

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1176
Number of Logic Elements/Cells	5292
Total RAM Bits	57344
Number of I/O	260
Number of Gates	236666
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	352-LBGA Exposed Pad, Metal
Supplier Device Package	352-MBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcv200-5bg352i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Virtex Architecture

Virtex devices feature a flexible, regular architecture that comprises an array of configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all interconnected by a rich hierarchy of fast, versatile routing resources. The abundance of routing resources permits the Virtex family to accommodate even the largest and most complex designs.

Virtex FPGAs are SRAM-based, and are customized by loading configuration data into internal memory cells. In some modes, the FPGA reads its own configuration data from an external PROM (master serial mode). Otherwise, the configuration data is written into the FPGA (Select-MAPTM, slave serial, and JTAG modes).

The standard Xilinx Foundation™ and Alliance Series™ Development systems deliver complete design support for Virtex, covering every aspect from behavioral and schematic entry, through simulation, automatic design translation and implementation, to the creation, downloading, and readback of a configuration bit stream.

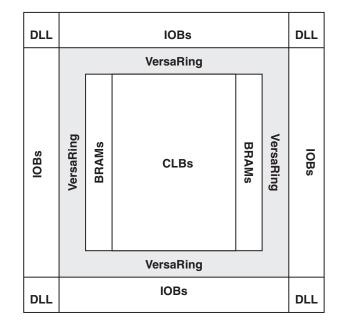
Higher Performance

Virtex devices provide better performance than previous generations of FPGA. Designs can achieve synchronous system clock rates up to 200 MHz including I/O. Virtex inputs and outputs comply fully with PCI specifications, and interfaces can be implemented that operate at 33 MHz or 66 MHz. Additionally, Virtex supports the hot-swapping requirements of Compact PCI.

Xilinx thoroughly benchmarked the Virtex family. While performance is design-dependent, many designs operated internally at speeds in excess of 100 MHz and can achieve 200 MHz. Table 2 shows performance data for representative circuits, using worst-case timing parameters.

Table 2: Performance for Common Circuit Functions

Function	Bits	Virtex -6
Register-to-Register		
Adder	16	5.0 ns
Audei	64	7.2 ns
Pipelined Multiplier	8 x 8	5.1 ns
	16 x 16	6.0 ns
Address Decoder	16	4.4 ns
	64	6.4 ns
16:1 Multiplexer		5.4 ns
Parity Tree	9	4.1 ns
	18	5.0 ns
	36	6.9 ns
Chip-to-Chip		
HSTL Class IV		200 MHz
LVTTL,16mA, fast slew		180 MHz



DS003-2 (v4.0) March 1, 2013

Virtex[™] 2.5 V Field Programmable Gate Arrays

Product Specification

The output buffer and all of the IOB control signals have independent polarity controls.

vao_b.eps

Figure 1: Virtex Architecture Overview

All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage protection are provided, one that permits 5 V compliance, and one that does not. For 5 V compliance, a Zener-like structure connected to ground turns on when the output rises to approximately 6.5 V. When PCI 3.3 V compliance is required, a conventional clamp diode is connected to the output supply voltage, $V_{\rm CCO}$.

Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each pad. Prior to configuration, all pins not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs can optionally be pulled up.

The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins will float. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration.

All Virtex IOBs support IEEE 1149.1-compatible boundary scan testing.

Architectural Description

Virtex Array

The Virtex user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs).

- CLBs provide the functional elements for constructing logic
- IOBs provide the interface between the package pins and the CLBs

CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM.

The VersaRing[™] I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking.

The Virtex architecture also includes the following circuits that connect to the GRM.

- Dedicated block memories of 4096 bits each
- Clock DLLs for clock-distribution delay compensation and clock domain control
- 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources

Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device.

Input/Output Block

The Virtex IOB, Figure 2, features SelectIO™ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1.

The three IOB storage elements function either as edge-triggered D-type flip-flops or as level sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop.

In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear.

© 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

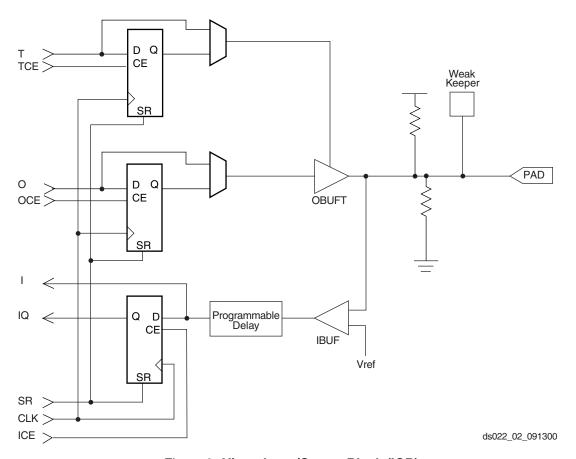


Figure 2: Virtex Input/Output Block (IOB)

Table 1: Supported Select I/O Standards

I/O Standard	Input Reference Voltage (V _{REF})	Output Source Voltage (V _{CCO})	Board Termination Voltage (V _{TT})	5 V Tolerant
LVTTL 2 – 24 mA	N/A	3.3	N/A	Yes
LVCMOS2	N/A	2.5	N/A	Yes
PCI, 5 V	N/A	3.3	N/A	Yes
PCI, 3.3 V	N/A	3.3	N/A	No
GTL	0.8	N/A	1.2	No
GTL+	1.0	N/A	1.5	No
HSTL Class I	0.75	1.5	0.75	No
HSTL Class III	0.9	1.5	1.5	No
HSTL Class IV	0.9	1.5	1.5	No
SSTL3 Class I &II	1.5	3.3	1.5	No
SSTL2 Class I & II	1.25	2.5	1.25	No
CTT	1.5	3.3	1.5	No
AGP	1.32	3.3	N/A	No

Input Path

A buffer In the Virtex IOB input path routes the input signal either directly to internal logic or through an optional input flip-flop.

