

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1176
Number of Logic Elements/Cells	5292
Total RAM Bits	57344
Number of I/O	260
Number of Gates	236666
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	352-LBGA Exposed Pad, Metal
Supplier Device Package	352-MBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcv200-6bg352c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

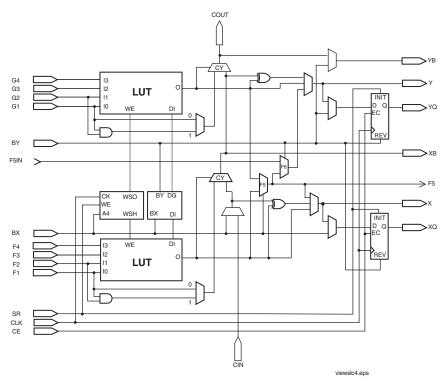


Figure 5: Detailed View of Virtex Slice

Additional Logic

The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs.

Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs.

Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources.

Arithmetic Logic

Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB.

The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation.

The dedicated carry path can also be used to cascade function generators for implementing wide logic functions.

BUFTs

Each Virtex CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See **Dedicated Routing**, page 7. Each Virtex BUFT has an independent 3-state control pin and an independent input pin.

Block SelectRAM

Virtex FPGAs incorporate several large block SelectRAM memories. These complement the distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs.

Block SelectRAM memory blocks are organized in columns. All Virtex devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, and a total of 32 blocks.

Table 3 shows the amount of block SelectRAM memory that is available in each Virtex device.

Table 3: Virtex Block SelectRAM Amounts

Device	# of Blocks	Total Block SelectRAM Bits
XCV50	8	32,768
XCV100	10	40,960
XCV150	12	49,152
XCV200	14	57,344
XCV300	16	65,536
XCV400	20	81,920
XCV600	24	98,304
XCV800	28	114,688
XCV1000	32	131,072

Each block SelectRAM cell, as illustrated in Figure 6, is a fully synchronous dual-ported 4096-bit RAM with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion.

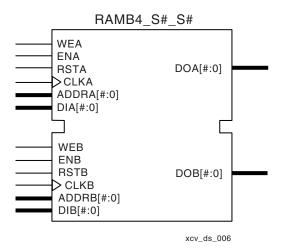


Figure 6: Dual-Port Block SelectRAM

Table 4 shows the depth and width aspect ratios for the block SelectRAM.

Table 4: Block SelectRAM Port Aspect Ratios

Width	Depth	ADDR Bus	Data Bus
1	4096	ADDR<11:0>	DATA<0>
2	2048	ADDR<10:0>	DATA<1:0>
4	1024	ADDR<9:0>	DATA<3:0>
8	512	ADDR<8:0>	DATA<7:0>
16	256	ADDR<7:0>	DATA<15:0>

The Virtex block SelectRAM also includes dedicated routing to provide an efficient interface with both CLBs and other block SelectRAMs. Refer to XAPP130 for block SelectRAM timing waveforms.

Programmable Routing Matrix

It is the longest delay path that limits the speed of any worst-case design. Consequently, the Virtex routing architecture and its place-and-route software were defined in a single optimization process. This joint optimization minimizes long-path delays, and consequently, yields the best system performance.

The joint optimization also reduces design compilation times because the architecture is software-friendly. Design cycles are correspondingly reduced due to shorter design iteration times.

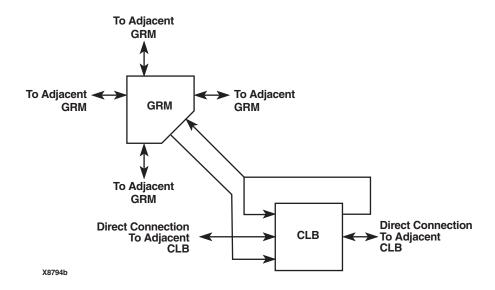


Figure 7: Virtex Local Routing

Local Routing

The VersaBlock provides local routing resources, as shown in Figure 7, providing the following three types of connections.

- Interconnections among the LUTs, flip-flops, and GRM
- Internal CLB feedback paths that provide high-speed connections to LUTs within the same CLB, chaining them together with minimal routing delay
- Direct paths that provide high-speed connections between horizontally adjacent CLBs, eliminating the delay of the GRM.

In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data.

Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

Instruction Set

The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5.

Data Registers

The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins.

The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device.

The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO.

Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE).

Bit Sequence

The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits.

From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11.

BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area.

