



Welcome to **E-XFL.COM** 

# Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                            |
|--------------------------------|------------------------------------------------------------|
| Product Status                 | Obsolete                                                   |
| Number of LABs/CLBs            | 1176                                                       |
| Number of Logic Elements/Cells | 5292                                                       |
| Total RAM Bits                 | 57344                                                      |
| Number of I/O                  | 176                                                        |
| Number of Gates                | 236666                                                     |
| Voltage - Supply               | 2.375V ~ 2.625V                                            |
| Mounting Type                  | Surface Mount                                              |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                         |
| Package / Case                 | 256-BGA                                                    |
| Supplier Device Package        | 256-FBGA (17x17)                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/xilinx/xcv200-5fg256i |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### **Virtex Architecture**

Virtex devices feature a flexible, regular architecture that comprises an array of configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all interconnected by a rich hierarchy of fast, versatile routing resources. The abundance of routing resources permits the Virtex family to accommodate even the largest and most complex designs.

Virtex FPGAs are SRAM-based, and are customized by loading configuration data into internal memory cells. In some modes, the FPGA reads its own configuration data from an external PROM (master serial mode). Otherwise, the configuration data is written into the FPGA (Select-MAP<sup>TM</sup>, slave serial, and JTAG modes).

The standard Xilinx Foundation™ and Alliance Series™ Development systems deliver complete design support for Virtex, covering every aspect from behavioral and schematic entry, through simulation, automatic design translation and implementation, to the creation, downloading, and readback of a configuration bit stream.

#### **Higher Performance**

Virtex devices provide better performance than previous generations of FPGA. Designs can achieve synchronous system clock rates up to 200 MHz including I/O. Virtex inputs and outputs comply fully with PCI specifications, and interfaces can be implemented that operate at 33 MHz or 66 MHz. Additionally, Virtex supports the hot-swapping requirements of Compact PCI.

Xilinx thoroughly benchmarked the Virtex family. While performance is design-dependent, many designs operated internally at speeds in excess of 100 MHz and can achieve 200 MHz. Table 2 shows performance data for representative circuits, using worst-case timing parameters.

Table 2: Performance for Common Circuit Functions

| Function              | Bits    | Virtex -6 |
|-----------------------|---------|-----------|
| Register-to-Register  |         |           |
| Adder                 | 16      | 5.0 ns    |
| Audei                 | 64      | 7.2 ns    |
| Pipelined Multiplier  | 8 x 8   | 5.1 ns    |
|                       | 16 x 16 | 6.0 ns    |
| Address Decoder       | 16      | 4.4 ns    |
|                       | 64      | 6.4 ns    |
| 16:1 Multiplexer      |         | 5.4 ns    |
| Parity Tree           | 9       | 4.1 ns    |
|                       | 18      | 5.0 ns    |
|                       | 36      | 6.9 ns    |
| Chip-to-Chip          |         |           |
| HSTL Class IV         |         | 200 MHz   |
| LVTTL,16mA, fast slew |         | 180 MHz   |



## Virtex Device/Package Combinations and Maximum I/O

Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins)

| Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|---------|
| CS144   | 94    | 94     |        |        |        |        |        |        |         |
| TQ144   | 98    | 98     |        |        |        |        |        |        |         |
| PQ240   | 166   | 166    | 166    | 166    | 166    |        |        |        |         |
| HQ240   |       |        |        |        |        | 166    | 166    | 166    |         |
| BG256   | 180   | 180    | 180    | 180    |        |        |        |        |         |
| BG352   |       |        | 260    | 260    | 260    |        |        |        |         |
| BG432   |       |        |        |        | 316    | 316    | 316    | 316    |         |
| BG560   |       |        |        |        |        | 404    | 404    | 404    | 404     |
| FG256   | 176   | 176    | 176    | 176    |        |        |        |        |         |
| FG456   |       |        | 260    | 284    | 312    |        |        |        |         |
| FG676   |       |        |        |        |        | 404    | 444    | 444    |         |
| FG680   |       |        |        |        |        |        | 512    | 512    | 512     |

## **Virtex Ordering Information**

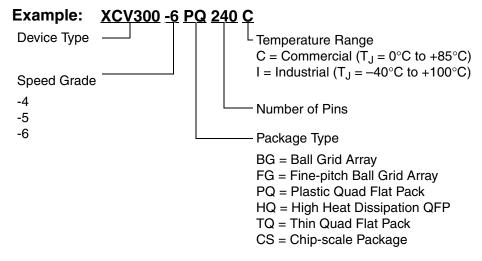



Figure 1: Virtex Ordering Information



#### General Purpose Routing

Most Virtex signals are routed on the general purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing hierarchy. The general routing resources are located in horizontal and vertical routing channels associated with the rows and columns CLBs. The general-purpose routing resources are listed below.

- Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix through which horizontal and vertical routing resources connect, and is also the means by which the CLB gains access to the general purpose routing.
- 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions.
- 12 buffered Hex lines route GRM signals to another GRMs six-blocks away in each one of the four directions. Organized in a staggered pattern, Hex lines can be driven only at their endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). One third of the Hex lines are bidirectional, while the remaining ones are uni-directional.

 12 Longlines are buffered, bidirectional wires that distribute signals across the device quickly and efficiently. Vertical Longlines span the full height of the device, and horizontal ones span the full width of the device.

#### I/O Routing

Virtex devices have additional routing resources around their periphery that form an interface between the CLB array and the IOBs. This additional routing, called the VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other system components can be manufactured while the logic design is still in progress.

#### **Dedicated Routing**

Some classes of signal require dedicated routing resources to maximize performance. In the Virtex architecture, dedicated routing resources are provided for two classes of signal.

- Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable bus lines are provided per CLB row, permitting multiple busses within a row, as shown in Figure 8.
- Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB.

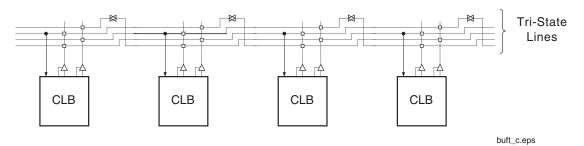



Figure 8: BUFT Connections to Dedicated Horizontal Bus Lines

#### Global Routing

Global Routing resources distribute clocks and other signals with very high fanout throughout the device. Virtex devices include two tiers of global routing resources referred to as primary global and secondary local clock routing resources.

• The primary global routing resources are four dedicated global nets with dedicated input pins that are designed to distribute high-fanout clock signals with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock pins. The primary global nets can only be driven by global buffers. There are four global buffers, one for each global net.  The secondary local clock routing resources consist of 24 backbone lines, 12 across the top of the chip and 12 across bottom. From these lines, up to 12 unique signals per column can be distributed via the 12 longlines in the column. These secondary resources are more flexible than the primary resources since they are not restricted to routing only to clock pins.