An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is zero.

Each input buffer can be configured to conform to any of the low-voltage signalling standards supported. In some of these standards the input buffer utilizes a user-supplied threshold voltage, V_{REF}. The need to supply V_{REF} imposes constraints on which standards can used in close proximity to each other. See I/O Banking, page 3.

There are optional pull-up and pull-down resistors at each user I/O input for use after configuration. Their value is in the range 50 k Ω – 100 k Ω .

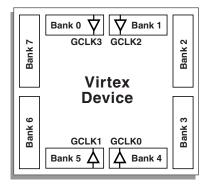
Output Path

The output path includes a 3-state output buffer that drives the output signal onto the pad. The output signal can be routed to the buffer directly from the internal logic or through an optional IOB output flip-flop.

The 3-state control of the output can also be routed directly from the internal logic or through a flip-flip that provides synchronous enable and disable.

Each output driver can be individually programmed for a wide range of low-voltage signalling standards. Each output buffer can source up to 24 mA and sink up to 48mA. Drive strength and slew rate controls minimize bus transients.

In most signalling standards, the output High voltage depends on an externally supplied V_{CCO} voltage. The need to supply V_{CCO} imposes constraints on which standards can be used in close proximity to each other. See **I/O Banking**, page 3.


An optional weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage on the pad and weakly drives the pin High or Low to match the input signal. If the pin is connected to a multiple-source signal, the weak keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter.

Because the weak-keeper circuit uses the IOB input buffer to monitor the input level, an appropriate V_{REF} voltage must be provided if the signalling standard requires one. The provision of this voltage must comply with the I/O banking rules.

I/O Banking

Some of the I/O standards described above require V_{CCO} and/or V_{REF} voltages. These voltages externally and connected to device pins that serve groups of IOBs, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank.

Eight I/O banks result from separating each edge of the FPGA into two banks, as shown in Figure 3. Each bank has multiple $V_{\rm CCO}$ pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use.

X8778_b

Figure 3: Virtex I/O Banks

Within a bank, output standards can be mixed only if they use the same V_{CCO} . Compatible standards are shown in Table 2. GTL and GTL+ appear under all voltages because their open-drain outputs do not depend on V_{CCO} .

Table 2: Compatible Output Standards

V _{CCO}	Compatible Standards
3.3 V	PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+
2.5 V	SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+
1.5 V	HSTL I, HSTL III, HSTL IV, GTL, GTL+

Some input standards require a user-supplied threshold voltage, V_{REF} In this case, certain user-I/O pins are automatically configured as inputs for the V_{REF} voltage. Approximately one in six of the I/O pins in the bank assume this role

The V_{REF} pins within a bank are interconnected internally and consequently only one V_{REF} voltage can be used within each bank. All V_{REF} pins in the bank, however, must be connected to the external voltage source for correct operation.

Within a bank, inputs that require V_{REF} can be mixed with those that do not. However, only one V_{REF} voltage can be used within a bank. Input buffers that use V_{REF} are not 5 V tolerant. LVTTL, LVCMOS2, and PCI 33 MHz 5 V, are 5 V tolerant.

The V_{CCO} and V_{REF} pins for each bank appear in the device Pinout tables and diagrams. The diagrams also show the bank affiliation of each I/O.

Within a given package, the number of V_{REF} and V_{CCO} pins can vary depending on the size of device. In larger devices,

more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O.

In smaller devices, some V_{CCO} pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the V_{CCO} voltage to permit migration to a larger device if necessary.

In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO} . In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously.

Configurable Logic Block

The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4.

Figure 5 shows a more detailed view of a single slice.

In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions

of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs.

Look-Up Tables

Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM.

The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing.

Storage Elements

The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators.

In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice.

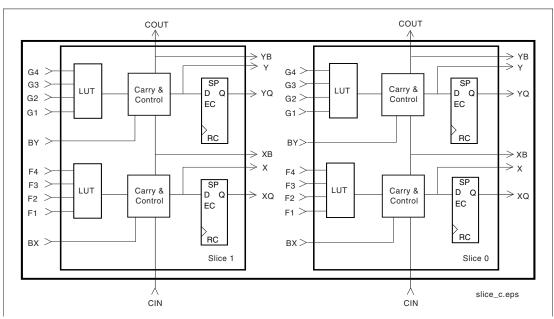


Figure 4: 2-Slice Virtex CLB

In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data.

Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

Instruction Set

The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5.

Data Registers

The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins.

The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device.

The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO.

Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE).

Bit Sequence

The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits.

From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11.

BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area.

