Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1176 | | Number of Logic Elements/Cells | 5292 | | Total RAM Bits | 57344 | | Number of I/O | 260 | | Number of Gates | 236666 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 352-LBGA Exposed Pad, Metal | | Supplier Device Package | 352-MBGA (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv200-5bg352c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Virtex Device/Package Combinations and Maximum I/O Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) | Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 | |---------|-------|--------|--------|--------|--------|--------|--------|--------|---------| | CS144 | 94 | 94 | | | | | | | | | TQ144 | 98 | 98 | | | | | | | | | PQ240 | 166 | 166 | 166 | 166 | 166 | | | | | | HQ240 | | | | | | 166 | 166 | 166 | | | BG256 | 180 | 180 | 180 | 180 | | | | | | | BG352 | | | 260 | 260 | 260 | | | | | | BG432 | | | | | 316 | 316 | 316 | 316 | | | BG560 | | | | | | 404 | 404 | 404 | 404 | | FG256 | 176 | 176 | 176 | 176 | | | | | | | FG456 | | | 260 | 284 | 312 | | | | | | FG676 | | | | | | 404 | 444 | 444 | | | FG680 | | | | | | | 512 | 512 | 512 | # **Virtex Ordering Information** Figure 1: Virtex Ordering Information DS003-2 (v4.0) March 1, 2013 # Virtex[™] 2.5 V Field Programmable Gate Arrays #### **Product Specification** The output buffer and all of the IOB control signals have independent polarity controls. vao_b.eps Figure 1: Virtex Architecture Overview All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage protection are provided, one that permits 5 V compliance, and one that does not. For 5 V compliance, a Zener-like structure connected to ground turns on when the output rises to approximately 6.5 V. When PCI 3.3 V compliance is required, a conventional clamp diode is connected to the output supply voltage, $V_{\rm CCO}$. Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each pad. Prior to configuration, all pins not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs can optionally be pulled up. The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins will float. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration. All Virtex IOBs support IEEE 1149.1-compatible boundary scan testing. # **Architectural Description** # **Virtex Array** The Virtex user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing logic - IOBs provide the interface between the package pins and the CLBs CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM. The VersaRing[™] I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking. The Virtex architecture also includes the following circuits that connect to the GRM. - Dedicated block memories of 4096 bits each - Clock DLLs for clock-distribution delay compensation and clock domain control - 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device. # Input/Output Block The Virtex IOB, Figure 2, features SelectIO™ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1. The three IOB storage elements function either as edge-triggered D-type flip-flops or as level sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop. In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear. © 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O. In smaller devices, some V_{CCO} pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the V_{CCO} voltage to permit migration to a larger device if necessary. In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO} . In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously. ## **Configurable Logic Block** The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4. Figure 5 shows a more detailed view of a single slice. In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs. ## Look-Up Tables Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing. ### Storage Elements The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators. In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice. Figure 4: 2-Slice Virtex CLB Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is selected either from these pads or from signals in the general purpose routing. Figure 9: Global Clock Distribution Network #### Delay-Locked Loop (DLL) Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input. In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices. In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock. See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information. ### **Boundary Scan** Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the $\rm V_{CCO}$ for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and $\rm V_{CCO}$. Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off. Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins. Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed. Figure 11: Boundary Scan Bit Sequence Table 5: Boundary Scan Instructions | Boundary-Scan
Command | Binary
Code(4:0) | Description | |--------------------------|---------------------|--| | EXTEST | 00000 | Enables boundary-scan EXTEST operation | | SAMPLE/PRELOAD | 00001 | Enables boundary-scan
SAMPLE/PRELOAD
operation | | USER 1 | 00010 | Access user-defined register 1 | | USER 2 | 00011 | Access user-defined register 2 | | CFG_OUT | 00100 | Access the configuration bus for read operations. | | CFG_IN | 00101 | Access the configuration bus for write operations. | | INTEST | 00111 | Enables boundary-scan INTEST operation | | USERCODE | 01000 | Enables shifting out
USER code | | IDCODE | 01001 | Enables shifting out of ID Code | | HIGHZ | 01010 | 3-states output pins while enabling the Bypass Register | | JSTART | 01100 | Clock the start-up
sequence when
StartupClk is TCK | | BYPASS | 11111 | Enables BYPASS | | RESERVED | All other codes | Xilinx reserved instructions | ### Identification Registers The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1 where v = the die version number f = the family code (03h for Virtex family) a = the number of CLB rows (ranges from 010h for XCV50 to 040h for XCV1000) c = the company code (49h for Xilinx) The USERCODE register is supported. By using the USER-CODE, a user-programmable identification code can be loaded and shifted out for examination. The identification code is embedded in the bitstream during bitstream generation and is valid only after configuration. Table 6: IDCODEs Assigned to Virtex FPGAs | FPGA | IDCODE | |---------|-----------| | XCV50 | v0610093h | | XCV100 | v0614093h | | XCV150 | v0618093h | | XCV200 | v061C093h | | XCV300 | v0620093h | | XCV400 | v0628093h | | XCV600 | v0630093h | | XCV800 | v0638093h | | XCV1000 | v0640093h | #### Including Boundary Scan in a Design Since the boundary scan pins are dedicated, no special element needs to be added to the design unless an internal data register (USER1 or USER2) is desired. If an internal data register is used, insert the boundary scan symbol and connect the necessary pins as appropriate. # **Development System** Virtex FPGAs are supported by the Xilinx Foundation and Alliance CAE tools. The basic methodology for Virtex design consists of three interrelated steps: design entry, implementation, and verification. Industry-standard tools are used for design entry and simulation (for example, Synopsys FPGA Express), while Xilinx provides proprietary architecture-specific tools for implementation. The Xilinx development system is integrated under the Xilinx Design Manager (XDM™) software, providing design- ers with a common user interface regardless of their choice of entry and verification tools. The XDM software simplifies the selection of implementation options with pull-down menus and on-line help. Application programs ranging from schematic capture to Placement and Routing (PAR) can be accessed through the XDM software. The program command sequence is generated prior to execution, and stored for documentation. Several advanced software features facilitate Virtex design. RPMs, for example, are schematic-based macros with relative location constraints to guide their placement. They help ensure optimal implementation of common functions. For HDL design entry, the Xilinx FPGA Foundation development system provides interfaces to the following synthesis design