Figure 10: Virtex Series Boundary Scan Logic

ers with a common user interface regardless of their choice of entry and verification tools. The XDM software simplifies the selection of implementation options with pull-down menus and on-line help.

Application programs ranging from schematic capture to Placement and Routing (PAR) can be accessed through the XDM software. The program command sequence is generated prior to execution, and stored for documentation.

Several advanced software features facilitate Virtex design. RPMs, for example, are schematic-based macros with relative location constraints to guide their placement. They help ensure optimal implementation of common functions.

For HDL design entry, the Xilinx FPGA Foundation development system provides interfaces to the following synthesis design environments.

- Synopsys (FPGA Compiler, FPGA Express)
- Exemplar (Spectrum)
- Synplicity (Synplify)

For schematic design entry, the Xilinx FPGA Foundation and alliance development system provides interfaces to the following schematic-capture design environments.

- Mentor Graphics V8 (Design Architect, QuickSim II)
- Viewlogic Systems (Viewdraw)

Third-party vendors support many other environments.

A standard interface-file specification, Electronic Design Interchange Format (EDIF), simplifies file transfers into and out of the development system.

Virtex FPGAs supported by a unified library of standard functions. This library contains over 400 primitives and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, multiplexers, shift registers, and barrel shifters.

The "soft macro" portion of the library contains detailed descriptions of common logic functions, but does not contain any partitioning or placement information. The performance of these macros depends, therefore, on the partitioning and placement obtained during implementation.

RPMs, on the other hand, do contain predetermined partitioning and placement information that permits optimal implementation of these functions. Users can create their own library of soft macros or RPMs based on the macros and primitives in the standard library.

The design environment supports hierarchical design entry, with high-level schematics that comprise major functional blocks, while lower-level schematics define the logic in these blocks. These hierarchical design elements are automatically combined by the implementation tools. Different design entry tools can be combined within a hierarchical

design, thus allowing the most convenient entry method to be used for each portion of the design.

Design Implementation

The place-and-route tools (PAR) automatically provide the implementation flow described in this section. The partitioner takes the EDIF net list for the design and maps the logic into the architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines the best locations for these blocks based on their interconnections and the desired performance. Finally, the router interconnects the blocks.

The PAR algorithms support fully automatic implementation of most designs. For demanding applications, however, the user can exercise various degrees of control over the process. User partitioning, placement, and routing information is optionally specified during the design-entry process. The implementation of highly structured designs can benefit greatly from basic floor planning.

The implementation software incorporates Timing Wizard® timing-driven placement and routing. Designers specify timing requirements along entire paths during design entry. The timing path analysis routines in PAR then recognize these user-specified requirements and accommodate them.

Timing requirements are entered on a schematic in a form directly relating to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system along entire signal paths is automatically tailored to user-generated specifications. Specific timing information for individual nets is unnecessary.

Design Verification

In addition to conventional software simulation, FPGA users can use in-circuit debugging techniques. Because Xilinx devices are infinitely reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors.

The development system supports both software simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database, and back-annotates this information into the net list for use by the simulator. Alternatively, the user can verify timing-critical portions of the design using the TRACE® static timing analyzer.

For in-circuit debugging, the development system includes a download and readback cable. This cable connects the FPGA in the target system to a PC or workstation. After downloading the design into the FPGA, the designer can single-step the logic, readback the contents of the flip-flops, and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes.

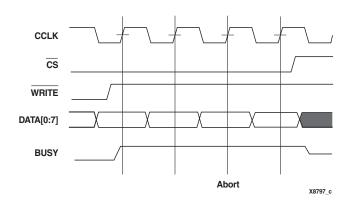


Figure 18: SelectMAP Write Abort Waveforms

Boundary-Scan Mode

In the boundary-scan mode, configuration is done through the IEEE 1149.1 Test Access Port. Note that the PROGRAM pin must be pulled High prior to reconfiguration. A Low on the PROGRAM pin resets the TAP controller and no JTAG operations can be performed.

Configuration through the TAP uses the CFG_IN instruction. This instruction allows data input on TDI to be converted into data packets for the internal configuration bus.

The following steps are required to configure the FPGA through the boundary-scan port (when using TCK as a start-up clock).

