Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 2400 | | Number of Logic Elements/Cells | 10800 | | Total RAM Bits | 81920 | | Number of I/O | 316 | | Number of Gates | 468252 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 432-LBGA Exposed Pad, Metal | | Supplier Device Package | 432-MBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv400-4bg432i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## Virtex Device/Package Combinations and Maximum I/O Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) | Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 | |---------|-------|--------|--------|--------|--------|--------|--------|--------|---------| | CS144 | 94 | 94 | | | | | | | | | TQ144 | 98 | 98 | | | | | | | | | PQ240 | 166 | 166 | 166 | 166 | 166 | | | | | | HQ240 | | | | | | 166 | 166 | 166 | | | BG256 | 180 | 180 | 180 | 180 | | | | | | | BG352 | | | 260 | 260 | 260 | | | | | | BG432 | | | | | 316 | 316 | 316 | 316 | | | BG560 | | | | | | 404 | 404 | 404 | 404 | | FG256 | 176 | 176 | 176 | 176 | | | | | | | FG456 | | | 260 | 284 | 312 | | | | | | FG676 | | | | | | 404 | 444 | 444 | | | FG680 | | | | | | | 512 | 512 | 512 | # **Virtex Ordering Information** Figure 1: Virtex Ordering Information # **Revision History** | Date | Version | Revision | |-------------|---------|--| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99-02/99 | 1.2-1.3 | Both versions updated package drawings and specs. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See Virtex Data Sheet section. | | 03/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) #### Input Path A buffer In the Virtex IOB input path routes the input signal either directly to internal logic or through an optional input flip-flop. An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signalling standards supported. In some of these standards the input buffer utilizes a user-supplied threshold voltage, V_{REF}. The need to supply V_{REF} imposes constraints on which standards can used in close proximity to each other. See I/O Banking, page 3. There are optional pull-up and pull-down resistors at each user I/O input for use after configuration. Their value is in the range 50 k Ω – 100 k Ω . ## **Output Path** The output path includes a 3-state output buffer that drives the output signal onto the pad. The output signal can be routed to the buffer directly from the internal logic or through an optional IOB output flip-flop. The 3-state control of the output can also be routed directly from the internal logic or through a flip-flip that provides synchronous enable and disable. Each output driver can be individually programmed for a wide range of low-voltage signalling standards. Each output buffer can source up to 24 mA and sink up to 48mA. Drive strength and slew rate controls minimize bus transients. In most signalling standards, the output High voltage depends on an externally supplied V_{CCO} voltage. The need to supply V_{CCO} imposes constraints on which standards can be used in close proximity to each other. See **I/O Banking**, page 3. An optional weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage on the pad and weakly drives the pin High or Low to match the input signal. If the pin is connected to a multiple-source signal, the weak keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. Because the weak-keeper circuit uses the IOB input buffer to monitor the input level, an appropriate V_{REF} voltage must be provided if the signalling standard requires one. The provision of this voltage must comply with the I/O banking rules. #### I/O Banking Some of the I/O standards described above require V_{CCO} and/or V_{REF} voltages. These voltages externally and connected to device pins that serve groups of IOBs, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. Eight I/O banks result from separating each edge of the FPGA into two banks, as shown in Figure 3. Each bank has multiple $V_{\rm CCO}$ pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. X8778_b Figure 3: Virtex I/O Banks Within a bank, output standards can be mixed only if they use the same V_{CCO} . Compatible standards are shown in Table 2. GTL and GTL+ appear under all voltages because their open-drain outputs do not depend on V_{CCO} . Table 2: Compatible Output Standards | V _{CCO} | Compatible Standards | |------------------|--| | 3.3 V | PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+ | | 2.5 V | SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+ | | 1.5 V | HSTL I, HSTL III, HSTL IV, GTL, GTL+ | Some input standards require a