environments. - Synopsys (FPGA Compiler, FPGA Express) - Exemplar (Spectrum) - Synplicity (Synplify) For schematic design entry, the Xilinx FPGA Foundation and alliance development system provides interfaces to the following schematic-capture design environments. - Mentor Graphics V8 (Design Architect, QuickSim II) - Viewlogic Systems (Viewdraw) Third-party vendors support many other environments. A standard interface-file specification, Electronic Design Interchange Format (EDIF), simplifies file transfers into and out of the development system. Virtex FPGAs supported by a unified library of standard functions. This library contains over 400 primitives and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, multiplexers, shift registers, and barrel shifters. The "soft macro" portion of the library contains detailed descriptions of common logic functions, but does not contain any partitioning or placement information. The performance of these macros depends, therefore, on the partitioning and placement obtained during implementation. RPMs, on the other hand, do contain predetermined partitioning and placement information that permits optimal implementation of these functions. Users can create their own library of soft macros or RPMs based on the macros and primitives in the standard library. The design environment supports hierarchical design entry, with high-level schematics that comprise major functional blocks, while lower-level schematics define the logic in these blocks. These hierarchical design elements are automatically combined by the implementation tools. Different design entry tools can be combined within a hierarchical design, thus allowing the most convenient entry method to be used for each portion of the design. # **Design Implementation** The place-and-route tools (PAR) automatically provide the implementation flow described in this section. The partitioner takes the EDIF net list for the design and maps the logic into the architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines the best locations for these blocks based on their interconnections and the desired performance. Finally, the router interconnects the blocks. The PAR algorithms support fully automatic implementation of most designs. For demanding applications, however, the user can exercise various degrees of control over the process. User partitioning, placement, and routing information is optionally specified during the design-entry process. The implementation of highly structured designs can benefit greatly from basic floor planning. The implementation software incorporates Timing Wizard® timing-driven placement and routing. Designers specify timing requirements along entire paths during design entry. The timing path analysis routines in PAR then recognize these user-specified requirements and accommodate them. Timing requirements are entered on a schematic in a form directly relating to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system along entire signal paths is automatically tailored to user-generated specifications. Specific timing information for individual nets is unnecessary. ## **Design Verification** In addition to conventional software simulation, FPGA users can use in-circuit debugging techniques. Because Xilinx devices are infinitely reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors. The development system supports both software simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database, and back-annotates this information into the net list for use by the simulator. Alternatively, the user can verify timing-critical portions of the design using the TRACE® static timing analyzer. For in-circuit debugging, the development system includes a download and readback cable. This cable connects the FPGA in the target system to a PC or workstation. After downloading the design into the FPGA, the designer can single-step the logic, readback the contents of the flip-flops, and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes. | Date | Version | Revision | |----------|---------|---| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Updated SelectMAP Write Timing Characteristics values in Table 9. Converted file to modularized format. See the Virtex Data Sheet section. | | 07/19/01 | 2.6 | Made minor edits to text under Configuration. | | 07/19/02 | 2.7 | Made minor edit to Figure 16 and Figure 18. | | 09/10/02 | 2.8 | Added clarifications in the Configuration, Boundary-Scan Mode, and Block