- Load the CFG_IN instruction into the boundary-scan instruction register (IR)
- 2. Enter the Shift-DR (SDR) state
- 3. Shift a configuration bitstream into TDI
- 4. Return to Run-Test-Idle (RTI)
- 5. Load the JSTART instruction into IR
- 6. Enter the SDR state
- 7. Clock TCK through the startup sequence
- 8. Return to RTI

Configuration and readback via the TAP is always available. The boundary-scan mode is selected by a <101> or 001> on the mode pins (M2, M1, M0). For details on TAP characteristics, refer to XAPP139.

Configuration Sequence

The configuration of Virtex devices is a three-phase process. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process.

Configuration is automatically initiated on power-up unless it is delayed by the user, as described below. The configuration process can also be initiated by asserting $\overline{\mathsf{PROGRAM}}$.

The end of the memory-clearing phase is signalled by INIT going High, and the completion of the entire process is signalled by DONE going High.

The power-up timing of configuration signals is shown in Figure 19. The corresponding timing characteristics are listed in Table 10.

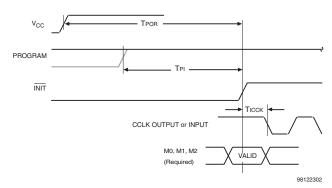


Figure 19: Power-Up Timing Configuration Signals

Table 10: Power-up Timing Characteristics

Description	Symbol	Value	Units
Power-on Reset	T _{POR}	2.0	ms, max
Program Latency	T _{PL}	100.0	μs, max
CCLK (output) Delay	T _{ICCK}	0.5	μs, min
		4.0	μs, max
Program Pulse Width	T _{PROGRAM}	300	ns, min

Delaying Configuration

INIT can be held Low using an open-drain driver. An open-drain is required since INIT is a bidirectional open-drain pin that is held Low by the FPGA while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded.

Start-Up Sequence

The default Start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary.

One CCLK cycle later, the Global Set/Reset (GSR) and Global Write Enable (GWE) signals are released. This permits the internal storage elements to begin changing state in response to the logic and the user clock.

The relative timing of these events can be changed. In addition, the GTS, GSR, and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start in synchronism. The sequence can also be paused at any stage until lock has been achieved on any or all DLLs.

Date	Version	Revision
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.
05/00	2.2	Modified Table 18.
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics.
10/00	2.4	 Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram.
04/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Updated SelectMAP Write Timing Characteristics values in Table 9. Converted file to modularized format. See the Virtex Data Sheet section.
07/19/01	2.6	Made minor edits to text under Configuration.
07/19/02	2.7	Made minor edit to Figure 16 and Figure 18.
09/10/02	2.8	 Added clarifications in the Configuration, Boundary-Scan Mode, and Block SelectRAM sections. Revised Figure 17.
12/09/02	2.8.1	 Added clarification in the Boundary Scan section. Corrected number of buffered Hex lines listed in General Purpose Routing section.
03/01/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.

Virtex Data Sheet

The Virtex Data Sheet contains the following modules:

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)

Virtex[™] 2.5 V Field Programmable Gate Arrays

DS003-3 (v4.0) March 1, 2013

Production Product Specification

Virtex Electrical Characteristics Definition of Terms

Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information.

Table 1 correlates the current status of each Virtex device with a corresponding speed file designation.

Table 1: Virtex Device Speed Grade Designations

	Speed	d Grade Design	ations
Device	Advance	Preliminary	Production
XCV50			-6, -5, -4
XCV100			-6, -5, -4
XCV150			-6, -5, -4
XCV200			-6, -5, -4
XCV300			-6, -5, -4
XCV400			-6, -5, -4
XCV600			-6, -5, -4
XCV800			-6, -5, -4
XCV1000			-6, -5, -4

All specifications are subject to change without notice.

Power-On Power Supply Requirements

Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device⁽¹⁾ from 0 V. The current is highest at the fastest suggested ramp rate (0 V to nominal voltage in 2 ms) and is lowest at the slowest allowed ramp rate (0 V to nominal voltage in 50 ms). For more details on power supply requirements, see Application Note XAPP158 on www.xilinx.com.