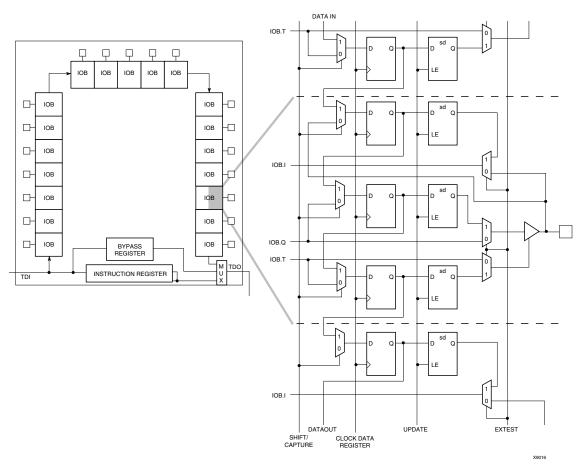


Figure 10: Virtex Series Boundary Scan Logic

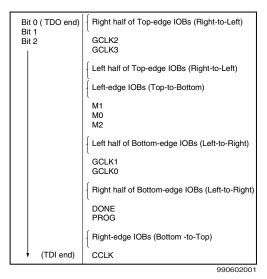


Figure 11: Boundary Scan Bit Sequence

Table 5: Boundary Scan Instructions

Boundary-Scan Command	Binary Code(4:0)	Description
EXTEST	00000	Enables boundary-scan EXTEST operation
SAMPLE/PRELOAD	00001	Enables boundary-scan SAMPLE/PRELOAD operation
USER 1	00010	Access user-defined register 1
USER 2	00011	Access user-defined register 2
CFG_OUT	00100	Access the configuration bus for read operations.
CFG_IN	00101	Access the configuration bus for write operations.
INTEST	00111	Enables boundary-scan INTEST operation
USERCODE	01000	Enables shifting out USER code
IDCODE	01001	Enables shifting out of ID Code
HIGHZ	01010	3-states output pins while enabling the Bypass Register
JSTART	01100	Clock the start-up sequence when StartupClk is TCK
BYPASS	11111	Enables BYPASS
RESERVED	All other codes	Xilinx reserved instructions

Identification Registers

The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined.

The IDCODE register has the following binary format:

vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1

where

v = the die version number

f = the family code (03h for Virtex family)

a = the number of CLB rows (ranges from 010h for XCV50 to 040h for XCV1000)

c = the company code (49h for Xilinx)

The USERCODE register is supported. By using the USER-CODE, a user-programmable identification code can be loaded and shifted out for examination. The identification code is embedded in the bitstream during bitstream generation and is valid only after configuration.

Table 6: IDCODEs Assigned to Virtex FPGAs

FPGA	IDCODE
XCV50	v0610093h
XCV100	v0614093h
XCV150	v0618093h
XCV200	v061C093h
XCV300	v0620093h
XCV400	v0628093h
XCV600	v0630093h
XCV800	v0638093h
XCV1000	v0640093h

Including Boundary Scan in a Design

Since the boundary scan pins are dedicated, no special element needs to be added to the design unless an internal data register (USER1 or USER2) is desired.

If an internal data register is used, insert the boundary scan symbol and connect the necessary pins as appropriate.

Development System

Virtex FPGAs are supported by the Xilinx Foundation and Alliance CAE tools. The basic methodology for Virtex design consists of three interrelated steps: design entry, implementation, and verification. Industry-standard tools are used for design entry and simulation (for example, Synopsys FPGA Express), while Xilinx provides proprietary architecture-specific tools for implementation.

The Xilinx development system is integrated under the Xilinx Design Manager (XDM™) software, providing design-

Virtex[™] 2.5 V Field Programmable Gate Arrays

DS003-3 (v4.0) March 1, 2013

Production Product Specification

Virtex Electrical Characteristics Definition of Terms

Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information.

Table 1 correlates the current status of each Virtex device with a corresponding speed file designation.

Table 1: Virtex Device Speed Grade Designations

	Speed Grade Designations							
Device	Advance	Preliminary	Production					
XCV50			-6, -5, -4					
XCV100			-6, -5, -4					
XCV150			-6, -5, -4					
XCV200			-6, -5, -4					
XCV300			-6, -5, -4					
XCV400			-6, -5, -4					
XCV600			-6, -5, -4					
XCV800			-6, -5, -4					
XCV1000			-6, -5, -4					

All specifications are subject to change without notice.

Power-On Power Supply Requirements

Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device⁽¹⁾ from 0 V. The current is highest at the fastest suggested ramp rate (0 V to nominal voltage in 2 ms) and is lowest at the slowest allowed ramp rate (0 V to nominal voltage in 50 ms). For more details on power supply requirements, see Application Note XAPP158 on www.xilinx.com.

Product	Description ⁽²⁾	Current Requirement ^(1,3)
Virtex Family, Commercial Grade	Minimum required current supply	500 mA
Virtex Family, Industrial Grade	Minimum required current supply	2 A

Notes:

- Ramp rate used for this specification is from 0 2.7 VDC. Peak current occurs on or near the internal power-on reset threshold of 1.0V and lasts for less than 3 ms.
- Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above.
- 3. Larger currents can result if ramp rates are forced to be faster.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed output currents over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum V_{CCO} for each standard with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