SelectRAM sections. Revised Figure 17. | | 12/09/02 | 2.8.1 | Added clarification in the Boundary Scan section. Corrected number of buffered Hex lines listed in General Purpose Routing section. | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | # **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) ### **Power-On Power Supply Requirements** Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device⁽¹⁾ from 0 V. The current is highest at the fastest suggested ramp rate (0 V to nominal voltage in 2 ms) and is lowest at the slowest allowed ramp rate (0 V to nominal voltage in 50 ms). For more details on power supply requirements, see Application Note XAPP158 on www.xilinx.com. | Product | Description ⁽²⁾ | Current Requirement ^(1,3) | |---------------------------------|---------------------------------|--------------------------------------| | Virtex Family, Commercial Grade | Minimum required current supply | 500 mA | | Virtex Family, Industrial Grade | Minimum required current supply | 2 A | #### Notes: - Ramp rate used for this specification is from 0 2.7 VDC. Peak current occurs on or near the internal power-on reset threshold of 1.0V and lasts for less than 3 ms. - Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above. - 3. Larger currents can result if ramp rates are forced to be faster. # **DC Input and Output Levels** Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed output currents over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum V_{CCO} for each standard with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested. | Input/Output | | V _{IL} | VI | Н | V _{OL} | V _{OH} | I _{OL} | I _{OH} | |-----------------------|--------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-----------------|-----------------| | Standard | V, min | V, max | V, min | V, max | V, Max | V, Min | mA | mA | | LVTTL ⁽¹⁾ | - 0.5 | 0.8 | 2.0 | 5.5 | 0.4 | 2.4 | 24 | -24 | | LVCMOS2 | - 0.5 | .7 | 1.7 | 5.5 | 0.4 | 1.9 | 12 | -12 | | PCI, 3.3 V | - 0.5 | 44% V _{CCINT} | 60% V _{CCINT} | V _{CCO} + 0.5 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | | PCI, 5.0 V | - 0.5 | 0.8 | 2.0 | 5.5 | 0.55 | 2.4 | Note 2 | Note 2 | | GTL | - 0.5 | V _{REF} - 0.05 | V _{REF} + 0.05 | 3.6 | 0.4 | n/a | 40 | n/a | | GTL+ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.6 | n/a | 36 | n/a | | HSTL I ⁽³⁾ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 8 | -8 | | HSTL III | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 24 | -8 | | HSTL IV | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 48 | -8 | | SSTL3 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.6 | V _{REF} + 0.6 | 8 | -8 | | SSTL3 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.8 | V _{REF} + 0.8 | 16 | -16 | | SSTL2 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.61 | V _{REF} + 0.61 | 7.6 | -7.6 | | SSTL2 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.80 | V _{REF} + 0.80 | 15.2 | -15.2 | | CTT | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.4 | V _{REF} + 0.4 | 8 | -8 | | AGP | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | - V_{OL} and V_{OH} for lower drive currents are sample tested. - 2. Tested according to the relevant specifications. - DC input and output levels for HSTL18 (HSTL I/O standard with V_{CCO} of 1.8 V) are provided in an HSTL white paper on www.xilinx.com. | | | | | Speed | Grade | | | |--|----------------|--|---------|---------|------------|---------|---------| | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | | Setup and Hold Times with resp register ⁽¹⁾ | ect to Clock (| CLK at IOB input | | Setup | Time / Hol | d Time | | | Pad, no delay | All | T _{IOPICK} /T _{IOICKP} | 0.8 / 0 | 1.6 / 0 | 1.8 / 0 | 2.0 / 0 | ns, min | | Pad, with delay | XCV50 | T _{IOPICKD} /T _{IOICKPD} | 1.9 / 0 | 3.7 / 0 | 4.1 / 0 | 4.7 / 0 | ns, min | | | XCV100 | | 1.9 / 0 | 3.7 / 0 | 4.1 / 0 | 4.7 / 0 | ns, min | | | XCV150 | | 1.9 / 0 | 3.8 / 0 | 4.3 / 0 | 4.9 / 0 | ns, min | | | XCV200 | | 2.0 / 0 | 3.9 / 0 | 4.4 / 0 | 5.0 / 0 | ns, min | | | XCV300 | | 2.0 / 0 | 3.9 / 0 | 4.4 / 0 | 5.0 / 0 | ns, min | | | XCV400 | | 2.1 / 0 | 4.1 / 0 | 4.6 / 0 | 5.3 / 0 | ns, min | | | XCV600 | | 2.1 / 0 | 4.2 / 0 | 4.7 / 0 | 5.4 / 0 | ns, min | | | XCV800 | | 2.2 / 0 | 4.4 / 0 | 4.9 / 0 | 5.6 / 0 | ns, min | | | XCV1000 | | 2.3 / 0 | 4.5 / 0 | 5.0 / 0 | 5.8 / 0 | ns, min | | ICE input | All | T _{IOICECK} /T _{IOCKICE} | 0.37/ 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, max | | Set/Reset Delays | | | | | | | | | SR input (IFF, synchronous) | All | T _{IOSRCKI} | 0.49 | 1.0 | 1.1 | 1.3 | ns, max | | SR input to IQ (asynchronous) | All | T _{IOSRIQ} | 0.70 | 1.4 | 1.6 | 1.8 | ns, max | | GSR to output IQ | All | T _{GSRQ} | 4.9 | 9.7 | 10.9 | 12.5 | ns, max | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ^{2.} Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3. # **Clock Distribution Guidelines** | | | | Speed Grade | | | | |--|---------|-----------------------|-------------|------|------|---------| | Description | Device | Symbol | -6 | -5 | -4 | Units | | Global Clock Skew ⁽¹⁾ | | | | | | | | Global Clock Skew between IOB Flip-flops | XCV50 | T _{GSKEWIOB} | 0.10 | 0.12 | 0.14 | ns, max | | | XCV100 | | 0.12 | 0.13 | 0.15 | ns, max | | | XCV150 | | 0.12 | 0.13 | 0.15 | ns, max | | | XCV200 | | 0.13 | 0.14 | 0.16 | ns, max | | | XCV300 | | 0.14 | 0.16 | 0.18 | ns, max | | | XCV400 | | 0.13 | 0.13 | 0.14 | ns, max | | | XCV600 | | 0.14 | 0.15 | 0.17 | ns, max | | | XCV800 | | 0.16 | 0.17 | 0.20 | ns, max | | | XCV1000 | | 0.20 | 0.23 | 0.25 | ns, max | #### Notes: # **Clock Distribution Switching Characteristics** | | | Speed Grade | | | | | |---|-------------------|-------------|-----|------------|-----|---------| | Description | Symbol | Min | -6 | - 5 | -4 | Units | | GCLK IOB and Buffer | | | | | | | | Global Clock PAD to output. | T _{GPIO} | 0.33 | 0.7 | 0.8 | 0.9 | ns, max | | Global Clock Buffer I input to O output | T _{GIO} | 0.34 | 0.7 | 0.8 | 0.9 | ns, max | ^{1.} These clock-skew delays are provided for guidance only. They reflect the delays encountered in a typical design under worst-case conditions. Precise values for a particular design are provided by the timing analyzer. # I/O Standard Global Clock Input Adjustments | | | | | Speed | Grade | | | |--|------------------------|-------------------------|-------|-------|-------|-------|------------| | Description | Symbol | Standard ⁽¹⁾ | Min | -6 | -5 | -4 | Units | | Data Input Delay Adjustments | | | | | | | | | Standard-specific global clock input delay adjustments | T _{GPLVTTL} | LVTTL | 0 | 0 | 0 | 0 | ns,
max | | | T _{GPLVCMOS} | LVCMOS2 | -0.02 | -0.04 | -0.04 | -0.05 | ns,
max | | | T _{GPPCl33_3} | PCI, 33 MHz, 3.3
V | -0.05 | -0.11 | -0.12 | -0.14 | ns,
max | | | T _{GPPCl33_5} | PCI, 33 MHz, 5.0
V | 0.13 | 0.25 | 0.28 | 0.33 | ns,
max | | | T _{GPPCl66_3} | PCI, 66 MHz, 3.3
V | -0.05 | -0.11 | -0.12 | -0.14 | ns,
max | | | T _{GPGTL} | GTL | 0.7 | 0.8 | 0.9 | 0.9 | ns,
max | | | T _{GPGTLP} | GTL+ | 0.7 | 0.8 | 0.8 | 0.8 | ns,
max | | | T _{GPHSTL} | HSTL | 0.7 | 0.7 | 0.7 | 0.7 | ns,
max | | | T _{GPSSTL2} | SSTL2 | 0.6 | 0.52 | 0.51 | 0.50 | ns,
max | | | T _{GPSSTL3} | SSTL3 | 0.6 | 0.6 | 0.55 | 0.54 | ns,
max | | | T _{GPCTT} | СТТ | 0.7 | 0.7 | 0.7 | 0.7 | ns,
max | | | T _{GPAGP} | AGP | 0.6 | 0.54 | 0.53 | 0.52 | ns,
