin changing state in response to the logic and the user clock.

The relative timing of these events can be changed. In addition, the GTS, GSR, and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start in synchronism. The sequence can also be paused at any stage until lock has been achieved on any or all DLLs.

Date	Version	Revision
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.
05/00	2.2	Modified Table 18.
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics.
10/00	2.4	 Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram.
04/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Updated SelectMAP Write Timing Characteristics values in Table 9. Converted file to modularized format. See the Virtex Data Sheet section.
07/19/01	2.6	Made minor edits to text under Configuration.
07/19/02	2.7	Made minor edit to Figure 16 and Figure 18.
09/10/02	2.8	Added clarifications in the Configuration, Boundary-Scan Mode, and Block SelectRAM sections. Revised Figure 17.
12/09/02	2.8.1	 Added clarification in the Boundary Scan section. Corrected number of buffered Hex lines listed in General Purpose Routing section.
03/01/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.

Virtex Data Sheet

The Virtex Data Sheet contains the following modules:

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)

DC Characteristics Over Recommended Operating Conditions

Symbol	Description	1	Device	Min	Max	Units
V _{DRINT}	Data Retention V _{CCINT} Voltage		All	2.0		V
21	(below which configuration data can be	e lost)				
V_{DRIO}	Data Retention V _{CCO} Voltage (below which configuration data can be	e lost)	All	1.2		V
I _{CCINTQ}	Quiescent V _{CCINT} supply current ^(1,3)		XCV50		50	mA
			XCV100		50	mA
			XCV150		50	mA
			XCV200		75	mA
			XCV300		75	mA
			XCV400		75	mA
			XCV600		100	mA
			XCV800		100	mA
			XCV1000		100	mA
Iccoq	Quiescent V _{CCO} supply current ⁽¹⁾		XCV50		2	mA
			XCV100		2	mA
			XCV150		2	mA
			XCV200		2	mA
			XCV300		2	mA
			XCV400		2	mA
			XCV600		2	mA
			XCV800		2	mA
			XCV1000		2	mA
I _{REF}	V _{REF} current per V _{REF} pin		All		20	μΑ
ΙL	Input or output leakage current		All	-10	+10	μΑ
C _{IN}	Input capacitance (sample tested)	BGA, PQ, HQ, packages	All		8	pF
I _{RPU}	Pad pull-up (when selected) @ V _{in} = 0 tested)	V, V _{CCO} = 3.3 V (sample	All	Note (2)	0.25	mA
I _{RPD}	Pad pull-down (when selected) @ V _{in} =	= 3.6 V (sample tested)		Note (2)	0.15	mA

Notes:

- 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating.
- 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits.
- 3. Multiply I_{CCINTQ} limit by two for industrial grade.

Virtex Switching Characteristics

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE

in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Virtex devices unless otherwise noted.

IOB Input Switching Characteristics

Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in , page 6.

				Speed	Grade		
Description	Device	Symbol	Min	-6	-5	-4	Units
Propagation Delays							
Pad to I output, no delay	All	T _{IOPI}	0.39	0.8	0.9	1.0	ns, max
Pad to I output, with delay	XCV50	T _{IOPID}	0.8	1.5	1.7	1.9	ns, max
	XCV100		0.8	1.5	1.7	1.9	ns, max
	XCV150		0.8	1.5	1.7	1.9	ns, max
	XCV200		0.8	1.5	1.7	1.9	ns, max
	XCV300		0.8	1.5	1.7	1.9	ns, max
	XCV400		0.9	1.8	2.0	2.3	ns, max
	XCV600		0.9	1.8	2.0	2.3	ns, max
	XCV800		1.1	2.1	2.4	2.7	ns, max
	XCV1000		1.1	2.1	2.4	2.7	ns, max
Pad to output IQ via transparent latch, no delay	All	T _{IOPLI}	0.8	1.6	1.8	2.0	ns, max
Pad to output IQ via transparent	XCV50	T _{IOPLID}	1.9	3.7	4.2	4.8	ns, max
latch, with delay	XCV100		1.9	3.7	4.2	4.8	ns, max
	XCV150		2.0	3.9	4.3	4.9	ns, max
	XCV200		2.0	4.0	4.4	5.1	ns, max
	XCV300		2.0	4.0	4.4	5.1	ns, max
	XCV400		2.1	4.1	4.6	5.3	ns, max
	XCV600		2.1	4.2	4.7	5.4	ns, max
	XCV800		2.2	4.4	4.9	5.6	ns, max
	XCV1000		2.3	4.5	5.1	5.8	ns, max
Sequential Delays			·				
Clock CLK	All						
Minimum Pulse Width, High		T _{CH}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low		T _{CL}	0.8	1.5	1.7	2.0	ns, min
Clock CLK to output IQ		T _{IOCKIQ}	0.2	0.7	0.7	8.0	ns, max