Input/Output		V _{IL}	VI	Н	V _{OL} V _{OH}		I _{OL}	I _{OH}
Standard	V, min	V, max	V, min	V, max	V, Max	V, Min	mA	mA
LVTTL ⁽¹⁾	- 0.5	0.8	2.0	5.5	0.4	2.4	24	-24
LVCMOS2	- 0.5	.7	1.7	5.5	0.4	1.9	12	-12
PCI, 3.3 V	- 0.5	44% V _{CCINT}	60% V _{CCINT}	V _{CCO} + 0.5	10% V _{CCO}	90% V _{CCO}	Note 2	Note 2
PCI, 5.0 V	- 0.5	0.8	2.0	5.5	0.55	2.4	Note 2	Note 2
GTL	- 0.5	V _{REF} - 0.05	V _{REF} + 0.05	3.6	0.4	n/a	40	n/a
GTL+	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.6	n/a	36	n/a
HSTL I ⁽³⁾	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCO} - 0.4	8	-8
HSTL III	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCO} - 0.4	24	-8
HSTL IV	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCO} - 0.4	48	-8
SSTL3 I	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.6	V _{REF} + 0.6	8	-8
SSTL3 II	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.8	V _{REF} + 0.8	16	-16
SSTL2 I	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.61	V _{REF} + 0.61	7.6	-7.6
SSTL2 II	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.80	V _{REF} + 0.80	15.2	-15.2
CTT	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.4	V _{REF} + 0.4	8	-8
AGP	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	10% V _{CCO}	90% V _{CCO}	Note 2	Note 2

- V_{OL} and V_{OH} for lower drive currents are sample tested.
- 2. Tested according to the relevant specifications.
- DC input and output levels for HSTL18 (HSTL I/O standard with V_{CCO} of 1.8 V) are provided in an HSTL white paper on www.xilinx.com.

CLB Switching Characteristics

Delays originating at F/G inputs vary slightly according to the input used. The values listed below are worst-case. Precise values are provided by the timing analyzer.

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Combinatorial Delays		•				
4-input function: F/G inputs to X/Y outputs	T _{ILO}	0.29	0.6	0.7	0.8	ns, max
5-input function: F/G inputs to F5 output	T _{IF5}	0.32	0.7	0.8	0.9	ns, max
5-input function: F/G inputs to X output	T _{IF5X}	0.36	0.8	0.8	1.0	ns, max
6-input function: F/G inputs to Y output via F6 MUX	T _{IF6Y}	0.44	0.9	1.0	1.2	ns, max
6-input function: F5IN input to Y output	T _{F5INY}	0.17	0.32	0.36	0.42	ns, max
Incremental delay routing through transparent latch to XQ/YQ outputs	T _{IFNCTL}	0.31	0.7	0.7	0.8	ns, max
BY input to YB output	T _{BYYB}	0.27	0.53	0.6	0.7	ns, max
Sequential Delays						T.
FF Clock CLK to XQ/YQ outputs	T _{CKO}	0.54	1.1	1.2	1.4	ns, max
Latch Clock CLK to XQ/YQ outputs	T _{CKLO}	0.6	1.2	1.4	1.6	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾	Setup Time / Hold Time					
4-input function: F/G Inputs	T _{ICK} /T _{CKI}	0.6 / 0	1.2 / 0	1.4 / 0	1.5 / 0	ns, min
5-input function: F/G inputs	T _{IF5CK} /T _{CKIF5}	0.7 / 0	1.3 / 0	1.5 / 0	1.7 / 0	ns, min
6-input function: F5IN input	T _{F5INCK} /T _{CKF5IN}	0.46 / 0	1.0 / 0	1.1 / 0	1.2 / 0	ns, min
6-input function: F/G inputs via F6 MUX	T _{IF6CK} /T _{CKIF6}	0.8 / 0	1.5 / 0	1.7 / 0	1.9 / 0	ns, min
BX/BY inputs	T_{DICK}/T_{CKDI}	0.30 / 0	0.6 / 0	0.7 / 0	0.8 / 0	ns, min
CE input	T_{CECK}/T_{CKCE}	0.37 / 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, min
SR/BY inputs (synchronous)	$T_{RCK}T_{CKR}$	0.33 / 0	0.7 / 0	0.8 / 0	0.9 / 0	ns, min
Clock CLK						
Minimum Pulse Width, High	T _{CH}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low	T_CL	0.8	1.5	1.7	2.0	ns, min
Set/Reset						
Minimum Pulse Width, SR/BY inputs	T _{RPW}	1.3	2.5	2.8	3.3	ns, min
Delay from SR/BY inputs to XQ/YQ outputs (asynchronous)	T _{RQ}	0.54	1.1	1.3	1.4	ns, max
Delay from GSR to XQ/YQ outputs	T _{IOGSRQ}	4.9	9.7	10.9	12.5	ns, max
Toggle Frequency (MHz) (for export control)	F _{TOG} (MHz)	625	333	294	250	MHz

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

CLB SelectRAM Switching Characteristics

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Sequential Delays						
Clock CLK to X/Y outputs (WE active) 16 x 1 mode	T _{SHCKO16}	1.2	2.3	2.6	3.0	ns, max
Clock CLK to X/Y outputs (WE active) 32 x 1 mode	T _{SHCKO32}	1.2	2.7	3.1	3.5	ns, max
Shift-Register Mode						
Clock CLK to X/Y outputs	T _{REG}	1.2	3.7	4.1	4.7	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾		Se	tup Time /	Hold Time	T.	·
F/G address inputs	T _{AS} /T _{AH}	0.25 / 0	0.5 / 0	0.6 / 0	0.7 / 0	ns, min
BX/BY data inputs (DIN)	T _{DS} /T _{DH}	0.34 / 0	0.7 / 0	0.8 / 0	0.9 / 0	ns, min
CE input (WE)	T _{WS} /T _{WH}	0.38 / 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, min
Shift-Register Mode		1		,	1	1
BX/BY data inputs (DIN)	T _{SHDICK}	0.34	0.7	0.8	0.9	ns, min
CE input (WS)	T _{SHCECK}	0.38	0.8	0.9	1.0	ns, min
Clock CLK		-			1	1
Minimum Pulse Width, High	T _{WPH}	1.2	2.4	2.7	3.1	ns, min
Minimum Pulse Width, Low	T _{WPL}	1.2	2.4	2.7	3.1	ns, min
Minimum clock period to meet address write cycle time	T _{WC}	2.4	4.8	5.4	6.2	ns, min
Shift-Register Mode						
Minimum Pulse Width, High	T _{SRPH}	1.2	2.4	2.7	3.1	ns, min
Minimum Pulse Width, Low	T _{SRPL}	1.2	2.4	2.7	3.1	ns, min