max | ^{1.} Input timing for GPLVTTL is measured at 1.4 V. For other I/O standards, see Table 3. # **CLB SelectRAM Switching Characteristics** | Description | Symbol | Min | -6 | -5 | -4 | Units | |--|----------------------------------|----------|------------|-----------|---------|---------| | Sequential Delays | | | | | | | | Clock CLK to X/Y outputs (WE active) 16 x 1 mode | T _{SHCKO16} | 1.2 | 2.3 | 2.6 | 3.0 | ns, max | | Clock CLK to X/Y outputs (WE active) 32 x 1 mode | T _{SHCKO32} | 1.2 | 2.7 | 3.1 | 3.5 | ns, max | | Shift-Register Mode | | | | | | | | Clock CLK to X/Y outputs | T _{REG} | 1.2 | 3.7 | 4.1 | 4.7 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Se | tup Time / | Hold Time | T. | · | | F/G address inputs | T _{AS} /T _{AH} | 0.25 / 0 | 0.5 / 0 | 0.6 / 0 | 0.7 / 0 | ns, min | | BX/BY data inputs (DIN) | T _{DS} /T _{DH} | 0.34 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | CE input (WE) | T _{WS} /T _{WH} | 0.38 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | Shift-Register Mode | | 1 | | , | · | 1 | | BX/BY data inputs (DIN) | T _{SHDICK} | 0.34 | 0.7 | 0.8 | 0.9 | ns, min | | CE input (WS) | T _{SHCECK} | 0.38 | 0.8 | 0.9 | 1.0 | ns, min | | Clock CLK | | - | | | 1 | 1 | | Minimum Pulse Width, High | T _{WPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T _{WPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum clock period to meet address write cycle time | T _{WC} | 2.4 | 4.8 | 5.4 | 6.2 | ns, min | | Shift-Register Mode | | | | | | | | Minimum Pulse Width, High | T _{SRPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T _{SRPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. Period Tolerance: the allowed input clock period change in nanoseconds. Figure 1: Frequency Tolerance and Clock Jitter # **Revision History** | Date | Version | Revision | |-------|---------|--| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99 | 1.2 | Updated package drawings and specs. | | 02/99 | 1.3 | Update of package drawings, updated specifications. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | Table 3: Virtex Pinout Tables (BGA) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |-----------|--------|-------|-------|-------|-------| | GCK0 | All | Y11 | AE13 | AL16 | AL17 | | GCK1 | All | Y10 | AF14 | AK16 | AJ17 | | GCK2 | All | A10 | B14 | A16 | D17 | | GCK3 | All | B10 | D14 | D17 | A17 | | MO | All | Y1 | AD24 | AH28 | AJ29 | | M1 | All | U3 | AB23 | AH29 | AK30 | | M2 | All | W2 | AC23 | AJ28 | AN32 | | CCLK | All | B19 | C3 | D4 | C4 | | PROGRAM | All | Y20 | AC4 | АН3 | AM1 | | DONE | All | W19 | AD3 | AH4 | AJ5 | | INIT | All | U18 | AD2 | AJ2 | AH5 | | BUSY/DOUT | All | D18 | E4 | D3 | D4 | | D0/DIN | All | C19 | D3 | C2 | E4 | | D1 | All | E20 | G1 | K4 | K3 | | D2 | All | G19 | J3 | K2 | L4 | | D3 | All | J19 | M3 | P4 | P3 | | D4 | All | M19 | R3 | V4 | W4 | | D5 | All | P19 | U4 | AB1 | AB5 | | D6 | All | T20 | V3 | AB3 | AC4 | | D7 | All | V19 | AC3 | AG4 | AJ4 | | WRITE | All | A19 | D5 | B4 | D6 | | CS | All | B18 | C4 | D5 | A2 | | TDI | All | C17 | В3 | В3 | D5 | | TDO | All | A20 | D4 | C4 | E6 | | TMS | All | D3 | D23 | D29 | B33 | | TCK | All | A1 | C24 | D28 | E29 | | DXN | All | W3 | AD23 | AH27 | AK29 | | DXP | All | V4 | AE24 | AK29 | AJ28 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|------------|----------|------------------|-----------------------|----------------------------| | V _{CCO} , Bank 7 | All | G4, H4 | G23, K26,
N23 | A31, L28, L31 | C32, D33, K33,
N32, T33 | | V _{REF} , Bank 0 | XCV50 | A8, B4 | N/A | N/A | N/A | | (VREF pins are listed incrementally. Connect all | XCV100/150 | + A4 | A16,C19,
C21 | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + A2 | + D21 | B19, D22, D24,
D26 | N/A | | same package.) | XCV400 | N/A | N/A | + C18 | A19, D20, | | Within each bank, if input | | | | | D26, E23, E27 | | reference voltage is not required, all V _{REF} pins are | XCV600 | N/A | N/A | + C24 | + E24 | | general I/O. | XCV800 | N/A | N/A | + B21 | + E21 | | | XCV1000 | N/A | N/A | N/A | + D29 | | V _{REF} , Bank 1 | XCV50 | A17, B12 | N/A | N/A | N/A | | (VREF pins are listed incrementally. Connect all | XCV100/150 | + B15 | B6, C9,
C12 | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + B17 | + D6 | A13, B7,
C6, C10 | N/A | | same package.) Within each bank, if input reference voltage is not | XCV400 | N/A | N/A | + B15 | A6, D7,