user-supplied threshold voltage, V_{REF} In this case, certain user-I/O pins are automatically configured as inputs for the V_{REF} voltage. Approximately one in six of the I/O pins in the bank assume this role The V_{REF} pins within a bank are interconnected internally and consequently only one V_{REF} voltage can be used within each bank. All V_{REF} pins in the bank, however, must be connected to the external voltage source for correct operation. Within a bank, inputs that require V_{REF} can be mixed with those that do not. However, only one V_{REF} voltage can be used within a bank. Input buffers that use V_{REF} are not 5 V tolerant. LVTTL, LVCMOS2, and PCI 33 MHz 5 V, are 5 V tolerant. The V_{CCO} and V_{REF} pins for each bank appear in the device Pinout tables and diagrams. The diagrams also show the bank affiliation of each I/O. Within a given package, the number of V_{REF} and V_{CCO} pins can vary depending on the size of device. In larger devices, Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is selected either from these pads or from signals in the general purpose routing. Figure 9: Global Clock Distribution Network #### Delay-Locked Loop (DLL) Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input. In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices. In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock. See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information. ## **Boundary Scan** Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the $\rm V_{CCO}$ for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and $\rm V_{CCO}$. Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off. Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins. Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed. Figure 11: Boundary Scan Bit Sequence Table 5: Boundary Scan Instructions | Boundary-Scan
Command | Binary
Code(4:0) | Description | |--------------------------|---------------------|--| | EXTEST | 00000 | Enables boundary-scan EXTEST operation | | SAMPLE/PRELOAD | 00001 | Enables boundary-scan
SAMPLE/PRELOAD
operation | | USER 1 | 00010 | Access user-defined register 1 | | USER 2 | 00011 | Access user-defined register 2 | | CFG_OUT | 00100 | Access the configuration bus for read operations. | | CFG_IN | 00101 | Access the configuration bus for write operations. | | INTEST | 00111 | Enables boundary-scan INTEST operation | | USERCODE | 01000 | Enables shifting out
USER code | | IDCODE | 01001 | Enables shifting out of ID Code | | HIGHZ | 01010 | 3-states output pins while enabling the Bypass Register | | JSTART | 01100 | Clock the start-up
sequence when
StartupClk is TCK | | BYPASS | 11111 | Enables BYPASS | | RESERVED | All other codes | Xilinx reserved instructions | ## Identification Registers The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1 where v = the die version number f = the family code (03h for Virtex family) a = the number of CLB rows (ranges from 010h for XCV50 to 040h for XCV1000) c = the company code (49h for Xilinx) The USERCODE register is supported. By using the USER-CODE, a user-programmable identification code can be loaded and shifted out for examination. The identification code is embedded in the bitstream during bitstream generation and is valid only after configuration. Table 6: IDCODEs Assigned to Virtex FPGAs | FPGA | IDCODE | |---------|-----------| | XCV50 | v0610093h | | XCV100 | v0614093h | | XCV150 | v0618093h | | XCV200 | v061C093h | | XCV300 | v0620093h | | XCV400 | v0628093h | | XCV600 | v0630093h | | XCV800 | v0638093h | | XCV1000 | v0640093h | #### Including Boundary Scan in a Design Since the boundary scan pins are dedicated, no special element needs to be added to the design unless an internal data register (USER1 or USER2) is desired. If an internal data register is used, insert the boundary scan symbol and connect the necessary pins as appropriate. ## **Development System** Virtex FPGAs are supported by the Xilinx Foundation and Alliance CAE tools. The basic methodology for Virtex design consists of three interrelated steps: design entry, implementation, and verification. Industry-standard tools are used for design entry and simulation (for example, Synopsys FPGA Express), while Xilinx provides proprietary architecture-specific tools for implementation. The Xilinx development system is integrated under the Xilinx Design Manager (XDM™) software, providing design- # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-3 (v4.0) March 1, 2013 **Production Product Specification** # Virtex Electrical Characteristics Definition of