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

Block RAM Switching Characteristics

	Speed Grade					
Description	Symbol	Min	-6	-5	-4	Units
Sequential Delays						
Clock CLK to DOUT output	T _{BCKO}	1.7	3.4	3.8	4.3	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾		Setu	p Time / H	old Time		
ADDR inputs	T _{BACK} /T _{BCKA}	0.6 / 0	1.2 / 0	1.3 / 0	1.5 / 0	ns, min
DIN inputs	T _{BDCK} /T _{BCKD}	0.6 / 0	1.2 / 0	1.3 / 0	1.5 / 0	ns, min
EN input	T _{BECK} /T _{BCKE}	1.3 / 0	2.6 / 0	3.0 / 0	3.4 / 0	ns, min
RST input	T _{BRCK} /T _{BCKR}	1.3 / 0	2.5 / 0	2.7 / 0	3.2 / 0	ns, min
WEN input	T _{BWCK} /T _{BCKW}	1.2 / 0	2.3 / 0	2.6 / 0	3.0 / 0	ns, min
Clock CLK						
Minimum Pulse Width, High	T _{BPWH}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low	T _{BPWL}	0.8	1.5	1.7	2.0	ns, min
CLKA -> CLKB setup time for different ports	T _{BCCS}		3.0	3.5	4.0	ns, min

Notes:

TBUF Switching Characteristics

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Combinatorial Delays						
IN input to OUT output	T _{IO}	0	0	0	0	ns, max
TRI input to OUT output high-impedance	T _{OFF}	0.05	0.09	0.10	0.11	ns, max
TRI input to valid data on OUT output	T _{ON}	0.05	0.09	0.10	0.11	ns, max

JTAG Test Access Port Switching Characteristics

Description	Symbol	-6	-5	-4	Units
TMS and TDI Setup times before TCK	T _{TAPTCK}	4.0	4.0	4.0	ns, min
TMS and TDI Hold times after TCK	T _{TCKTAP}	2.0	2.0	2.0	ns, min
Output delay from clock TCK to output TDO	T _{TCKTDO}	11.0	11.0	11.0	ns, max
Maximum TCK clock frequency	F _{TCK}	33	33	33	MHz, max

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

Minimum Clock-to-Out for Virtex Devices

	With DLL					With	out DLL				
I/O Standard	All Devices	V50	V100	V150	V200	V300	V400	V600	V800	V1000	Units
*LVTTL_S2	5.2	6.0	6.0	6.0	6.0	6.1	6.1	6.1	6.1	6.1	ns
*LVTTL_S4	3.5	4.3	4.3	4.3	4.3	4.4	4.4	4.4	4.4	4.4	ns
*LVTTL_S6	2.8	3.6	3.6	3.6	3.6	3.7	3.7	3.7	3.7	3.7	ns
*LVTTL_S8	2.2	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	ns
*LVTTL_S12	2.0	2.9	2.9	2.9	2.9	2.9	2.9	3.0	3.0	3.0	ns
*LVTTL_S16	1.9	2.8	2.8	2.8	2.8	2.8	2.8	2.9	2.9	2.9	ns
*LVTTL_S24	1.8	2.6	2.6	2.7	2.7	2.7	2.7	2.7	2.7	2.8	ns
*LVTTL_F2	2.9	3.8	3.8	3.8	3.8	3.8	3.8	3.9	3.9	3.9	ns
*LVTTL_F4	1.7	2.6	2.6	2.6	2.6	2.6	2.6	2.7	2.7	2.7	ns
*LVTTL_F6	1.2	2.0	2.0	2.0	2.1	2.1	2.1	2.1	2.1	2.2	ns
*LVTTL_F8	1.1	1.9	1.9	1.9	1.9	2.0	2.0	2.0	2.0	2.0	ns
*LVTTL_F12	1.0	1.8	1.8	1.8	1.8	1.9	1.9	1.9	1.9	1.9	ns
*LVTTL_F16	0.9	1.7	1.8	1.8	1.8	1.8	1.8	1.8	1.9	1.9	ns
*LVTTL_F24	0.9	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.9	ns
LVCMOS2	1.1	1.9	1.9	1.9	2.0	2.0	2.0	2.0	2.0	2.1	ns
PCI33_3	1.5	2.4	2.4	2.4	2.4	2.4	2.4	2.5	2.5	2.5	ns
PCI33_5	1.4	2.2	2.2	2.3	2.3	2.3	2.3	2.3	2.3	2.4	ns
PCI66_3	1.1	1.9	1.9	2.0	2.0	2.0	2.0	2.0	2.1	2.1	ns
GTL	1.6	2.5	2.5	2.5	2.5	2.5	2.5	2.6	2.6	2.6	ns
GTL+	1.7	2.5	2.5	2.6	2.6	2.6	2.6	2.6	2.6	2.7	ns
HSTL I	1.1	1.9	1.9	1.9	1.9	2.0	2.0	2.0	2.0	2.0	ns
HSTL III	0.9	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.8	1.9	ns
HSTL IV	0.8	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.7	1.8	ns
SSTL2 I	0.9	1.7	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.8	ns
SSTL2 II	0.8	1.6	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.7	ns
SSTL3 I	0.8	1.6	1.7	1.7	1.7	1.7	1.7	1.7	1.8	1.8	ns
SSTL3 II	0.7	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.6	1.7	ns
CTT	1.0	1.8	1.8	1.8	1.9	1.9	1.9	1.9	1.9	2.0	ns
AGP	1.0	1.8	1.8	1.9	1.9	1.9	1.9	1.9	1.9	2.0	ns