#### **Clock Distribution**

Virtex provides high-speed, low-skew clock distribution through the primary global routing resources described above. A typical clock distribution net is shown in Figure 9.

Four global buffers are provided, two at the top center of the device and two at the bottom center. These drive the four primary global nets that in turn drive any clock pin.



Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is

selected either from these pads or from signals in the general purpose routing.

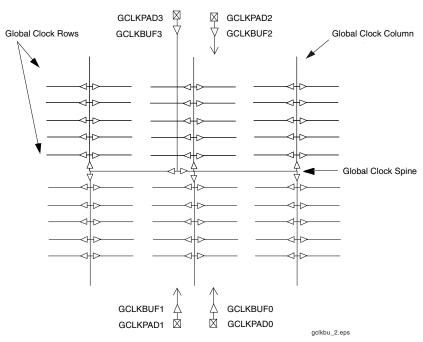



Figure 9: Global Clock Distribution Network

#### Delay-Locked Loop (DLL)

Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input.

In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16.

The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices.

In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock.

See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information.

#### **Boundary Scan**

Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the  $\rm V_{CCO}$  for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and  $\rm V_{CCO}$ .

Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off.

Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins.

Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed.

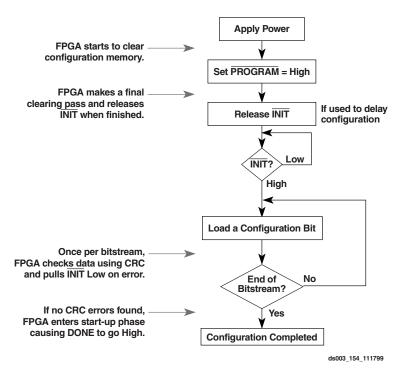



Figure 15: Serial Configuration Flowchart

After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback.

Retention of the SelectMAP port is selectable on a design-by-design basis when the bitstream is generated. If retention is selected, PROHIBIT constraints are required to prevent the SelectMAP-port pins from being used as user I/O.

Multiple Virtex FPGAs can be configured using the Select-MAP mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data,  $\overline{\text{WRITE}}$ , and BUSY pins of all the devices in parallel. The individual devices are loaded separately by asserting the  $\overline{\text{CS}}$  pin of each device in turn and writing the appropriate data. see Table 9 for SelectMAP Write Timing Characteristics.

Table 9: SelectMAP Write Timing Characteristics

|      | Description                         |     | Symbol                                   |           | Units    |
|------|-------------------------------------|-----|------------------------------------------|-----------|----------|
|      | D <sub>0-7</sub> Setup/Hold         | 1/2 | T <sub>SMDCC</sub> /T <sub>SMCCD</sub>   | 5.0 / 1.7 | ns, min  |
|      | CS Setup/Hold                       | 3/4 | T <sub>SMCSCC</sub> /T <sub>SMCCCS</sub> | 7.0 / 1.7 | ns, min  |
| CCLK | WRITE Setup/Hold                    | 5/6 | T <sub>SMCCW</sub> /T <sub>SMWCC</sub>   | 7.0 / 1.7 | ns, min  |
| COLK | BUSY Propagation Delay              | 7   | T <sub>SMCKBY</sub>                      | 12.0      | ns, max  |
|      | Maximum Frequency                   |     | F <sub>CC</sub>                          | 66        | MHz, max |
|      | Maximum Frequency with no handshake |     | F <sub>CCNH</sub>                        | 50        | MHz, max |

#### Write

Write operations send packets of configuration data into the FPGA. The sequence of operations for a multi-cycle write operation is shown below. Note that a configuration packet can be split into many such sequences. The packet does not have to complete within one assertion of  $\overline{CS}$ , illustrated in Figure 16.

- 1. Assert WRITE and CS Low. Note that when CS is asserted on successive CCLKs, WRITE must remain either asserted or de-asserted. Otherwise an abort will be initiated, as described below.
- 2. Drive data onto D[7:0]. Note that to avoid contention, the data source should not be enabled while  $\overline{CS}$  is Low and  $\overline{WRITE}$  is High. Similarly, while  $\overline{WRITE}$  is High, no more that one  $\overline{CS}$  should be asserted.



| Date     | Version | Revision                                                                                                                                                                                                                                                          |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01/00    | 1.9     | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.                                                                |
| 03/00    | 2.0     | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.                                                                                                                                              |
| 05/00    | 2.1     | Modified "Pins not listed" statement. Speed grade update to Final status.                                                                                                                                                                                         |
| 05/00    | 2.2     | Modified Table 18.                                                                                                                                                                                                                                                |
| 09/00    | 2.3     | <ul> <li>Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices.</li> <li>Corrected Units column in table under IOB Input Switching Characteristics.</li> <li>Added values to table under CLB SelectRAM Switching Characteristics.</li> </ul> |
| 10/00    | 2.4     | <ul> <li>Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18.</li> <li>Corrected BG256 Pin Function Diagram.</li> </ul>                                                                                                  |
| 04/01    | 2.5     | <ul> <li>Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL.</li> <li>Updated SelectMAP Write Timing Characteristics values in Table 9.</li> <li>Converted file to modularized format. See the Virtex Data Sheet section.</li> </ul>  |
| 07/19/01 | 2.6     | Made minor edits to text under Configuration.                                                                                                                                                                                                                     |
| 07/19/02 | 2.7     | Made minor edit to Figure 16 and Figure 18.                                                                                                                                                                                                                       |
| 09/10/02 | 2.8     | Added clarifications in the Configuration, Boundary-Scan Mode, and Block SelectRAM sections. Revised Figure 17.                                                                                                                                                   |
| 12/09/02 | 2.8.1   | <ul> <li>Added clarification in the Boundary Scan section.</li> <li>Corrected number of buffered Hex lines listed in General Purpose Routing section.</li> </ul>                                                                                                  |
| 03/01/13 | 4.0     | The products listed in this data sheet are obsolete. See XCN10016 for further information.                                                                                                                                                                        |

## **Virtex Data Sheet**

The Virtex Data Sheet contains the following modules:

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
   DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)