Product	Description ⁽²⁾	Current Requirement ^(1,3)		
Virtex Family, Commercial Grade	Minimum required current supply	500 mA		
Virtex Family, Industrial Grade	Minimum required current supply	2 A		

Notes:

- Ramp rate used for this specification is from 0 2.7 VDC. Peak current occurs on or near the internal power-on reset threshold of 1.0V and lasts for less than 3 ms.
- Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above.
- 3. Larger currents can result if ramp rates are forced to be faster.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed output currents over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum V_{CCO} for each standard with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

Input/Output	V _{IL}		VI	Н	V _{OL}	V _{OH}	I _{OL}	I _{OH}
Standard	V, min	V, max	V, min	V, max	V, Max	V, Min	mA	mA
LVTTL ⁽¹⁾	- 0.5	0.8	2.0	5.5	0.4	2.4	24	-24
LVCMOS2	- 0.5	.7	1.7	5.5	0.4	1.9	12	-12
PCI, 3.3 V	- 0.5	44% V _{CCINT}	60% V _{CCINT}	V _{CCO} + 0.5	10% V _{CCO}	90% V _{CCO}	Note 2	Note 2
PCI, 5.0 V	- 0.5	0.8	2.0	5.5	0.55	2.4	Note 2	Note 2
GTL	- 0.5	V _{REF} - 0.05	V _{REF} + 0.05	3.6	0.4	n/a	40	n/a
GTL+	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.6	n/a	36	n/a
HSTL I ⁽³⁾	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCO} - 0.4	8	-8
HSTL III	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCO} - 0.4	24	-8
HSTL IV	- 0.5	V _{REF} – 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCO} - 0.4	48	-8
SSTL3 I	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.6	V _{REF} + 0.6	8	-8
SSTL3 II	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.8	V _{REF} + 0.8	16	-16
SSTL2 I	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.61	V _{REF} + 0.61	7.6	-7.6
SSTL2 II	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.80	V _{REF} + 0.80	15.2	-15.2
CTT	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	V _{REF} - 0.4	V _{REF} + 0.4	8	-8
AGP	- 0.5	V _{REF} - 0.2	V _{REF} + 0.2	3.6	10% V _{CCO}	90% V _{CCO}	Note 2	Note 2

- V_{OL} and V_{OH} for lower drive currents are sample tested.
- 2. Tested according to the relevant specifications.
- DC input and output levels for HSTL18 (HSTL I/O standard with V_{CCO} of 1.8 V) are provided in an HSTL white paper on www.xilinx.com.

				Speed	Grade		
Description	Device	Symbol	Min	-6	-5	-4	Units
Setup and Hold Times with respect to Clock C register ⁽¹⁾		CLK at IOB input		Setup	Time / Hol	d Time	
Pad, no delay	All	T _{IOPICK} /T _{IOICKP}	0.8 / 0	1.6 / 0	1.8 / 0	2.0 / 0	ns, min
Pad, with delay	XCV50	T _{IOPICKD} /T _{IOICKPD}	1.9 / 0	3.7 / 0	4.1 / 0	4.7 / 0	ns, min
	XCV100		1.9 / 0	3.7 / 0	4.1 / 0	4.7 / 0	ns, min
	XCV150		1.9 / 0	3.8 / 0	4.3 / 0	4.9 / 0	ns, min
	XCV200		2.0 / 0	3.9 / 0	4.4 / 0	5.0 / 0	ns, min
	XCV300		2.0 / 0	3.9 / 0	4.4 / 0	5.0 / 0	ns, min
	XCV400		2.1 / 0	4.1 / 0	4.6 / 0	5.3 / 0	ns, min
	XCV600		2.1 / 0	4.2 / 0	4.7 / 0	5.4 / 0	ns, min
	XCV800		2.2 / 0	4.4 / 0	4.9 / 0	5.6 / 0	ns, min
	XCV1000		2.3 / 0	4.5 / 0	5.0 / 0	5.8 / 0	ns, min
ICE input	All	T _{IOICECK} /T _{IOCKICE}	0.37/ 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, max
Set/Reset Delays							
SR input (IFF, synchronous)	All	T _{IOSRCKI}	0.49	1.0	1.1	1.3	ns, max
SR input to IQ (asynchronous)	All	T _{IOSRIQ}	0.70	1.4	1.6	1.8	ns, max
GSR to output IQ	All	T _{GSRQ}	4.9	9.7	10.9	12.5	ns, max

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

^{2.} Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3.