^{*}S = Slow Slew Rate, F = Fast Slew Rate

^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

^{2.} Input and output timing is measured at 1.4 V for LVTTL. For other I/O standards, see Table 3. In all cases, an 8 pF external capacitive load is used.

DLL Timing Parameters

All devices are 100 percent functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions.

	Speed Grade							
		-6		-6 -5		-4		
Description	Symbol	Min	Max	Min	Max	Min	Max	Units
Input Clock Frequency (CLKDLLHF)	FCLKINHF	60	200	60	180	60	180	MHz
Input Clock Frequency (CLKDLL)	FCLKINLF	25	100	25	90	25	90	MHz
Input Clock Pulse Width (CLKDLLHF)	T _{DLLPWHF}	2.0	-	2.4	-	2.4	-	ns
Input Clock Pulse Width (CLKDLL)	T _{DLLPWLF}	2.5	-	3.0		3.0	-	ns

Notes:

DLL Clock Tolerance, Jitter, and Phase Information

All DLL output jitter and phase specifications determined through statistical measurement at the package pins using a clock mirror configuration and matched drivers.

			CLKDLLHF		CLKDLL		
Description	Symbol	F _{CLKIN}	Min	Max	Min	Max	Units
Input Clock Period Tolerance	T _{IPTOL}		-	1.0	-	1.0	ns
Input Clock Jitter Tolerance (Cycle to Cycle)	T _{IJITCC}		-	± 150	-	± 300	ps
Time Required for DLL to Acquire Lock	T _{LOCK}	> 60 MHz	-	20	-	20	μs
		50 - 60 MHz	-	-	-	25	μs
		40 - 50 MHz	-	-	-	50	μs
		30 - 40 MHz	-	-	-	90	μs
		25 - 30 MHz	-	-	-	120	μs
Output Jitter (cycle-to-cycle) for any DLL Clock Output (1)	T _{OJITCC}			± 60		± 60	ps
Phase Offset between CLKIN and CLKO ⁽²⁾	T _{PHIO}			± 100		± 100	ps
Phase Offset between Clock Outputs on the DLL ⁽³⁾	T _{PHOO}			± 140		± 140	ps
Maximum Phase Difference between CLKIN and CLKO ⁽⁴⁾	T _{PHIOM}			± 160		± 160	ps
Maximum Phase Difference between Clock Outputs on the DLL (5)	T _{PHOOM}			± 200		± 200	ps

- 1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter.
- Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, excluding Output Jitter and input clock jitter.
- Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL outputs, excluding Output Jitter and input clock jitter.
- 4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter).
- Maximum Phase Difference between Clock Outputs on the DLL is the sum of Output Jitter and Phase Offset between any DLL
 clock outputs, or the greatest difference between any two DLL output rising edges sue to DLL alone (excluding input clock jitter).
- 6. All specifications correspond to Commercial Operating Temperatures (0°C to +85°C).

^{1.} All specifications correspond to Commercial Operating Temperatures (0°C to + 85°C).

Date	Version	Revision
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.
05/00	2.2	Modified Table 18.
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics.
10/00	2.4	 Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram.
04/02/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See the Virtex Data Sheet section.
04/19/01	2.6	Clarified TIOCKP and TIOCKON IOB Output Switching Characteristics descriptors.
07/19/01	2.7	Under Absolute Maximum Ratings, changed (T _{SOL}) to 220 °C.
07/26/01	2.8	Removed T _{SOL} parameter and added footnote to Absolute Maximum Ratings table.
10/29/01	2.9	 Updated the speed grade designations used in data sheets, and added Table 1, which shows the current speed grade designation for each device.
02/01/02	3.0	Added footnote to DC Input and Output Levels table.
07/19/02	3.1	 Removed mention of MIL-M-38510/605 specification. Added link to xapp158 from the Power-On Power Supply Requirements section.
09/10/02	3.2	Added Clock CLK to IOB Input Switching Characteristics and IOB Output Switching Characteristics.
03/01/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.