## **DC Characteristics Over Recommended Operating Conditions**

| Symbol              | Description                                                                    | 1                                   | Device  | Min      | Max  | Units |
|---------------------|--------------------------------------------------------------------------------|-------------------------------------|---------|----------|------|-------|
| V <sub>DRINT</sub>  | Data Retention V <sub>CCINT</sub> Voltage                                      |                                     | All     | 2.0      |      | V     |
| 21                  | (below which configuration data can be                                         | e lost)                             |         |          |      |       |
| $V_{\mathrm{DRIO}}$ | Data Retention V <sub>CCO</sub> Voltage (below which configuration data can be | e lost)                             | All     | 1.2      |      | V     |
| I <sub>CCINTQ</sub> | Quiescent V <sub>CCINT</sub> supply current <sup>(1,3)</sup>                   |                                     | XCV50   |          | 50   | mA    |
|                     |                                                                                |                                     | XCV100  |          | 50   | mA    |
|                     |                                                                                |                                     | XCV150  |          | 50   | mA    |
|                     |                                                                                |                                     | XCV200  |          | 75   | mA    |
|                     |                                                                                |                                     | XCV300  |          | 75   | mA    |
|                     |                                                                                |                                     | XCV400  |          | 75   | mA    |
|                     |                                                                                |                                     | XCV600  |          | 100  | mA    |
|                     |                                                                                |                                     | XCV800  |          | 100  | mA    |
|                     |                                                                                |                                     | XCV1000 |          | 100  | mA    |
| Iccoq               | Quiescent V <sub>CCO</sub> supply current <sup>(1)</sup>                       |                                     | XCV50   |          | 2    | mA    |
|                     |                                                                                |                                     | XCV100  |          | 2    | mA    |
|                     |                                                                                |                                     | XCV150  |          | 2    | mA    |
|                     |                                                                                |                                     | XCV200  |          | 2    | mA    |
|                     |                                                                                |                                     | XCV300  |          | 2    | mA    |
|                     |                                                                                |                                     | XCV400  |          | 2    | mA    |
|                     |                                                                                |                                     | XCV600  |          | 2    | mA    |
|                     |                                                                                |                                     | XCV800  |          | 2    | mA    |
|                     |                                                                                |                                     | XCV1000 |          | 2    | mA    |
| I <sub>REF</sub>    | V <sub>REF</sub> current per V <sub>REF</sub> pin                              |                                     | All     |          | 20   | μΑ    |
| ΙL                  | Input or output leakage current                                                |                                     | All     | -10      | +10  | μΑ    |
| C <sub>IN</sub>     | Input capacitance (sample tested)                                              | BGA, PQ, HQ, packages               | All     |          | 8    | pF    |
| I <sub>RPU</sub>    | Pad pull-up (when selected) @ V <sub>in</sub> = 0 tested)                      | V, V <sub>CCO</sub> = 3.3 V (sample | All     | Note (2) | 0.25 | mA    |
| I <sub>RPD</sub>    | Pad pull-down (when selected) @ V <sub>in</sub> =                              | = 3.6 V (sample tested)             |         | Note (2) | 0.15 | mA    |

- 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating.
- 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits.
- 3. Multiply I<sub>CCINTQ</sub> limit by two for industrial grade.



# Calculation of T<sub>ioop</sub> as a Function of Capacitance

 $T_{ioop}$  is the propagation delay from the O Input of the IOB to the pad. The values for  $T_{ioop}$  were based on the standard capacitive load (CsI) for each I/O standard as listed in Table 2.

Table 2: Constants for Calculating T<sub>ioop</sub>

| Standard                         | Csl<br>(pF) | fl<br>(ns/pF) |
|----------------------------------|-------------|---------------|
| LVTTL Fast Slew Rate, 2mA drive  | 35          | 0.41          |
| LVTTL Fast Slew Rate, 4mA drive  | 35          | 0.20          |
| LVTTL Fast Slew Rate, 6mA drive  | 35          | 0.13          |
| LVTTL Fast Slew Rate, 8mA drive  | 35          | 0.079         |
| LVTTL Fast Slew Rate, 12mA drive | 35          | 0.044         |
| LVTTL Fast Slew Rate, 16mA drive | 35          | 0.043         |
| LVTTL Fast Slew Rate, 24mA drive | 35          | 0.033         |
| LVTTL Slow Slew Rate, 2mA drive  | 35          | 0.41          |
| LVTTL Slow Slew Rate, 4mA drive  | 35          | 0.20          |
| LVTTL Slow Slew Rate, 6mA drive  | 35          | 0.100         |
| LVTTL Slow Slew Rate, 8mA drive  | 35          | 0.086         |
| LVTTL Slow Slew Rate, 12mA drive | 35          | 0.058         |
| LVTTL Slow Slew Rate, 16mA drive | 35          | 0.050         |
| LVTTL Slow Slew Rate, 24mA drive | 35          | 0.048         |
| LVCMOS2                          | 35          | 0.041         |
| PCI 33MHz 5V                     | 50          | 0.050         |
| PCI 33MHZ 3.3 V                  | 10          | 0.050         |
| PCI 66 MHz 3.3 V                 | 10          | 0.033         |
| GTL                              | 0           | 0.014         |
| GTL+                             | 0           | 0.017         |
| HSTL Class I                     | 20          | 0.022         |
| HSTL Class III                   | 20          | 0.016         |
| HSTL Class IV                    | 20          | 0.014         |
| SSTL2 Class I                    | 30          | 0.028         |
| SSTL2 Class II                   | 30          | 0.016         |
| SSTL3 Class I                    | 30          | 0.029         |
| SSTL3 Class II                   | 30          | 0.016         |
| СТТ                              | 20          | 0.035         |
| AGP                              | 10          | 0.037         |

#### Notes:

- I/O parameter measurements are made with the capacitance values shown above. See Application Note XAPP133 on <u>www.xilinx.com</u> for appropriate terminations.
- I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it.

For other capacitive loads, use the formulas below to calculate the corresponding  $T_{\text{ioop}}$ .

$$T_{ioop} = T_{ioop} + T_{opadjust} + (C_{load} - C_{sl}) * fl$$

Where:

 $T_{opadjust}$  is reported above in the Output Delay Adjustment section.

C<sub>load</sub> is the capacitive load for the design.

Table 3: Delay Measurement Methodology

| Standard       | ν <sub>L</sub> (1)                         | V <sub>H</sub> <sup>(1)</sup>              | Meas.<br>Point   | V <sub>REF</sub><br>Typ <sup>(2)</sup> |
|----------------|--------------------------------------------|--------------------------------------------|------------------|----------------------------------------|
| LVTTL          | 0                                          | 3                                          | 1.4              | -                                      |
| LVCMOS2        | 0                                          | 2.5                                        | 1.125            | -                                      |
| PCI33_5        | Pe                                         | er PCI Spec                                |                  | -                                      |
| PCI33_3        | Pe                                         | er PCI Spec                                |                  | -                                      |
| PCI66_3        | Pe                                         | er PCI Spec                                |                  | -                                      |
| GTL            | V <sub>REF</sub> -0.2                      | V <sub>REF</sub> +0.2                      | V <sub>REF</sub> | 0.80                                   |
| GTL+           | V <sub>REF</sub> -0.2                      | V <sub>REF</sub> +0.2                      | V <sub>REF</sub> | 1.0                                    |
| HSTL Class I   | V <sub>REF</sub> -0.5                      | V <sub>REF</sub> +0.5                      | V <sub>REF</sub> | 0.75                                   |
| HSTL Class III | V <sub>REF</sub> -0.5                      | V <sub>REF</sub> +0.5                      | V <sub>REF</sub> | 0.90                                   |
| HSTL Class IV  | V <sub>REF</sub> -0.5                      | V <sub>REF</sub> +0.5                      | V <sub>REF</sub> | 0.90                                   |
| SSTL3 I & II   | V <sub>REF</sub> -1.0                      | V <sub>REF</sub> +1.0                      | V <sub>REF</sub> | 1.5                                    |
| SSTL2 I & II   | V <sub>REF</sub> -0.75                     | V <sub>REF</sub> +0.75                     | $V_{REF}$        | 1.25                                   |
| CTT            | V <sub>REF</sub> -0.2                      | V <sub>REF</sub> +0.2                      | V <sub>REF</sub> | 1.5                                    |
| AGP            | V <sub>REF</sub> – (0.2xV <sub>CCO</sub> ) | V <sub>REF</sub> + (0.2xV <sub>CCO</sub> ) | V <sub>REF</sub> | Per<br>AGP<br>Spec                     |