Description	Symbol	Min	-6	-5	-4	Units
Clock CLK to Pad delay with OBUFT enabled (non-3-state)	T _{IOCKP}	1.0	2.9	3.2	3.5	ns, max
Clock CLK to Pad high-impedance (synchronous) ⁽¹⁾	T _{IOCKHZ}	1.1	2.3	2.5	2.9	ns, max
Clock CLK to valid data on Pad delay, plus enable delay for OBUFT	T _{IOCKON}	1.5	3.4	3.7	4.1	ns, max
Setup and Hold Times before/after Clock	CLK ⁽²⁾		Setup Time / Hold Time			1
O input	T _{IOOCK} /T _{IOCKO}	0.51 / 0	1.1 / 0	1.2 / 0	1.3 / 0	ns, min
OCE input	T _{IOOCECK} /T _{IOCKOCE}	0.37 / 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, min
SR input (OFF)	T _{IOSRCKO} /T _{IOCKOSR}	0.52 / 0	1.1 / 0	1.2 / 0	1.4 / 0	ns, min
3-State Setup Times, T input	T _{IOTCK} /T _{IOCKT}	0.34 / 0	0.7 / 0	0.8 / 0	0.9 / 0	ns, min
3-State Setup Times, TCE input	T _{IOTCECK} /T _{IOCKTCE}	0.41 / 0	0.9 / 0	0.9 / 0	1.1 / 0	ns, min
3-State Setup Times, SR input (TFF)	T _{IOSRCKT} /T _{IOCKTSR}	0.49 / 0	1.0 / 0	1.1 / 0	1.3 / 0	ns, min
Set/Reset Delays						
SR input to Pad (asynchronous)	T _{IOSRP}	1.6	3.8	4.1	4.6	ns, max
SR input to Pad high-impedance (asynchronous) ⁽¹⁾	T _{IOSRHZ}	1.6	3.1	3.4	3.9	ns, max
SR input to valid data on Pad (asynchronous)	T _{IOSRON}	2.0	4.2	4.6	5.1	ns, max
GSR to Pad	T _{IOGSRQ}	4.9	9.7	10.9	12.5	ns, max

- 1. 3-state turn-off delays should not be adjusted.
- 2. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

IOB Output Switching Characteristics Standard Adjustments

Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown.

				Speed	Grade		Unit
Description	Symbol	Standard ⁽¹⁾	Min	-6	-5	-4	s
Output Delay Adjustments							
Standard-specific adjustments for	T _{OLVTTL_S2}	LVTTL, Slow, 2 mA	4.2	14.7	15.8	17.0	ns
output delays terminating at pads (based on standard capacitive load,	T _{OLVTTL_S4}	4 mA	2.5	7.5	8.0	8.6	ns
Csl)	T _{OLVTTL_S6}	6 mA	1.8	4.8	5.1	5.6	ns
	T _{OLVTTL_S8}	8 mA	1.2	3.0	3.3	3.5	ns
	T _{OLVTTL_S12}	12 mA	1.0	1.9	2.1	2.2	ns
	T _{OLVTTL_S16}	16 mA	0.9	1.7	1.9	2.0	ns
	T _{OLVTTL_S24}	24 mA	0.8	1.3	1.4	1.6	ns
	T _{OLVTTL_F2}	LVTTL, Fast, 2mA	1.9	13.1	14.0	15.1	ns
	T _{OLVTTL_F4}	4 mA	0.7	5.3	5.7	6.1	ns
	T _{OLVTTL_F6}	6 mA	0.2	3.1	3.3	3.6	ns
	T _{OLVTTL_F8}	8 mA	0.1	1.0	1.1	1.2	ns
	T _{OLVTTL_F12}	12 mA	0	0	0	0	ns
	T _{OLVTTL_F16}	16 mA	-0.10	-0.05	-0.05	-0.05	ns
	T _{OLVTTL_F24}	24 mA	-0.10	-0.20	-0.21	-0.23	ns
	T _{OLVCMOS2}	LVCMOS2	0.10	0.10	0.11	0.12	ns
	T _{OPCl33_3}	PCI, 33 MHz, 3.3 V	0.50	2.3	2.5	2.7	ns
	T _{OPCl33_5}	PCI, 33 MHz, 5.0 V	0.40	2.8	3.0	3.3	ns
	T _{OPCI66_3}	PCI, 66 MHz, 3.3 V	0.10	-0.40	-0.42	-0.46	ns
	T _{OGTL}	GTL	0.6	0.50	0.54	0.6	ns
	T _{OGTLP}	GTL+	0.7	0.8	0.9	1.0	ns
	T _{OHSTL_I}	HSTL I	0.10	-0.50	-0.53	-0.5	ns
	T _{OHSTL_III}	HSTL III	-0.10	-0.9	-0.9	-1.0	ns
	T _{OHSTL_IV}	HSTL IV	-0.20	-1.0	-1.0	-1.1	ns
	T _{OSSTL2_I}	SSTL2 I	-0.10	-0.50	-0.53	-0.5	ns
	T _{OSSLT2_II}	SSTL2 II	-0.20	-0.9	-0.9	-1.0	ns
	T _{OSSTL3_I}	SSTL3 I	-0.20	-0.50	-0.53	-0.5	ns
	T _{OSSTL3_II}	SSTL3 II	-0.30	-1.0	-1.0	-1.1	ns
	T _{OCTT}	CTT	0	-0.6	-0.6	-0.6	ns
	T _{OAGP}	AGP	0	-0.9	-0.9	-1.0	ns

^{1.} Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see Table 2 and Table 3.