IOB Input Switching Characteristics Standard Adjustments

			Speed Grade				
Description	Symbol	Standard ⁽¹⁾	Min	-6	-5	-4	Units
Data Input Delay Adjustments							
Standard-specific data input delay	T _{ILVTTL}	LVTTL	0	0	0	0	ns
adjustments	T _{ILVCMOS2}	LVCMOS2	-0.02	-0.04	-0.04	-0.05	ns
	T _{IPCI33_3}	PCI, 33 MHz, 3.3 V	-0.05	-0.11	-0.12	-0.14	ns
	T _{IPCI33_5}	PCI, 33 MHz, 5.0 V	0.13	0.25	0.28	0.33	ns
	T _{IPCI66_3}	PCI, 66 MHz, 3.3 V	-0.05	-0.11	-0.12	-0.14	ns
	T _{IGTL}	GTL	0.10	0.20	0.23	0.26	ns
	T _{IGTLP}	GTL+	0.06	0.11	0.12	0.14	ns
	T _{IHSTL}	HSTL	0.02	0.03	0.03	0.04	ns
	T _{ISSTL2}	SSTL2	-0.04	-0.08	-0.09	-0.10	ns
	T _{ISSTL3}	SSTL3	-0.02	-0.04	-0.05	-0.06	ns
	T _{ICTT}	CTT	0.01	0.02	0.02	0.02	ns
	T _{IAGP}	AGP	-0.03	-0.06	-0.07	-0.08	ns

Notes:

IOB Output Switching Characteristics

Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays with the values shown in **IOB Output Switching Characteristics Standard Adjustments**, page 9.

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Propagation Delays						
O input to Pad	T _{IOOP}	1.2	2.9	3.2	3.5	ns, max
O input to Pad via transparent latch	T _{IOOLP}	1.4	3.4	3.7	4.0	ns, max
3-State Delays		·				
T input to Pad high-impedance ⁽¹⁾	T _{IOTHZ}	1.0	2.0	2.2	2.4	ns, max
T input to valid data on Pad	T _{IOTON}	1.4	3.1	3.3	3.7	ns, max
T input to Pad high-impedance via transparent latch ⁽¹⁾	T _{IOTLPHZ}	1.2	2.4	2.6	3.0	ns, max
T input to valid data on Pad via transparent latch	T _{IOTLPON}	1.6	3.5	3.8	4.2	ns, max
GTS to Pad high impedance ⁽¹⁾	T _{GTS}	2.5	4.9	5.5	6.3	ns, max
Sequential Delays			1	1		,
Clock CLK						
Minimum Pulse Width, High	T _{CH}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low	T _{CL}	0.8	1.5	1.7	2.0	ns, min

^{1.} Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3.

Clock Distribution Guidelines

			Speed Grade			
Description	Device	Symbol	-6	-5	-4	Units
Global Clock Skew ⁽¹⁾						
Global Clock Skew between IOB Flip-flops	XCV50	T _{GSKEWIOB}	0.10	0.12	0.14	ns, max
	XCV100		0.12	0.13	0.15	ns, max
	XCV150		0.12	0.13	0.15	ns, max
	XCV200		0.13	0.14	0.16	ns, max
	XCV300		0.14	0.16	0.18	ns, max
	XCV400		0.13	0.13	0.14	ns, max
	XCV600		0.14	0.15	0.17	ns, max
	XCV800		0.16	0.17	0.20	ns, max
	XCV1000		0.20	0.23	0.25	ns, max

Notes:

Clock Distribution Switching Characteristics

		Speed Grade				
Description	Symbol	Min	-6	- 5	-4	Units
GCLK IOB and Buffer						
Global Clock PAD to output.	T _{GPIO}	0.33	0.7	0.8	0.9	ns, max
Global Clock Buffer I input to O output	T _{GIO}	0.34	0.7	0.8	0.9	ns, max

^{1.} These clock-skew delays are provided for guidance only. They reflect the delays encountered in a typical design under worst-case conditions. Precise values for a particular design are provided by the timing analyzer.