D11, D16, E15 | | required, all V _{REF} pins are | XCV600 | N/A | N/A | + D10 | + D10 | | general I/O. | XCV800 | N/A | N/A | + B12 | + D13 | | | XCV1000 | N/A | N/A | N/A | + E7 | | V _{REF} , Bank 2 | XCV50 | C20, J18 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the | XCV100/150 | + F19 | E2, H2,
M4 | N/A | N/A | | required device and all smaller devices listed in the | XCV200/300 | + G18 | + D2 | E2, G3,
J2, N1 | N/A | | same package.) | XCV400 | N/A | N/A | + R3 | G5, H4, | | Within each bank, if input reference voltage is not | | | | | L5, P4, R1 | | required, all V _{REF} pins are | XCV600 | N/A | N/A | + H1 | + K5 | | general I/O. | XCV800 | N/A | N/A | + M3 | + N5 | | | XCV1000 | N/A | N/A | N/A | + B3 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|------------|---------|---------------------|------------------------------------|--| | V _{REF} Bank 4 | XCV50 | P9, T12 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect | XCV100/150 | + T11 | AA13, AB16,
AB19 | N/A | N/A | | all pins listed for both the required device and | XCV200/300 | + R13 | + AB20 | N/A | N/A | | all smaller devices
listed in the same
package.) | XCV400 | N/A | N/A | AC15, AD18,
AD21, AD22,
AF15 | N/A | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV600 | N/A | N/A | + AF20 | AT19, AU7,
AU17, AV8,
AV10, AW11 | | pins are general i/o. | XCV800 | N/A | N/A | + AF17 | + AV14 | | | XCV1000 | N/A | N/A | N/A | + AU6 | | V _{REF} Bank 5 | XCV50 | T4, P8 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + R5 | W8, Y10, AA5 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + T2 | + Y6 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | AA10, AB8, AB12,
AC7, AF12 | N/A | | listed in the same package.) Within each bank, if input reference voltage | XCV600 | N/A | N/A | + AF8 | AT27, AU29,
AU31, AV35,
AW21, AW23 | | is not required, all V _{REF} | XCV800 | N/A | N/A | + AE10 | + AT25 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AV36 | | V _{REF} Bank 6 | XCV50 | J3, N1 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + M1 | N2, R4, T3 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + N2 | + Y1 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | AB3, R1, R4, U6,
V5 | N/A | | listed in the same package.) Within each bank, if input reference voltage | XCV600 | N/A | N/A | + Y1 | AB35, AD37,
AH39, AK39,
AM39, AN36 | | is not required, all V _{REF} | XCV800 | N/A | N/A | + U2 | + AE39 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AT39 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|---|--|--|---| | V _{REF} , Bank 7 | XCV50 | C1, H3 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + D1 | E2, H4, K3 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + B1 | + D2 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | F4, G4, K6, M2,
M5 | N/A | | listed in the same package.) | XCV600 | N/A | N/A | + H1 | E38, G38, L36,
N36, U36, U38 | | Within each bank, if input reference voltage | XCV800 | N/A | N/A | + K1 | + N38 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + F36 | | GND | All | A1, A16, B2,
B15, F6, F7,
F10, F11,
G6, G7, G8,
G9, G10,
G11, H7,
H8, H9, H10,
J7, J8, J9,
J10, K6, K7,
K8, K9, K10,
K11, L6, L7,
L10, L11,
R2, R15, T1,
T16 | A1, A22, B2, B21, C3, C20, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13, P14, Y3, Y20, AA2, AA21, AB1, AB22 | A1, A26, B2, B9, B14, B18, B25, C3, C24, D4, D23, E5, E22, J2, J25, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N2, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, P25, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17, V2, V25, AB5, AB22, AC4, AC23, AD3, AD24, AE2, AE9, AE13, AE18, AE25, AF1, AF26 | A1, A2, A3, A37, A38, A39, AA5, AA35, AH4, AH5, AH35, AR19, AR20, AR21, AR28, AR35, AT4, AT12, AT20, AT28, AT36, AU1, AU3, AU20, AU37, AU39, AV1, AV2, AV38, AV39, AW1, AW2, AW3, AW37, AW38, AW37, AW38, AW39, B1, B2, B38, B39, C1, C3, C20, C37, C39, D4, D12, D20, D28, D36, E5, E12, E19, E20, E21, E28, E35, M4, M5, M35, M36, W5, W35, Y3, Y4, Y5, Y35, Y36, Y37 | # **TQ144 Pin Function Diagram** Figure 2: TQ144 Pin Function Diagram # PQ240/HQ240 Pin Function Diagram Figure 3: PQ240/HQ240 Pin Function Diagram # **FG256 Pin Function Diagram** Figure 8: FG256 Pin Function Diagram