I/O Standard Global Clock Input Adjustments

				Speed	Grade		
Description	Symbol	Standard ⁽¹⁾	Min	-6	-5	-4	Units
Data Input Delay Adjustments							
Standard-specific global clock input delay adjustments	T _{GPLVTTL}	LVTTL	0	0	0	0	ns, max
	T _{GPLVCMOS}	LVCMOS2	-0.02	-0.04	-0.04	-0.05	ns, max
	T _{GPPCl33_3}	PCI, 33 MHz, 3.3 V	-0.05	-0.11	-0.12	-0.14	ns, max
	T _{GPPCl33_5}	PCI, 33 MHz, 5.0 V	0.13	0.25	0.28	0.33	ns, max
	T _{GPPCl66_3}	PCI, 66 MHz, 3.3 V	-0.05	-0.11	-0.12	-0.14	ns, max
	T _{GPGTL}	GTL	0.7	0.8	0.9	0.9	ns, max
	T _{GPGTLP}	GTL+	0.7	0.8	0.8	0.8	ns, max
	T _{GPHSTL}	HSTL	0.7	0.7	0.7	0.7	ns, max
	T _{GPSSTL2}	SSTL2	0.6	0.52	0.51	0.50	ns, max
	T _{GPSSTL3}	SSTL3	0.6	0.6	0.55	0.54	ns, max
	T _{GPCTT}	СТТ	0.7	0.7	0.7	0.7	ns, max
	T _{GPAGP}	AGP	0.6	0.54	0.53	0.52	ns, max

^{1.} Input timing for GPLVTTL is measured at 1.4 V. For other I/O standards, see Table 3.

Period Tolerance: the allowed input clock period change in nanoseconds.

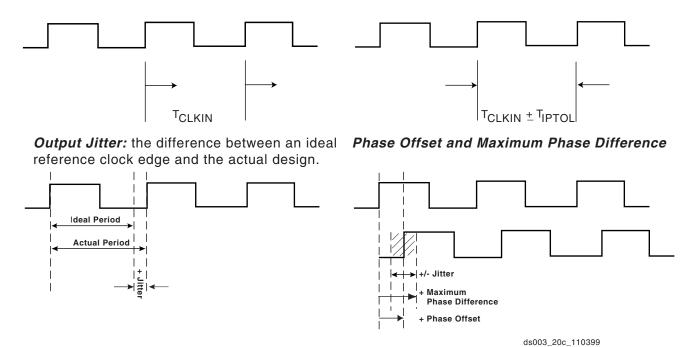


Figure 1: Frequency Tolerance and Clock Jitter

Revision History

Date	Version	Revision
11/98	1.0	Initial Xilinx release.
01/99	1.2	Updated package drawings and specs.
02/99	1.3	Update of package drawings, updated specifications.
05/99	1.4	Addition of package drawings and specifications.
05/99	1.5	Replaced FG 676 & FG680 package drawings.
07/99	1.6	Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments.
09/99	1.7	Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} .
01/00	1.8	Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43.

Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued)

Pin Name	Device	CS144	TQ144	PQ/HQ240
V _{CCO}	All	Banks 0 and 1: A2, A13, D7 Banks 2 and 3: B12, G11, M13 Banks 4 and 5: N1, N7, N13 Banks 6 and 7: B2, G2, M2	No I/O Banks in this package: 1, 17, 37, 55, 73, 92, 109, 128	No I/O Banks in this package: 15, 30, 44, 61, 76, 90, 105, 121, 136, 150, 165, 180, 197, 212, 226, 240
V _{RFF} Bank 0	XCV50	C4, D6	5, 13	218, 232
(V _{REF} pins are listed	XCV100/150	+ B4	+ 7	+ 229
incrementally. Connect	XCV200/300	N/A	N/A	+ 236
all pins listed for both the required device	XCV400	N/A	N/A	+ 215
and all smaller devices	XCV600	N/A	N/A	+ 230
listed in the same package.)	XCV800	N/A	N/A	+ 222
Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.				
V _{REF} , Bank 1	XCV50	A10, B8	22, 30	191, 205
(V _{REF} pins are listed	XCV100/150	+ D9	+ 28	+ 194
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 187
the required device	XCV400	N/A	N/A	+ 208
and all smaller devices listed in the same	XCV600	N/A	N/A	+ 193
package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV800	N/A	N/A	+ 201
V _{REF} , Bank 2	XCV50	D11, F10	42, 50	157, 171
(V _{REF} pins are listed	XCV100/150	+ D13	+ 44	+ 168
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 175
the required device	XCV400	N/A	N/A	+ 154
and all smaller devices listed in the same	XCV600	N/A	N/A	+ 169
package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV800	N/A	N/A	+ 161