CLB Switching Characteristics

Delays originating at F/G inputs vary slightly according to the input used. The values listed below are worst-case. Precise values are provided by the timing analyzer.

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Combinatorial Delays		•				
4-input function: F/G inputs to X/Y outputs	T _{ILO}	0.29	0.6	0.7	0.8	ns, max
5-input function: F/G inputs to F5 output	T _{IF5}	0.32	0.7	0.8	0.9	ns, max
5-input function: F/G inputs to X output	T _{IF5X}	0.36	0.8	0.8	1.0	ns, max
6-input function: F/G inputs to Y output via F6 MUX	T _{IF6Y}	0.44	0.9	1.0	1.2	ns, max
6-input function: F5IN input to Y output	T _{F5INY}	0.17	0.32	0.36	0.42	ns, max
Incremental delay routing through transparent latch to XQ/YQ outputs	T _{IFNCTL}	0.31	0.7	0.7	0.8	ns, max
BY input to YB output	T _{BYYB}	0.27	0.53	0.6	0.7	ns, max
Sequential Delays						T.
FF Clock CLK to XQ/YQ outputs	T _{CKO}	0.54	1.1	1.2	1.4	ns, max
Latch Clock CLK to XQ/YQ outputs	T _{CKLO}	0.6	1.2	1.4	1.6	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾		Setup T	ime / Hol	d Time		
4-input function: F/G Inputs	T _{ICK} /T _{CKI}	0.6 / 0	1.2 / 0	1.4 / 0	1.5 / 0	ns, min
5-input function: F/G inputs	T _{IF5CK} /T _{CKIF5}	0.7 / 0	1.3 / 0	1.5 / 0	1.7 / 0	ns, min
6-input function: F5IN input	T _{F5INCK} /T _{CKF5IN}	0.46 / 0	1.0 / 0	1.1 / 0	1.2 / 0	ns, min
6-input function: F/G inputs via F6 MUX	T _{IF6CK} /T _{CKIF6}	0.8 / 0	1.5 / 0	1.7 / 0	1.9 / 0	ns, min
BX/BY inputs	T_{DICK}/T_{CKDI}	0.30 / 0	0.6 / 0	0.7 / 0	0.8 / 0	ns, min
CE input	T _{CECK} /T _{CKCE}	0.37 / 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, min
SR/BY inputs (synchronous)	$T_{RCK}T_{CKR}$	0.33 / 0	0.7 / 0	0.8 / 0	0.9 / 0	ns, min
Clock CLK						
Minimum Pulse Width, High	T _{CH}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low	T_CL	0.8	1.5	1.7	2.0	ns, min
Set/Reset						
Minimum Pulse Width, SR/BY inputs	T _{RPW}	1.3	2.5	2.8	3.3	ns, min
Delay from SR/BY inputs to XQ/YQ outputs (asynchronous)	T _{RQ}	0.54	1.1	1.3	1.4	ns, max
Delay from GSR to XQ/YQ outputs	T _{IOGSRQ}	4.9	9.7	10.9	12.5	ns, max
Toggle Frequency (MHz) (for export control)	F _{TOG} (MHz)	625	333	294	250	MHz

Notes:

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

Table 3: Virtex Pinout Tables (BGA)

Pin Name	Device	BG256	BG352	BG432	BG560
GCK0	All	Y11	AE13	AL16	AL17
GCK1	All	Y10	AF14	AK16	AJ17
GCK2	All	A10	B14	A16	D17
GCK3	All	B10	D14	D17	A17
MO	All	Y1	AD24	AH28	AJ29
M1	All	U3	AB23	AH29	AK30
M2	All	W2	AC23	AJ28	AN32
CCLK	All	B19	C3	D4	C4
PROGRAM	All	Y20	AC4	АН3	AM1
DONE	All	W19	AD3	AH4	AJ5
INIT	All	U18	AD2	AJ2	AH5
BUSY/DOUT	All	D18	E4	D3	D4
D0/DIN	All	C19	D3	C2	E4
D1	All	E20	G1	K4	K3
D2	All	G19	J3	K2	L4
D3	All	J19	M3	P4	P3
D4	All	M19	R3	V4	W4
D5	All	P19	U4	AB1	AB5
D6	All	T20	V3	AB3	AC4
D7	All	V19	AC3	AG4	AJ4
WRITE	All	A19	D5	B4	D6
CS	All	B18	C4	D5	A2
TDI	All	C17	В3	В3	D5
TDO	All	A20	D4	C4	E6
TMS	All	D3	D23	D29	B33
TCK	All	A1	C24	D28	E29
DXN	All	W3	AD23	AH27	AK29
DXP	All	V4	AE24	AK29	AJ28