Virtex Data Sheet

The Virtex Data Sheet contains the following modules:

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)

Table 3: Virtex Pinout Tables (BGA) (Continued)

Pin Name	Device	BG256	BG352	BG432	BG560
V _{CCO} , Bank 7	All	G4, H4	G23, K26, N23	A31, L28, L31	C32, D33, K33, N32, T33
V _{REF} , Bank 0	XCV50	A8, B4	N/A	N/A	N/A
(VREF pins are listed incrementally. Connect all	XCV100/150	+ A4	A16,C19, C21	N/A	N/A
pins listed for both the required device and all smaller devices listed in the	XCV200/300	+ A2	+ D21	B19, D22, D24, D26	N/A
same package.)	XCV400	N/A	N/A	+ C18	A19, D20,
Within each bank, if input					D26, E23, E27
reference voltage is not required, all V _{REF} pins are	XCV600	N/A	N/A	+ C24	+ E24
general I/O.	XCV800	N/A	N/A	+ B21	+ E21
	XCV1000	N/A	N/A	N/A	+ D29
V _{REF} , Bank 1	XCV50	A17, B12	N/A	N/A	N/A
(VREF pins are listed incrementally. Connect all	XCV100/150	+ B15	B6, C9, C12	N/A	N/A
pins listed for both the required device and all smaller devices listed in the	XCV200/300	+ B17	+ D6	A13, B7, C6, C10	N/A
same package.) Within each bank, if input reference voltage is not	XCV400	N/A	N/A	+ B15	A6, D7, D11, D16, E15
required, all V _{REF} pins are	XCV600	N/A	N/A	+ D10	+ D10
general I/O.	XCV800	N/A	N/A	+ B12	+ D13
	XCV1000	N/A	N/A	N/A	+ E7
V _{REF} , Bank 2	XCV50	C20, J18	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all pins listed for both the	XCV100/150	+ F19	E2, H2, M4	N/A	N/A
required device and all smaller devices listed in the same package.)	XCV200/300	+ G18	+ D2	E2, G3, J2, N1	N/A
	XCV400	N/A	N/A	+ R3	G5, H4,
Within each bank, if input reference voltage is not					L5, P4, R1
required, all V _{REF} pins are	XCV600	N/A	N/A	+ H1	+ K5
general I/O.	XCV800	N/A	N/A	+ M3	+ N5
	XCV1000	N/A	N/A	N/A	+ B3

Table 3: Virtex Pinout Tables (BGA) (Continued)

Pin Name	Device	BG256	BG352	BG432	BG560
V _{REF} , Bank 3	XCV50	M18, V20	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ R19	R4, V4, Y3	N/A	N/A
incrementally. Connect all pins listed for both the required device and all	XCV200/300	+ P18	+ AC2	V2, AB4, AD4, AF3	N/A
smaller devices listed in the	XCV400	N/A	N/A	+ U2	V4, W5,
same package.)					AD3, AE5, AK2
Within each bank, if input reference voltage is not	XCV600	N/A	N/A	+ AC3	+ AF1
required, all V _{REF} pins are	XCV800	N/A	N/A	+ Y3	+ AA4
general I/O.	XCV1000	N/A	N/A	N/A	+ AH4
V _{REF} , Bank 4	XCV50	V12, Y18	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all	XCV100/150	+ W15	AC12, AE5, AE8,	N/A	N/A
pins listed for both the required device and all smaller devices listed in the	XCV200/300	+ V14	+ AE4	AJ7, AL4, AL8, AL13	N/A
same package.) Within each bank, if input reference voltage is not	XCV400	N/A	N/A	+ AK15	AL7, AL10, AL16, AM4, AM14
required, all V _{REF} pins are	XCV600	N/A	N/A	+ AK8	+ AL9
general I/O.	XCV800	N/A	N/A	+ AJ12	+ AK13
	XCV1000	N/A	N/A	N/A	+ AN3
V _{REF} , Bank 5	XCV50	V9, Y3	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all pins listed for both the	XCV100/150	+ W6	AC15, AC18, AD20	N/A	N/A
required device and all smaller devices listed in the	XCV200/300	+ V7	+ AE23	AJ18, AJ25, AK23, AK27	N/A
within each bank, if input reference voltage is not	XCV400	N/A	N/A	+ AJ17	AJ18, AJ25, AL20, AL24, AL29
required, all V _{REF} pins are general I/O.	XCV600	N/A	N/A	+ AL24	+ AM26
	XCV800	N/A	N/A	+ AH19	+ AN23
	XCV1000	N/A	N/A	N/A	+ AK28
V _{REF} , Bank 6	XCV50	M2, R3	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all	XCV100/150	+ T1	R24, Y26, AA25,	N/A	N/A
pins listed for both the required device and all smaller devices listed in the	XCV200/300	+ T3	+ AD26	V28, AB28, AE30, AF28	N/A
same package.) Within each bank, if input	XCV400	N/A	N/A	+ U28	V29, Y32, AD31, AE29, AK32
reference voltage is not	XCV600	N/A	N/A	+ AC28	+ AE31
required, all V _{REF} pins are	XCV800	N/A	N/A	+ Y30	+ AA30
general I/O.	XCV1000	N/A	N/A	N/A	+ AH30

Table 4: Virtex Pinout Tables (Fine-Pitch BGA)