Table 3: Virtex Pinout Tables (BGA) (Continued)

Pin Name	Device	BG256	BG352	BG432	BG560
V _{CCO} , Bank 7	All	G4, H4	G23, K26, N23	A31, L28, L31	C32, D33, K33, N32, T33
V _{REF} , Bank 0	XCV50	A8, B4	N/A	N/A	N/A
(VREF pins are listed incrementally. Connect all	XCV100/150	+ A4	A16,C19, C21	N/A	N/A
pins listed for both the required device and all smaller devices listed in the	XCV200/300	+ A2	+ D21	B19, D22, D24, D26	N/A
same package.)	XCV400	N/A	N/A	+ C18	A19, D20,
Within each bank, if input					D26, E23, E27
reference voltage is not required, all V _{REF} pins are	XCV600	N/A	N/A	+ C24	+ E24
general I/O.	XCV800	N/A	N/A	+ B21	+ E21
	XCV1000	N/A	N/A	N/A	+ D29
V _{REF} , Bank 1	XCV50	A17, B12	N/A	N/A	N/A
(VREF pins are listed incrementally. Connect all	XCV100/150	+ B15	B6, C9, C12	N/A	N/A
pins listed for both the required device and all smaller devices listed in the	XCV200/300	+ B17	+ D6	A13, B7, C6, C10	N/A
same package.) Within each bank, if input reference voltage is not	XCV400	N/A	N/A	+ B15	A6, D7, D11, D16, E15
required, all V _{REF} pins are	XCV600	N/A	N/A	+ D10	+ D10
general I/O.	XCV800	N/A	N/A	+ B12	+ D13
	XCV1000	N/A	N/A	N/A	+ E7
V _{REF} , Bank 2	XCV50	C20, J18	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all pins listed for both the	XCV100/150	+ F19	E2, H2, M4	N/A	N/A
required device and all smaller devices listed in the	XCV200/300	+ G18	+ D2	E2, G3, J2, N1	N/A
same package.)	XCV400	N/A	N/A	+ R3	G5, H4,
Within each bank, if input reference voltage is not					L5, P4, R1
required, all V _{REF} pins are	XCV600	N/A	N/A	+ H1	+ K5
general I/O.	XCV800	N/A	N/A	+ M3	+ N5
	XCV1000	N/A	N/A	N/A	+ B3