Table 4: Virtex Pinout Tables (Fine-Pitch BGA)

Pin Name	Device	FG256	FG456	FG676	FG680
GCK0	All	N8	W12	AA14	AW19
GCK1	All	R8	Y11	AB13	AU22
GCK2	All	C9	A11	C13	D21
GCK3	All	B8	C11	E13	A20
M0	All	N3	AB2	AD4	AT37
M1	All	P2	U5	W7	AU38
M2	All	R3	Y4	AB6	AT35
CCLK	All	D15	B22	D24	E4
PROGRAM	All	P15	W20	AA22	AT5
DONE	All	R14	Y19	AB21	AU5
INIT	All	N15	V19	Y21	AU2
BUSY/DOUT	All	C15	C21	E23	E3
D0/DIN	All	D14	D20	F22	C2
D1	All	E16	H22	K24	P4
D2	All	F15	H20	K22	P3
D3	All	G16	K20	M22	R1
D4	All	J16	N22	R24	AD3
D5	All	M16	R21	U23	AG2
D6	All	N16	T22	V24	AH1
D7	All	N14	Y21	AB23	AR4
WRITE	All	C13	A20	C22	B4
CS	All	B13	C19	E21	D5
TDI	All	A15	B20	D22	В3
TDO	All	B14	A21	C23	C4
TMS	All	D3	D3	F5	E36
TCK	All	C4	C4	E6	C36
DXN	All	R4	Y5	AB7	AV37
DXP	All	P4	V6	Y8	AU35

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{CCINT}	All	C3, C14, D4, D13, E5, E12, M5, M12, N4, N13, P3, P14	E5, E18, F6, F17, G7, G8, G9, G14, G15, G16, H7, H16, J7, J16, P7, P16, R7, R16, T7, T8, T9, T14, T15, T16, U6, U17, V5, V18	G7, G20, H8, H19, J9, J10, J11, J16, J17, J18, K9, K18, L9, L18, T9, T18, U9, U18, V9, V10, V11, V16, V17, V18, W8, W19, Y7, Y20	AD5, AD35, AE5, AE35, AL5, AL35, AM5, AM35, AR8, AR9, AR15, AR16, AR24, AR25, AR31, AR32, E8, E9, E15, E16, E24, E25, E31, E32, H5, H35, J5, J35, R5, R35, T5, T35
V _{CCO} , Bank 0	All	E8, F8	F7, F8, F9, F10 G10, G11	H9, H10, H11, H12, J12, J13	E26, E27, E29, E30, E33, E34
V _{CCO} , Bank 1	All	E9, F9	F13, F14, F15, F16, G12, G13	H15, H16, H17, H18, J14, J15	E6, E7, E10, E11, E13, E14
V _{CCO} , Bank 2	All	H11, H12	G17, H17, J17, K16, K17, L16	J19, K19, L19, M18, M19, N18	F5, G5, K5, L5, N5, P5
V _{CCO} , Bank 3	All	J11, J12	M16, N16, N17, P17, R17, T17	P18, R18, R19, T19, U19, V19	AF5, AG5, AN5, AK5, AJ5, AP5
V _{CCO} , Bank 4	All	L9. M9	T12, T13, U13, U14, U15, U16,	V14, V15, W15, W16, W17, W18	AR6, AR7, AR10, AR11, AR13, AR14
V _{CCO} , Bank 5	All	L8, M8	T10, T11, U7, U8, U9, U10	V12, V13, W9,W10, W11, W12	AR26, AR27, AR29, AR30, AR33, AR34
V _{CCO} , Bank 6	All	J5, J6	M7, N6, N7, P6, R6, T6	P9, R8, R9, T8, U8, V8	AF35, AG35, AJ35, AK35, AN35, AP35
V _{CCO} , Bank 7	All	H5, H6	G6, H6, J6, K6, K7, L7	J8, K8, L8, M8, M9, N9	F35, G35, K35, L35, N35, P35
V _{REF} Bank 0	XCV50	B4, B7	N/A	N/A	N/A
(VREF pins are listed	XCV100/150	+ C6	A9, C6, E8	N/A	N/A
incrementally. Connect all pins listed for both the required device and all smaller devices	XCV200/300	+ A3	+ B4	N/A	N/A
	XCV400	N/A	N/A	A12, C11, D6, E8, G10	
listed in the same package.) Within each bank, if	XCV600	N/A	N/A	+ B7	A33, B28, B30, C23, C24, D33
input reference voltage	XCV800	N/A	N/A	+ B10	+ A26
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ D34