- Input waveform switches between V<sub>L</sub>and V<sub>H</sub>.
- 2. Measurements are made at VREF (Typ), Maximum, and Minimum. Worst-case values are reported.
- I/O parameter measurements are made with the capacitance values shown in Table 2. See Application Note XAPP133 on www.xilinx.com for appropriate terminations.
- 4. I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it.



## **CLB Arithmetic Switching Characteristics**

Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment listed. Precise values are provided by the timing analyzer.

|                                                            |                                      | Speed Grade |         |         |         |         |
|------------------------------------------------------------|--------------------------------------|-------------|---------|---------|---------|---------|
| Description                                                | Symbol                               | Min         | -6      | -5      | -4      | Units   |
| Combinatorial Delays                                       |                                      |             |         |         | •       | •       |
| F operand inputs to X via XOR                              | T <sub>OPX</sub>                     | 0.37        | 0.8     | 0.9     | 1.0     | ns, max |
| F operand input to XB output                               | T <sub>OPXB</sub>                    | 0.54        | 1.1     | 1.3     | 1.4     | ns, max |
| F operand input to Y via XOR                               | T <sub>OPY</sub>                     | 0.8         | 1.5     | 1.7     | 2.0     | ns, max |
| F operand input to YB output                               | T <sub>OPYB</sub>                    | 0.8         | 1.5     | 1.7     | 2.0     | ns, max |
| F operand input to COUT output                             | T <sub>OPCYF</sub>                   | 0.6         | 1.2     | 1.3     | 1.5     | ns, max |
| G operand inputs to Y via XOR                              | T <sub>OPGY</sub>                    | 0.46        | 1.0     | 1.1     | 1.2     | ns, max |
| G operand input to YB output                               | T <sub>OPGYB</sub>                   | 0.8         | 1.6     | 1.8     | 2.1     | ns, max |
| G operand input to COUT output                             | T <sub>OPCYG</sub>                   | 0.7         | 1.3     | 1.4     | 1.6     | ns, max |
| BX initialization input to COUT                            | T <sub>BXCY</sub>                    | 0.41        | 0.9     | 1.0     | 1.1     | ns, max |
| CIN input to X output via XOR                              | T <sub>CINX</sub>                    | 0.21        | 0.41    | 0.46    | 0.53    | ns, max |
| CIN input to XB                                            | T <sub>CINXB</sub>                   | 0.02        | 0.04    | 0.05    | 0.06    | ns, max |
| CIN input to Y via XOR                                     | T <sub>CINY</sub>                    | 0.23        | 0.46    | 0.52    | 0.6     | ns, max |
| CIN input to YB                                            | T <sub>CINYB</sub>                   | 0.23        | 0.45    | 0.51    | 0.6     | ns, max |
| CIN input to COUT output                                   | T <sub>BYP</sub>                     | 0.05        | 0.09    | 0.10    | 0.11    | ns, max |
| Multiplier Operation                                       |                                      |             |         |         |         | •       |
| F1/2 operand inputs to XB output via AND                   | T <sub>FANDXB</sub>                  | 0.18        | 0.36    | 0.40    | 0.46    | ns, max |
| F1/2 operand inputs to YB output via AND                   | T <sub>FANDYB</sub>                  | 0.40        | 0.8     | 0.9     | 1.1     | ns, max |
| F1/2 operand inputs to COUT output via AND                 | T <sub>FANDCY</sub>                  | 0.22        | 0.43    | 0.48    | 0.6     | ns, max |
| G1/2 operand inputs to YB output via AND                   | T <sub>GANDYB</sub>                  | 0.25        | 0.50    | 0.6     | 0.7     | ns, max |
| G1/2 operand inputs to COUT output via AND                 | T <sub>GANDCY</sub>                  | 0.07        | 0.13    | 0.15    | 0.17    | ns, max |
| Setup and Hold Times before/after Clock CLK <sup>(1)</sup> | Setup Time / Hold Time               |             |         |         |         |         |
| CIN input to FFX                                           | T <sub>CCKX</sub> /T <sub>CKCX</sub> | 0.50 / 0    | 1.0 / 0 | 1.2 / 0 | 1.3 / 0 | ns, min |
| CIN input to FFY                                           | T <sub>CCKY</sub> /T <sub>CKCY</sub> | 0.53 / 0    | 1.1 / 0 | 1.2 / 0 | 1.4 / 0 | ns, min |

<sup>1.</sup> A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.



## **Block RAM Switching Characteristics**

|                                                            | Speed Grade                          |         |            |          |         |         |
|------------------------------------------------------------|--------------------------------------|---------|------------|----------|---------|---------|
| Description                                                | Symbol                               | Min     | -6         | -5       | -4      | Units   |
| Sequential Delays                                          |                                      |         |            |          |         |         |
| Clock CLK to DOUT output                                   | T <sub>BCKO</sub>                    | 1.7     | 3.4        | 3.8      | 4.3     | ns, max |
| Setup and Hold Times before/after Clock CLK <sup>(1)</sup> |                                      | Setu    | p Time / H | old Time |         |         |
| ADDR inputs                                                | T <sub>BACK</sub> /T <sub>BCKA</sub> | 0.6 / 0 | 1.2 / 0    | 1.3 / 0  | 1.5 / 0 | ns, min |
| DIN inputs                                                 | T <sub>BDCK</sub> /T <sub>BCKD</sub> | 0.6 / 0 | 1.2 / 0    | 1.3 / 0  | 1.5 / 0 | ns, min |
| EN input                                                   | T <sub>BECK</sub> /T <sub>BCKE</sub> | 1.3 / 0 | 2.6 / 0    | 3.0 / 0  | 3.4 / 0 | ns, min |
| RST input                                                  | T <sub>BRCK</sub> /T <sub>BCKR</sub> | 1.3 / 0 | 2.5 / 0    | 2.7 / 0  | 3.2 / 0 | ns, min |
| WEN input                                                  | T <sub>BWCK</sub> /T <sub>BCKW</sub> | 1.2 / 0 | 2.3 / 0    | 2.6 / 0  | 3.0 / 0 | ns, min |
| Clock CLK                                                  |                                      |         |            |          |         |         |
| Minimum Pulse Width, High                                  | T <sub>BPWH</sub>                    | 0.8     | 1.5        | 1.7      | 2.0     | ns, min |
| Minimum Pulse Width, Low                                   | T <sub>BPWL</sub>                    | 0.8     | 1.5        | 1.7      | 2.0     | ns, min |
| CLKA -> CLKB setup time for different ports                | T <sub>BCCS</sub>                    |         | 3.0        | 3.5      | 4.0     | ns, min |