TQ144 Pin Function Diagram

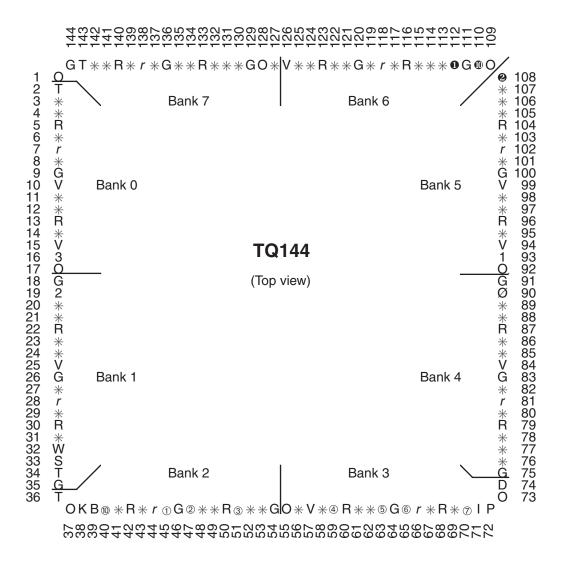


Figure 2: TQ144 Pin Function Diagram

BG256 Pin Function Diagram

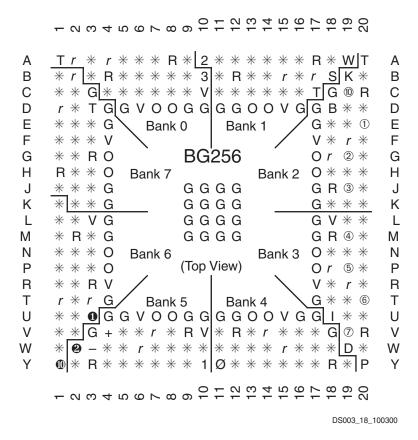


Figure 4: BG256 Pin Function Diagram

FG256 Pin Function Diagram

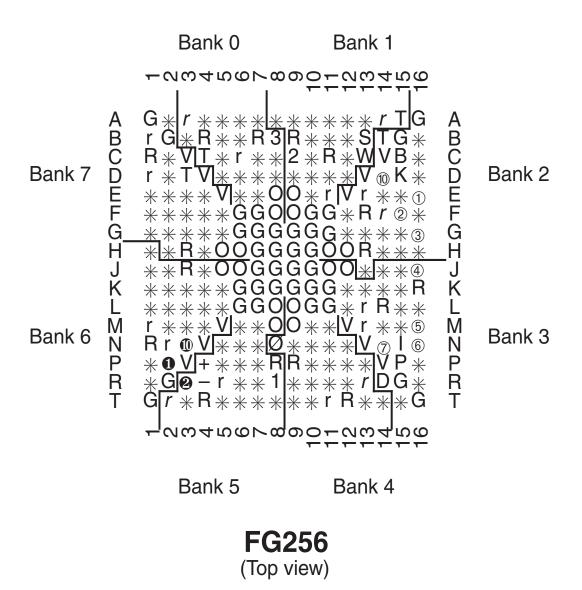


Figure 8: FG256 Pin Function Diagram

FG676 Pin Function Diagram

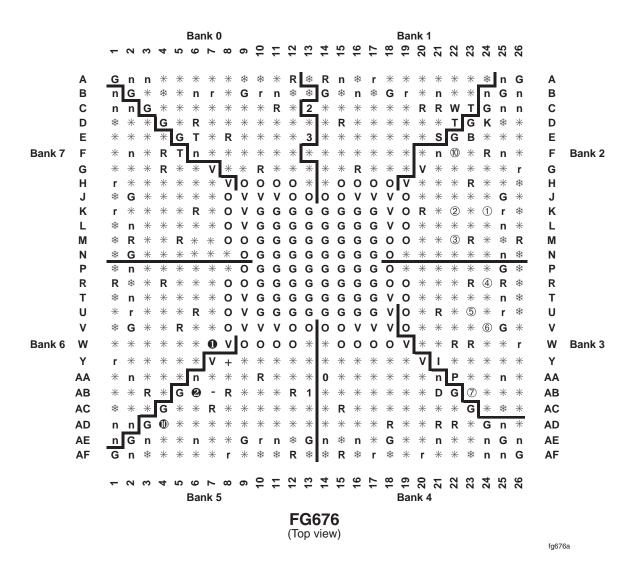


Figure 10: FG676 Pin Function Diagram

Notes:

Packages FG456 and FG676 are layout compatible.

Revision History

Date	Version	Revision		
11/98	1.0	Initial Xilinx release.		
01/99-02/99	1.2-1.3	Both versions updated package drawings and specs.		
05/99	1.4	Addition of package drawings and specifications.		
05/99	1.5	Replaced FG 676 & FG680 package drawings.		
07/99	1.6	Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments.		
09/99	1.7	Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} .		
01/00	1.8	Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43.		
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.		
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.		
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.		
05/00	2.2	Modified Table 18.		
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. 		
10/00	2.4	 Corrected pinout info for devices in the BG256, BG432, and BG560 pkgs in Table 18. Corrected BG256 Pin Function Diagram. 		
04/02/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See section Virtex Data Sheet, below. 		
04/19/01	2.6	Corrected pinout information for FG676 device in Table 4. (Added AB22 pin.)		
07/19/01	2.7	 Clarified V_{CCINT} pinout information and added AE19 pin for BG352 devices in Table 3. Changed pinouts listed for BG352 XCV400 devices in banks 0 thru 7. 		
07/19/02	2.8	Changed pinouts listed for GND in TQ144 devices (see Table 2).		
03/01/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.		

Virtex Data Sheet

The Virtex Data Sheet contains the following modules:

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)