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{REF} Bank 1	XCV50	B9, C11	N/A	N/A	N/A
(VREF pins are listed	XCV100/150	+ E11	A18, B13, E14	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ A14	+ A19	N/A	N/A
the required device and all smaller devices	XCV400	N/A	N/A	A14, C20, C21, D15, G16	N/A
listed in the same package.) Within each bank, if	XCV600	N/A	N/A	+ B19	B6, B8, B18, D11, D13, D17
input reference voltage	XCV800	N/A	N/A	+ A17	+ B14
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ B5
V _{REF} , Bank 2	XCV50	F13, H13	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ F14	F21, H18, K21	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ E13	+ D22	N/A	N/A
the required device and all smaller devices listed in the same package.) Within each bank, if	XCV400	N/A	N/A	F24, H23, K20, M23, M26	N/A
	XCV600	N/A	N/A	+ G26	G1, H4, J1, L2, V5, W3
input reference voltage	XCV800	N/A	N/A	+ K25	+ N1
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ D2
V _{REF} , Bank 3	XCV50	K16, L14	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ L13	N21, R19, U21	N/A	N/A
incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if	XCV200/300	+ M13	+ U20	N/A	N/A
	XCV400	N/A	N/A	R23, R25, U21, W22, W23	N/A
	XCV600	N/A	N/A	+ W26	AC1, AJ2, AK3, AL4, AR1, Y1
input reference voltage	XCV800	N/A	N/A	+ U25	+ AF3
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AP4

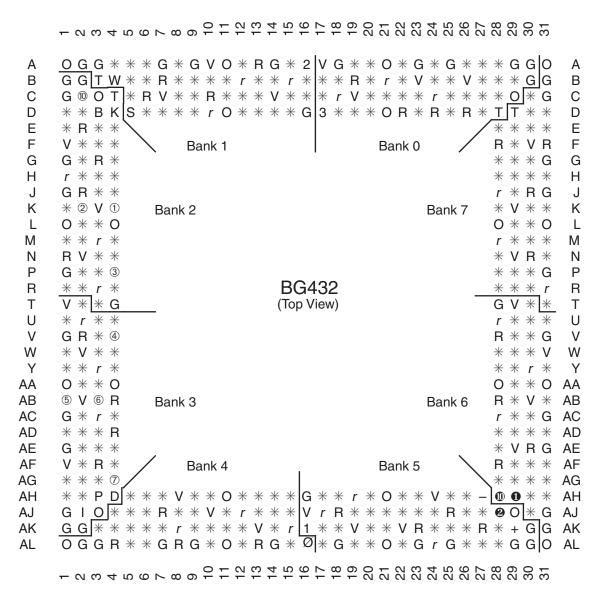
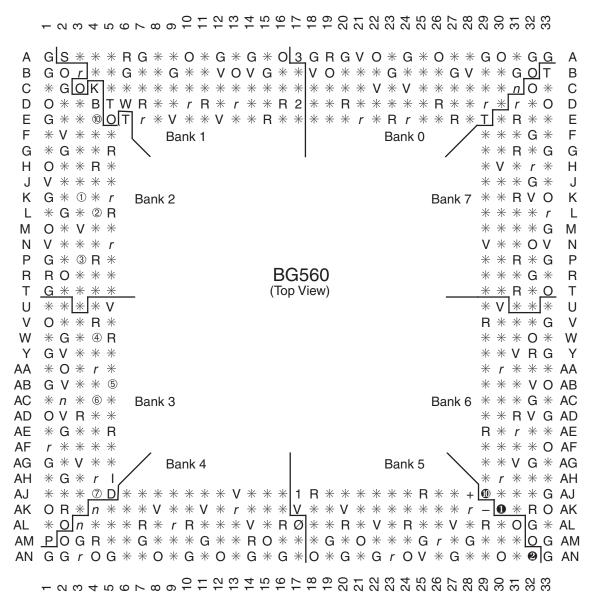


Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{REF} Bank 4	XCV50	P9, T12	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect	XCV100/150	+ T11	AA13, AB16, AB19	N/A	N/A
all pins listed for both the required device and	XCV200/300	+ R13	+ AB20	N/A	N/A
all smaller devices listed in the same package.)	XCV400	N/A	N/A	AC15, AD18, AD21, AD22, AF15	N/A
Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV600	N/A	N/A	+ AF20	AT19, AU7, AU17, AV8, AV10, AW11
pins are general i/o.	XCV800	N/A	N/A	+ AF17	+ AV14
	XCV1000	N/A	N/A	N/A	+ AU6
V _{REF} Bank 5	XCV50	T4, P8	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ R5	W8, Y10, AA5	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ T2	+ Y6	N/A	N/A
the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF}	XCV400	N/A	N/A	AA10, AB8, AB12, AC7, AF12	N/A
	XCV600	N/A	N/A	+ AF8	AT27, AU29, AU31, AV35, AW21, AW23
	XCV800	N/A	N/A	+ AE10	+ AT25
pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AV36
V _{REF} Bank 6	XCV50	J3, N1	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage	XCV100/150	+ M1	N2, R4, T3	N/A	N/A
	XCV200/300	+ N2	+ Y1	N/A	N/A
	XCV400	N/A	N/A	AB3, R1, R4, U6, V5	N/A
	XCV600	N/A	N/A	+ Y1	AB35, AD37, AH39, AK39, AM39, AN36
is not required, all V _{REF}	XCV800	N/A	N/A	+ U2	+ AE39
pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AT39

BG432 Pin Function Diagram



DS003_21_100300

Figure 6: BG432 Pin Function Diagram

BG560 Pin Function Diagram

DS003_22_100300

Figure 7: BG560 Pin Function Diagram

FG256 Pin Function Diagram

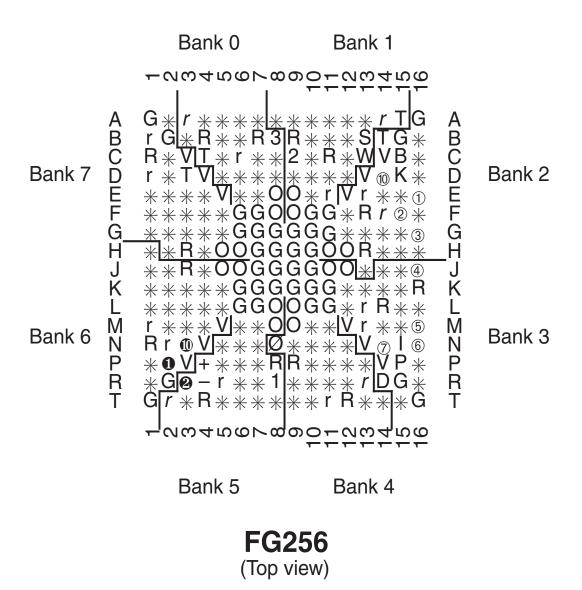


Figure 8: FG256 Pin Function Diagram

FG680 Pin Function Diagram

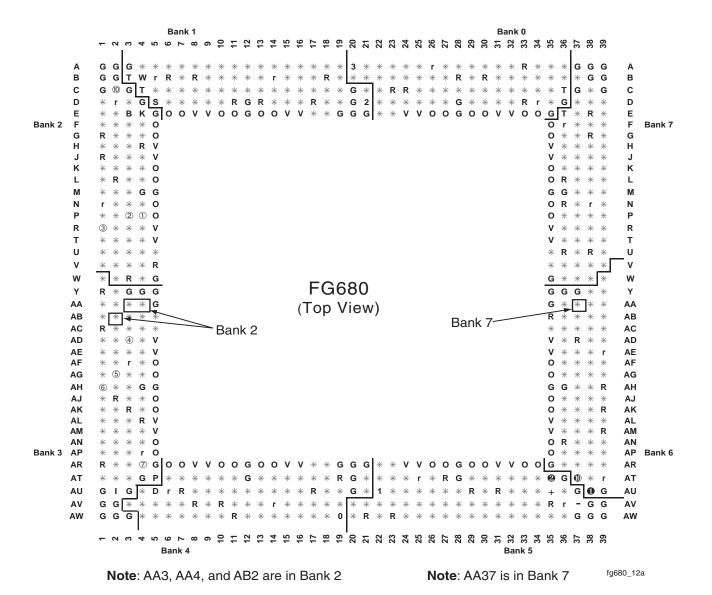


Figure 11: FG680 Pin Function Diagram