#### Notes:

## **TBUF Switching Characteristics**

|                                        |                  | Speed Grade |      |      |      |         |
|----------------------------------------|------------------|-------------|------|------|------|---------|
| Description                            | Symbol           | Min         | -6   | -5   | -4   | Units   |
| Combinatorial Delays                   |                  |             |      |      |      |         |
| IN input to OUT output                 | T <sub>IO</sub>  | 0           | 0    | 0    | 0    | ns, max |
| TRI input to OUT output high-impedance | T <sub>OFF</sub> | 0.05        | 0.09 | 0.10 | 0.11 | ns, max |
| TRI input to valid data on OUT output  | T <sub>ON</sub>  | 0.05        | 0.09 | 0.10 | 0.11 | ns, max |

## **JTAG Test Access Port Switching Characteristics**

|                                           |                     | Speed Grade |      |      |          |
|-------------------------------------------|---------------------|-------------|------|------|----------|
| Description                               | Symbol              | -6          | -5   | -4   | Units    |
| TMS and TDI Setup times before TCK        | T <sub>TAPTCK</sub> | 4.0         | 4.0  | 4.0  | ns, min  |
| TMS and TDI Hold times after TCK          | T <sub>TCKTAP</sub> | 2.0         | 2.0  | 2.0  | ns, min  |
| Output delay from clock TCK to output TDO | T <sub>TCKTDO</sub> | 11.0        | 11.0 | 11.0 | ns, max  |
| Maximum TCK clock frequency               | F <sub>TCK</sub>    | 33          | 33   | 33   | MHz, max |

<sup>1.</sup> A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.



## **Virtex Pin-to-Pin Output Parameter Guidelines**

All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted.

## Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DLL

|                                                                                                     |                       |         | Speed Grade |     |     |     |         |
|-----------------------------------------------------------------------------------------------------|-----------------------|---------|-------------|-----|-----|-----|---------|
| Description                                                                                         | Symbol                | Device  | Min         | -6  | -5  | -4  | Units   |
| LVTTL Global Clock Input to Output Delay using                                                      | T <sub>ICKOFDLL</sub> | XCV50   | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |
| Output Flip-flop, 12 mA, Fast Slew Rate, with DLL. For data output with different standards, adjust |                       | XCV100  | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |
| delays with the values shown in Output Delay                                                        |                       | XCV150  | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |
| Adjustments.                                                                                        |                       | XCV200  | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |
|                                                                                                     |                       | XCV300  | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |
|                                                                                                     |                       | XCV400  | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |
|                                                                                                     |                       | XCV600  | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |
|                                                                                                     |                       | XCV800  | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |
|                                                                                                     |                       | XCV1000 | 1.0         | 3.1 | 3.3 | 3.6 | ns, max |

#### Notes:

- 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3.
- 3. DLL output jitter is already included in the timing calculation.

## Global Clock Input-to-Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DLL

|                                                                                                                      |                    |         | Speed Grade |     |     |     |         |
|----------------------------------------------------------------------------------------------------------------------|--------------------|---------|-------------|-----|-----|-----|---------|
| Description                                                                                                          | Symbol             | Device  | Min         | -6  | -5  | -4  | Units   |
| LVTTL Global Clock Input to Output Delay using                                                                       | T <sub>ICKOF</sub> | XCV50   | 1.5         | 4.6 | 5.1 | 5.7 | ns, max |
| Output Flip-flop, 12 mA, Fast Slew Rate, <i>without</i> DLL. For data <i>output</i> with different standards, adjust |                    | XCV100  | 1.5         | 4.6 | 5.1 | 5.7 | ns, max |
| delays with the values shown in Input and Output                                                                     |                    | XCV150  | 1.5         | 4.7 | 5.2 | 5.8 | ns, max |
| Delay Adjustments. For I/O standards requiring V <sub>RFF</sub> , such as GTL,                                       |                    | XCV200  | 1.5         | 4.7 | 5.2 | 5.8 | ns, max |
| GTL+, SSTL, HSTL, CTT, and AGO, an additional                                                                        |                    | XCV300  | 1.5         | 4.7 | 5.2 | 5.9 | ns, max |
| 600 ps must be added.                                                                                                |                    | XCV400  | 1.5         | 4.8 | 5.3 | 6.0 | ns, max |
|                                                                                                                      |                    | XCV600  | 1.6         | 4.9 | 5.4 | 6.0 | ns, max |
|                                                                                                                      |                    | XCV800  | 1.6         | 4.9 | 5.5 | 6.2 | ns, max |
|                                                                                                                      |                    | XCV1000 | 1.7         | 5.0 | 5.6 | 6.3 | ns, max |

- Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
- 2. Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3.