Pin Name	Device	FG256	FG456	FG676	FG680
GCK0	All	N8	W12	AA14	AW19
GCK1	All	R8	Y11	AB13	AU22
GCK2	All	C9	A11	C13	D21
GCK3	All	B8	C11	E13	A20
MO	All	N3	AB2	AD4	AT37
M1	All	P2	U5	W7	AU38
M2	All	R3	Y4	AB6	AT35
CCLK	All	D15	B22	D24	E4
PROGRAM	All	P15	W20	AA22	AT5
DONE	All	R14	Y19	AB21	AU5
INIT	All	N15	V19	Y21	AU2
BUSY/DOUT	All	C15	C21	E23	E3
D0/DIN	All	D14	D20	F22	C2
D1	All	E16	H22	K24	P4
D2	All	F15	H20	K22	P3
D3	All	G16	K20	M22	R1
D4	All	J16	N22	R24	AD3
D5	All	M16	R21	U23	AG2
D6	All	N16	T22	V24	AH1
D7	All	N14	Y21	AB23	AR4
WRITE	All	C13	A20	C22	B4
CS	All	B13	C19	E21	D5
TDI	All	A15	B20	D22	В3
TDO	All	B14	A21	C23	C4
TMS	All	D3	D3	F5	E36
TCK	All	C4	C4	E6	C36
DXN	All	R4	Y5	AB7	AV37
DXP	All	P4	V6	Y8	AU35

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{CCINT}	All	C3, C14, D4, D13, E5, E12, M5, M12, N4, N13, P3, P14	E5, E18, F6, F17, G7, G8, G9, G14, G15, G16, H7, H16, J7, J16, P7, P16, R7, R16, T7, T8, T9, T14, T15, T16, U6, U17, V5, V18	G7, G20, H8, H19, J9, J10, J11, J16, J17, J18, K9, K18, L9, L18, T9, T18, U9, U18, V9, V10, V11, V16, V17, V18, W8, W19, Y7, Y20	AD5, AD35, AE5, AE35, AL5, AL35, AM5, AM35, AR8, AR9, AR15, AR16, AR24, AR25, AR31, AR32, E8, E9, E15, E16, E24, E25, E31, E32, H5, H35, J5, J35, R5, R35, T5, T35
V _{CCO} , Bank 0	All	E8, F8	F7, F8, F9, F10 G10, G11	H9, H10, H11, H12, J12, J13	E26, E27, E29, E30, E33, E34
V _{CCO} , Bank 1	All	E9, F9	F13, F14, F15, F16, G12, G13	H15, H16, H17, H18, J14, J15	E6, E7, E10, E11, E13, E14
V _{CCO} , Bank 2	All	H11, H12	G17, H17, J17, K16, K17, L16	J19, K19, L19, M18, M19, N18	F5, G5, K5, L5, N5, P5
V _{CCO} , Bank 3	All	J11, J12	M16, N16, N17, P17, R17, T17	P18, R18, R19, T19, U19, V19	AF5, AG5, AN5, AK5, AJ5, AP5
V _{CCO} , Bank 4	All	L9. M9	T12, T13, U13, U14, U15, U16,	V14, V15, W15, W16, W17, W18	AR6, AR7, AR10, AR11, AR13, AR14
V _{CCO} , Bank 5	All	L8, M8	T10, T11, U7, U8, U9, U10	V12, V13, W9,W10, W11, W12	AR26, AR27, AR29, AR30, AR33, AR34
V _{CCO} , Bank 6	All	J5, J6	M7, N6, N7, P6, R6, T6	P9, R8, R9, T8, U8, V8	AF35, AG35, AJ35, AK35, AN35, AP35
V _{CCO} , Bank 7	All	H5, H6	G6, H6, J6, K6, K7, L7	J8, K8, L8, M8, M9, N9	F35, G35, K35, L35, N35, P35
V _{REF} Bank 0	XCV50	B4, B7	N/A	N/A	N/A
(VREF pins are listed	XCV100/150	+ C6	A9, C6, E8	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ A3	+ B4	N/A	N/A
the required device and all smaller devices listed in the same	XCV400	N/A	N/A	A12, C11, D6, E8, G10	
package.) Within each bank, if	XCV600	N/A	N/A	+ B7	A33, B28, B30, C23, C24, D33
input reference voltage	XCV800	N/A	N/A	+ B10	+ A26
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ D34

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{REF} Bank 4	XCV50	P9, T12	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect	XCV100/150	+ T11	AA13, AB16, AB19	N/A	N/A
all pins listed for both the required device and	XCV200/300	+ R13	+ AB20	N/A	N/A
all smaller devices listed in the same package.)	XCV400	N/A	N/A	AC15, AD18, AD21, AD22, AF15	N/A
Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV600	N/A	N/A	+ AF20	AT19, AU7, AU17, AV8, AV10, AW11
pins are general i/o.	XCV800	N/A	N/A	+ AF17	+ AV14
	XCV1000	N/A	N/A	N/A	+ AU6
V _{REF} Bank 5	XCV50	T4, P8	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ R5	W8, Y10, AA5	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ T2	+ Y6	N/A	N/A
the required device and all smaller devices	XCV400	N/A	N/A	AA10, AB8, AB12, AC7, AF12	N/A
listed in the same package.) Within each bank, if input reference voltage	XCV600	N/A	N/A	+ AF8	AT27, AU29, AU31, AV35, AW21, AW23
is not required, all V _{REF}	XCV800	N/A	N/A	+ AE10	+ AT25
pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AV36
V _{REF} Bank 6	XCV50	J3, N1	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ M1	N2, R4, T3	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ N2	+ Y1	N/A	N/A
the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage	XCV400	N/A	N/A	AB3, R1, R4, U6, V5	N/A
	XCV600	N/A	N/A	+ Y1	AB35, AD37, AH39, AK39, AM39, AN36
is not required, all V _{REF}	XCV800	N/A	N/A	+ U2	+ AE39
pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AT39