## **Product Obsolete/Under Obsolescence**







# Virtex<sup>™</sup> 2.5 V Field Programmable Gate Arrays

DS003-4 (v4.0) March 1, 2013

**Production Product Specification** 

## **Virtex Pin Definitions**

Table 1: Special Purpose Pins

| Pin Name                                       | Dedicated<br>Pin | Direction                     | Description                                                                                                                                                                                                                |
|------------------------------------------------|------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GCK0, GCK1,<br>GCK2, GCK3                      | Yes              | Input                         | Clock input pins that connect to Global Clock Buffers. These pins become user inputs when not needed for clocks.                                                                                                           |
| M0, M1, M2                                     | Yes              | Input                         | Mode pins are used to specify the configuration mode.                                                                                                                                                                      |
| CCLK                                           | Yes              | Input or<br>Output            | The configuration Clock I/O pin: it is an input for SelectMAP and slave-serial modes, and output in master-serial mode. After configuration, it is input only, logic level = Don't Care.                                   |
| PROGRAM                                        | Yes              | Input                         | Initiates a configuration sequence when asserted Low.                                                                                                                                                                      |
| DONE                                           | Yes              | Bidirectional                 | Indicates that configuration loading is complete, and that the start-up sequence is in progress. The output can be open drain.                                                                                             |
| INIT                                           | No               | Bidirectional<br>(Open-drain) | When Low, indicates that the configuration memory is being cleared. The pin becomes a user I/O after configuration.                                                                                                        |
| BUSY/<br>DOUT                                  | No               | Output                        | In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration unless the SelectMAP port is retained.                                                     |
|                                                |                  |                               | In bit-serial modes, DOUT provides header information to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration.                                                                              |
| D0/DIN,<br>D1, D2,<br>D3, D4,<br>D5, D6,<br>D7 | No               | Input or<br>Output            | In SelectMAP mode, D0 - D7 are configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained.  In bit-serial modes, DIN is the single data input. This pin becomes a user |
|                                                |                  | _                             | I/O after configuration.                                                                                                                                                                                                   |
| WRITE                                          | No               | Input                         | In SelectMAP mode, the active-low Write Enable signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained.                                                                               |
| CS                                             | No               | Input                         | In SelectMAP mode, the active-low Chip Select signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained.                                                                                |
| TDI, TDO,<br>TMS, TCK                          | Yes              | Mixed                         | Boundary-scan Test-Access-Port pins, as defined in IEEE 1149.1.                                                                                                                                                            |
| DXN, DXP                                       | Yes              | N/A                           | Temperature-sensing diode pins. (Anode: DXP, cathode: DXN)                                                                                                                                                                 |
| V <sub>CCINT</sub>                             | Yes              | Input                         | Power-supply pins for the internal core logic.                                                                                                                                                                             |
| V <sub>CCO</sub>                               | Yes              | Input                         | Power-supply pins for the output drivers (subject to banking rules)                                                                                                                                                        |
| V <sub>REF</sub>                               | No               | Input                         | Input threshold voltage pins. Become user I/Os when an external threshold voltage is not needed (subject to banking rules).                                                                                                |
| GND                                            | Yes              | Input                         | Ground                                                                                                                                                                                                                     |

<sup>© 1999-2013</sup> Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at <a href="http://www.xilinx.com/legal.htm">http://www.xilinx.com/legal.htm</a>.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.



Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued)

| Pin Name                                                                                                 | Device     | CS144                                                                        | TQ144                                                                      | PQ/HQ240                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>REF</sub> , Bank 6                                                                                | XCV50      | H2, K1                                                                       | 116, 123                                                                   | 36, 50                                                                                                                                         |
| (V <sub>REF</sub> pins are listed                                                                        | XCV100/150 | + J3                                                                         | + 118                                                                      | + 47                                                                                                                                           |
| incrementally. Connect all pins listed for both                                                          | XCV200/300 | N/A                                                                          | N/A                                                                        | + 54                                                                                                                                           |
| the required device                                                                                      | XCV400     | N/A                                                                          | N/A                                                                        | + 33                                                                                                                                           |
| and all smaller devices listed in the same                                                               | XCV600     | N/A                                                                          | N/A                                                                        | + 48                                                                                                                                           |
| package.)                                                                                                | XCV800     | N/A                                                                          | N/A                                                                        | + 40                                                                                                                                           |
| Within each bank, if input reference voltage is not required, all V <sub>REF</sub> pins are general I/O. |            |                                                                              |                                                                            |                                                                                                                                                |
| V <sub>REF</sub> , Bank 7                                                                                | XCV50      | D4, E1                                                                       | 133, 140                                                                   | 9, 23                                                                                                                                          |
| (V <sub>REF</sub> pins are listed                                                                        | XCV100/150 | + D2                                                                         | + 138                                                                      | + 12                                                                                                                                           |
| incrementally. Connect all pins listed for both                                                          | XCV200/300 | N/A                                                                          | N/A                                                                        | + 5                                                                                                                                            |
| the required device                                                                                      | XCV400     | N/A                                                                          | N/A                                                                        | + 26                                                                                                                                           |
| and all smaller devices listed in the same                                                               | XCV600     | N/A                                                                          | N/A                                                                        | + 11                                                                                                                                           |
| package.)                                                                                                | XCV800     | N/A                                                                          | N/A                                                                        | + 19                                                                                                                                           |
| Within each bank, if input reference voltage is not required, all V <sub>REF</sub> pins are general I/O. |            |                                                                              |                                                                            |                                                                                                                                                |
| GND                                                                                                      | All        | A1, B9, B11, C7,<br>D5, E4, E11, F1,<br>G10, J1, J12, L3,<br>L5, L7, L9, N12 | 9, 18, 26, 35, 46, 54, 64,<br>75, 83, 91, 100, 111, 120,<br>129, 136, 144, | 1, 8, 14, 22, 29, 37, 45, 51, 59, 69, 75, 83, 91, 98, 106, 112, 119, 129, 135, 143, 151, 158, 166, 172, 182, 190, 196, 204, 211, 219, 227, 233 |



Table 3: Virtex Pinout Tables (BGA) (Continued)

| Pin Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Device              | BG256                                                                | BG352                                                                                                                         | BG432                                                                                                                                                                      | BG560                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>CCINT</sub> Notes:  Superset includes all pins, including the ones in bold type. Subset excludes pins in bold type.  In BG352, for XCV300 all the V <sub>CCINT</sub> pins in the superset must be connected. For XCV150/200, V <sub>CCINT</sub> pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.)  In BG432, for XCV400/600/800 all V <sub>CCINT</sub> pins in the superset must be | XCV50/100           | C10, D6,<br>D15, F4,<br>F17, L3,<br>L18, R4,<br>R17, U6,<br>U15, V10 | N/A                                                                                                                           | N/A                                                                                                                                                                        | N/A                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XCV150/200/300      | Same as<br>above                                                     | A20, C14,<br>D10, J24,<br>K4, P2, P25,<br>V24, W2,<br>AC10, AE14,<br>AE19,<br>B16, D12,<br>L1, L25,<br>R23, T1,<br>AF11, AF16 | A10, A17, B23,<br>C14, C19, K3,<br>K29, N2, N29,<br>T1, T29, W2,<br>W31, AB2,<br>AB30, AJ10,<br>AJ16, AK13,<br>AK19, AK22,<br>B26, C7, F1,<br>F30, AE29, AF1,<br>AH8, AH24 | N/A                                                                                                                                                                                                                              |
| connected. For XCV300, V <sub>CCINT</sub> pins in the subset must be connected, and pins in <b>bold</b> type can be left unconnected (these unconnected pins cannot be used as user I/O.)  In BG560, for XCV800/1000 all V <sub>CCINT</sub> pins in the superset must be connected. For XCV400/600, V <sub>CCINT</sub> pins in the subset must be connected, and pins in <b>bold</b> type can be left unconnected (these unconnected pins cannot be used as user I/O.)            | XCV400/600/800/1000 | N/A                                                                  | N/A                                                                                                                           | Same as above                                                                                                                                                              | A21, B14, B18,<br>B28, C24, E9,<br>E12, F2, H30,<br>J1, K32, N1,<br>N33, U5, U30,<br>Y2, Y31, AD2,<br>AD32, AG3,<br>AG31, AK8,<br>AK11, AK17,<br>AK20, AL14,<br>AL27, AN25,<br>B12, C22, M3,<br>N29, AB2,<br>AB32, AJ13,<br>AL22 |
| V <sub>CCO</sub> , Bank 0                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                 | D7, D8                                                               | A17, B25,<br>D19                                                                                                              | A21, C29, D21                                                                                                                                                              | A22, A26, A30,<br>B19, B32                                                                                                                                                                                                       |
| V <sub>CCO</sub> , Bank 1                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                 | D13, D14                                                             | A10, D7,<br>D13                                                                                                               | A1, A11, D11                                                                                                                                                               | A10, A16, B13,<br>C3, E5                                                                                                                                                                                                         |
| V <sub>CCO</sub> , Bank 2                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                 | G17, H17                                                             | B2, H4, K1                                                                                                                    | C3, L1, L4                                                                                                                                                                 | B2, D1, H1, M1,<br>R2                                                                                                                                                                                                            |
| V <sub>CCO</sub> , Bank 3                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                 | N17, P17                                                             | P4, U1, Y4                                                                                                                    | AA1, AA4, AJ3                                                                                                                                                              | V1, AA2, AD1,<br>AK1, AL2                                                                                                                                                                                                        |
| V <sub>CCO</sub> , Bank 4                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                 | U13, U14                                                             | AC8, AE2,<br>AF10                                                                                                             | AH11, AL1,<br>AL11                                                                                                                                                         | AM2, AM15,<br>AN4, AN8, AN12                                                                                                                                                                                                     |
| V <sub>CCO</sub> , Bank 5                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                 | U7, U8                                                               | AC14, AC20,<br>AF17                                                                                                           | AH21, AJ29,<br>AL21                                                                                                                                                        | AL31, AM21,<br>AN18, AN24,<br>AN30                                                                                                                                                                                               |
| V <sub>CCO</sub> , Bank 6                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All                 | N4, P4                                                               | U26, W23,<br>AE25                                                                                                             | AA28, AA31,<br>AL31                                                                                                                                                        | W32, AB33,<br>AF33, AK33,<br>AM32                                                                                                                                                                                                |



Table 4: Virtex Pinout Tables (Fine-Pitch BGA)

| Pin Name  | Device | FG256 | FG456 | FG676 | FG680 |
|-----------|--------|-------|-------|-------|-------|
| GCK0      | All    | N8    | W12   | AA14  | AW19  |
| GCK1      | All    | R8    | Y11   | AB13  | AU22  |
| GCK2      | All    | C9    | A11   | C13   | D21   |
| GCK3      | All    | B8    | C11   | E13   | A20   |
| MO        | All    | N3    | AB2   | AD4   | AT37  |
| M1        | All    | P2    | U5    | W7    | AU38  |
| M2        | All    | R3    | Y4    | AB6   | AT35  |
| CCLK      | All    | D15   | B22   | D24   | E4    |
| PROGRAM   | All    | P15   | W20   | AA22  | AT5   |
| DONE      | All    | R14   | Y19   | AB21  | AU5   |
| INIT      | All    | N15   | V19   | Y21   | AU2   |
| BUSY/DOUT | All    | C15   | C21   | E23   | E3    |
| D0/DIN    | All    | D14   | D20   | F22   | C2    |
| D1        | All    | E16   | H22   | K24   | P4    |
| D2        | All    | F15   | H20   | K22   | P3    |
| D3        | All    | G16   | K20   | M22   | R1    |
| D4        | All    | J16   | N22   | R24   | AD3   |
| D5        | All    | M16   | R21   | U23   | AG2   |
| D6        | All    | N16   | T22   | V24   | AH1   |
| D7        | All    | N14   | Y21   | AB23  | AR4   |
| WRITE     | All    | C13   | A20   | C22   | B4    |
| CS        | All    | B13   | C19   | E21   | D5    |
| TDI       | All    | A15   | B20   | D22   | В3    |
| TDO       | All    | B14   | A21   | C23   | C4    |
| TMS       | All    | D3    | D3    | F5    | E36   |
| TCK       | All    | C4    | C4    | E6    | C36   |
| DXN       | All    | R4    | Y5    | AB7   | AV37  |
| DXP       | All    | P4    | V6    | Y8    | AU35  |



Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

| Pin Name                                                                                                              | Device     | FG256   | FG456               | FG676                              | FG680                                    |
|-----------------------------------------------------------------------------------------------------------------------|------------|---------|---------------------|------------------------------------|------------------------------------------|
| V <sub>REF</sub> Bank 4                                                                                               | XCV50      | P9, T12 | N/A                 | N/A                                | N/A                                      |
| (V <sub>REF</sub> pins are listed incrementally. Connect                                                              | XCV100/150 | + T11   | AA13, AB16,<br>AB19 | N/A                                | N/A                                      |
| all pins listed for both the required device and                                                                      | XCV200/300 | + R13   | + AB20              | N/A                                | N/A                                      |
| all smaller devices<br>listed in the same<br>package.)                                                                | XCV400     | N/A     | N/A                 | AC15, AD18,<br>AD21, AD22,<br>AF15 | N/A                                      |
| Within each bank, if input reference voltage is not required, all V <sub>REF</sub> pins are general I/O.              | XCV600     | N/A     | N/A                 | + AF20                             | AT19, AU7,<br>AU17, AV8,<br>AV10, AW11   |
| pins are general i/o.                                                                                                 | XCV800     | N/A     | N/A                 | + AF17                             | + AV14                                   |
|                                                                                                                       | XCV1000    | N/A     | N/A                 | N/A                                | + AU6                                    |
| V <sub>REF</sub> Bank 5                                                                                               | XCV50      | T4, P8  | N/A                 | N/A                                | N/A                                      |
| (V <sub>REF</sub> pins are listed                                                                                     | XCV100/150 | + R5    | W8, Y10, AA5        | N/A                                | N/A                                      |
| incrementally. Connect all pins listed for both                                                                       | XCV200/300 | + T2    | + Y6                | N/A                                | N/A                                      |
| the required device and all smaller devices                                                                           | XCV400     | N/A     | N/A                 | AA10, AB8, AB12,<br>AC7, AF12      | N/A                                      |
| listed in the same package.) Within each bank, if input reference voltage                                             | XCV600     | N/A     | N/A                 | + AF8                              | AT27, AU29,<br>AU31, AV35,<br>AW21, AW23 |
| is not required, all V <sub>REF</sub>                                                                                 | XCV800     | N/A     | N/A                 | + AE10                             | + AT25                                   |
| pins are general I/O.                                                                                                 | XCV1000    | N/A     | N/A                 | N/A                                | + AV36                                   |
| V <sub>REF</sub> Bank 6                                                                                               | XCV50      | J3, N1  | N/A                 | N/A                                | N/A                                      |
| (V <sub>REF</sub> pins are listed                                                                                     | XCV100/150 | + M1    | N2, R4, T3          | N/A                                | N/A                                      |
| incrementally. Connect all pins listed for both                                                                       | XCV200/300 | + N2    | + Y1                | N/A                                | N/A                                      |
| the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage | XCV400     | N/A     | N/A                 | AB3, R1, R4, U6,<br>V5             | N/A                                      |
|                                                                                                                       | XCV600     | N/A     | N/A                 | + Y1                               | AB35, AD37,<br>AH39, AK39,<br>AM39, AN36 |
| is not required, all V <sub>REF</sub>                                                                                 | XCV800     | N/A     | N/A                 | + U2                               | + AE39                                   |
| pins are general I/O.                                                                                                 | XCV1000    | N/A     | N/A                 | N/A                                | + AT39                                   |



Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

| Pin Name                                                    | Device     | FG256                                                                                                                                                                                               | FG456                                                                                                                                                                                                                                  | FG676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FG680                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>REF</sub> , Bank 7                                   | XCV50      | C1, H3                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                         |
| (V <sub>REF</sub> pins are listed                           | XCV100/150 | + D1                                                                                                                                                                                                | E2, H4, K3                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                         |
| incrementally. Connect all pins listed for both             | XCV200/300 | + B1                                                                                                                                                                                                | + D2                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                         |
| the required device and all smaller devices                 | XCV400     | N/A                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                    | F4, G4, K6, M2,<br>M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                         |
| listed in the same package.)                                | XCV600     | N/A                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                    | + H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E38, G38, L36,<br>N36, U36, U38                                                                                                                                                                                                                                                                                                                             |
| Within each bank, if input reference voltage                | XCV800     | N/A                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                    | + K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + N38                                                                                                                                                                                                                                                                                                                                                       |
| is not required, all V <sub>REF</sub> pins are general I/O. | XCV1000    | N/A                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + F36                                                                                                                                                                                                                                                                                                                                                       |
| GND                                                         | All        | A1, A16, B2,<br>B15, F6, F7,<br>F10, F11,<br>G6, G7, G8,<br>G9, G10,<br>G11, H7,<br>H8, H9, H10,<br>J7, J8, J9,<br>J10, K6, K7,<br>K8, K9, K10,<br>K11, L6, L7,<br>L10, L11,<br>R2, R15, T1,<br>T16 | A1, A22, B2, B21, C3, C20, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13, P14, Y3, Y20, AA2, AA21, AB1, AB22 | A1, A26, B2, B9, B14, B18, B25, C3, C24, D4, D23, E5, E22, J2, J25, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N2, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, P25, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17, V2, V25, AB5, AB22, AC4, AC23, AD3, AD24, AE2, AE9, AE13, AE18, AE25, AF1, AF26 | A1, A2, A3, A37, A38, A39, AA5, AA35, AH4, AH5, AH35, AR19, AR20, AR21, AR28, AR35, AT4, AT12, AT20, AT28, AT36, AU1, AU3, AU20, AU37, AU39, AV1, AV2, AV38, AV39, AW1, AW2, AW3, AW37, AW38, AW39, B1, B2, B38, B39, C1, C3, C20, C37, C39, D4, D12, D20, D28, D36, E5, E12, E19, E20, E21, E28, E35, M4, M5, M35, M36, W5, W35, Y3, Y4, Y5, Y35, Y36, Y37 |



## **Pinout Diagrams**

The following diagrams, CS144 Pin Function Diagram, page 17 through FG680 Pin Function Diagram, page 27, illustrate the locations of special-purpose pins on Virtex FPGAs. Table 5 lists the symbols used in these diagrams. The diagrams also show I/O-bank boundaries.

Table 5: Pinout Diagram Symbols

| Symbol     | Pin Function                                                     |
|------------|------------------------------------------------------------------|
| *          | General I/O                                                      |
| *          | Device-dependent general I/O, n/c on smaller devices             |
| V          | V <sub>CCINT</sub>                                               |
| V          | Device-dependent V <sub>CCINT</sub> , n/c on smaller devices     |
| 0          | V <sub>CCO</sub>                                                 |
| R          | V <sub>REF</sub>                                                 |
| r          | Device-dependent V <sub>REF</sub> remains I/O on smaller devices |
| G          | Ground                                                           |
| Ø, 1, 2, 3 | Global Clocks                                                    |

Table 5: Pinout Diagram Symbols (Continued)

| Symbol                                       | Pin Function                       |
|----------------------------------------------|------------------------------------|
| <b>0</b> , <b>0</b> , <b>2</b>               | M0, M1, M2                         |
| (0), (1), (2),<br>(3), (4), (5), (6),<br>(7) | D0/DIN, D1, D2, D3, D4, D5, D6, D7 |
| В                                            | DOUT/BUSY                          |
| D                                            | DONE                               |
| Р                                            | PROGRAM                            |
| I                                            | INIT                               |
| K                                            | CCLK                               |
| W                                            | WRITE                              |
| S                                            | <u>CS</u>                          |
| Т                                            | Boundary-scan Test Access Port     |
| +                                            | Temperature diode, anode           |
| _                                            | Temperature diode, cathode         |
| n                                            | No connect                         |

## **CS144 Pin Function Diagram**

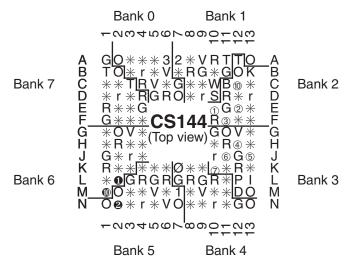
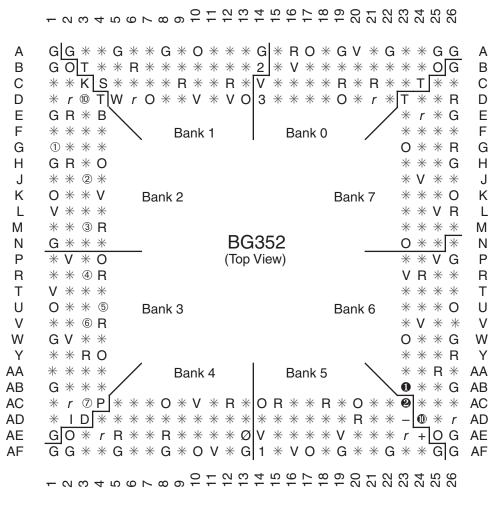




Figure 1: CS144 Pin Function Diagram



## **BG352 Pin Function Diagram**



DS003\_19\_100600

Figure 5: BG352 Pin Function Diagram