Terms Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: **Advance**: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. **Preliminary**: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. **Production**: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information. Table 1 correlates the current status of each Virtex device with a corresponding speed file designation. Table 1: Virtex Device Speed Grade Designations | | Speed Grade Designations | | | | | | |---------|--------------------------|-------------|------------|--|--|--| | Device | Advance | Preliminary | Production | | | | | XCV50 | | | -6, -5, -4 | | | | | XCV100 | | | -6, -5, -4 | | | | | XCV150 | | | -6, -5, -4 | | | | | XCV200 | | | -6, -5, -4 | | | | | XCV300 | | | -6, -5, -4 | | | | | XCV400 | | | -6, -5, -4 | | | | | XCV600 | | | -6, -5, -4 | | | | | XCV800 | | | -6, -5, -4 | | | | | XCV1000 | | | -6, -5, -4 | | | | All specifications are subject to change without notice. ## **Clock Distribution Guidelines** | | | | Speed Grade | | | | |--|---------|-----------------------|-------------|------|------|---------| | Description | Device | Symbol | -6 | -5 | -4 | Units | | Global Clock Skew ⁽¹⁾ | | | | | | | | Global Clock Skew between IOB Flip-flops | XCV50 | T _{GSKEWIOB} | 0.10 | 0.12 | 0.14 | ns, max | | | XCV100 | | 0.12 | 0.13 | 0.15 | ns, max | | | XCV150 | | 0.12 | 0.13 | 0.15 | ns, max | | | XCV200 | | 0.13 | 0.14 | 0.16 | ns, max | | | XCV300 | | 0.14 | 0.16 | 0.18 | ns, max | | | XCV400 | | 0.13 | 0.13 | 0.14 | ns, max | | | XCV600 | | 0.14 | 0.15 | 0.17 | ns, max | | | XCV800 | | 0.16 | 0.17 | 0.20 | ns, max | | | XCV1000 | | 0.20 | 0.23 | 0.25 | ns, max | #### Notes: ## **Clock Distribution Switching Characteristics** | | | Speed Grade | | | | | |---|-------------------|-------------|-----|------------|-----|---------| | Description | Symbol | Min | -6 | - 5 | -4 | Units | | GCLK IOB and Buffer | | | | | | | | Global Clock PAD to output. | T _{GPIO} | 0.33 | 0.7 | 0.8 | 0.9 | ns, max | | Global Clock Buffer I input to O output | T _{GIO} | 0.34 | 0.7 | 0.8 | 0.9 | ns, max | ^{1.} These clock-skew delays are provided for guidance only. They reflect the delays encountered in a typical design under worst-case conditions. Precise values for a particular design are provided by the timing analyzer. ## **Virtex Pin-to-Pin Output Parameter Guidelines** All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted. ## Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, with DLL | | | | Speed Grade | | | | | |---|-----------------------|---------|-------------|-----|-----|-----|---------| | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | LVTTL Global Clock Input to Output Delay using Output Flip-flop, 12 mA, Fast Slew Rate, with DLL. For data output with different standards, adjust delays with the values shown in Output Delay | T _{ICKOFDLL} | XCV50 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV100 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV150 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | Adjustments. | | XCV200 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV300 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV400 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV600 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV800 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | | | | XCV1000 | 1.0 | 3.1 | 3.3 | 3.6 | ns, max | #### Notes: - 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3. - 3. DLL output jitter is already included in the timing calculation. ## Global Clock Input-to-Output Delay for LVTTL, 12 mA, Fast Slew Rate, without DLL | | | | Speed Grade | | | | | |--|--------------------|---------|-------------|-----|-----|-----|---------| | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | LVTTL Global Clock Input to Output Delay using Output Flip-flop, 12 mA, Fast Slew Rate, without DLL. For data output with different standards, adjust delays with the values shown in Input and Output Delay Adjustments. For I/O standards requiring V _{RFF} such as GTL, | T _{ICKOF} | XCV50 | 1.5 | 4.6 | 5.1 | 5.7 | ns, max | | | | XCV100 | 1.5 | 4.6 | 5.1 | 5.7 | ns, max | | | | XCV150 | 1.5 | 4.7 | 5.2 | 5.8 | ns, max | | | | XCV200 | 1.5 | 4.7 | 5.2 | 5.8 | ns, max | | GTL+, SSTL, HSTL, CTT, and AGO, an additional | | XCV300 | 1.5 | 4.7 | 5.2 | 5.9 | ns, max | | 600 ps must be added. | | XCV400 | 1.5 | 4.8 | 5.3 | 6.0 | ns, max | | | | XCV600 | 1.6 | 4.9 | 5.4 | 6.0 | ns, max | | | | XCV800 | 1.6 | 4.9 | 5.5 | 6.2 | ns, max | | | | XCV1000 | 1.7 | 5.0 | 5.6 | 6.3 | ns, max | #### Notes: - Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. - 2. Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. The 35 pF load does not apply to the Min values. For other I/O standards and different loads, see Table 2 and Table 3. ## Global Clock Set-Up and Hold for LVTTL Standard, without DLL | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | |---|--------------------------------------|---------|---------|---------|--------------|---------------|------------|------------| | Input Setup and Hold Time Relat standards, adjust the setup time of | | | | | For data inp | ut with diffe | rent | | | Full Delay Global Clock and IFF, without | T _{PSFD} /T _{PHFD} | XCV50 | 0.6 / 0 | 2.3 / 0 | 2.6 / 0 | 2.9 / 0 | ns,
min | | | DLL | | XCV100 | 0.6 / 0 | 2.3 / 0 | 2.6 / 0 | 3.0 / 0 | ns,
min | | | | | XCV150 | 0.6 / 0 | 2.4 / 0 | 2.7 / 0 | 3.1 / 0 | ns,
min | | | | | | XCV200 | 0.7 / 0 | 2.5 / 0 | 2.8 / 0 | 3.2 / 0 | ns,
min | | | | XCV300 | 0.7 / 0 | 2.5 / 0 | 2.8 / 0 | 3.2 / 0 | ns,
min | | | | | XCV400 | 0.7 / 0 | 2.6 / 0 | 2.9 / 0 | 3.3 / 0 | ns,
min | | | | | XCV600 | 0.7 / 0 | 2.6 / 0 | 2.9 / 0 | 3.3 / 0 | ns,
min | | | | | XCV800 | 0.7 / 0 | 2.7 / 0 | 3.1 / 0 | 3.5 / 0 | ns,
min | | | | | XCV1000 | 0.7 / 0 | 2.8 / 0 | 3.1 / 0 | 3.6 / 0 | ns,
min | | IFF = Input Flip-Flop or Latch #### Notes: Notes: - 1. Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. - 2. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. | Date | Version | Revision | |----------|---------|---| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/02/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See the Virtex Data Sheet section. | | 04/19/01 | 2.6 | Clarified TIOCKP and TIOCKON IOB Output Switching Characteristics descriptors. | | 07/19/01 | 2.7 | Under Absolute Maximum Ratings, changed (T _{SOL}) to 220 °C. | | 07/26/01 | 2.8 | Removed T _{SOL} parameter and added footnote to Absolute Maximum Ratings table. | | 10/29/01 | 2.9 | Updated the speed grade designations used in data sheets, and added Table 1, which
shows the current speed grade designation for each device. | | 02/01/02 | 3.0 | Added footnote to DC Input and Output Levels table. | | 07/19/02 | 3.1 | Removed mention of MIL-M-38510/605 specification. Added link to xapp158 from the Power-On Power Supply Requirements section. | | 09/10/02 | 3.2 | Added Clock CLK to IOB Input Switching Characteristics and IOB Output Switching Characteristics. | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|--|---|--| | V _{CCO} | All | Banks 0 and 1:
A2, A13, D7
Banks 2 and 3:
B12, G11, M13
Banks 4 and 5: | No I/O Banks in this package: 1, 17, 37, 55, 73, 92, 109, 128 | No I/O Banks in this package: 15, 30, 44, 61, 76, 90, 105, 121, 136, 150, 165, 180, 197, 212, 226, 240 | | | | N1, N7, N13
Banks 6 and 7:
B2, G2, M2 | | | | V _{REF} , Bank 0 | XCV50 | C4, D6 | 5, 13 | 218, 232 | | (V _{REF} pins are listed | XCV100/150 | + B4 | + 7 | + 229 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 236 | | the required device | XCV400 | N/A | N/A | + 215 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 230 | | package.) | XCV800 | N/A | N/A | + 222 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 1 | XCV50 | A10, B8 | 22, 30 | 191, 205 | | (V _{REF} pins are listed | XCV100/150 | + D9 | + 28 | + 194 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 187 | | the required device and all smaller devices | XCV400 | N/A | N/A | + 208 | | listed in the same | XCV600 | N/A | N/A | + 193 | | package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + 201 | | V _{REF} , Bank 2 | XCV50 | D11, F10 | 42, 50 | 157, 171 | | (V _{REF} pins are listed | XCV100/150 | + D13 | + 44 | + 168 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 175 | | the required device | XCV400 | N/A | N/A | + 154 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 169 | | package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + 161 | Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|--|--|--| | V _{REF} , Bank 6 | XCV50 | H2, K1 | 116, 123 | 36, 50 | | (V _{REF} pins are listed | XCV100/150 | + J3 | + 118 | + 47 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 54 | | the required device | XCV400 | N/A | N/A | + 33 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 48 | | package.) | XCV800 | N/A | N/A | + 40 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 7 | XCV50 | D4, E1 | 133, 140 | 9, 23 | | (V _{REF} pins are listed | XCV100/150 | + D2 | + 138 | + 12 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 5 | | the required device | XCV400 | N/A | N/A | + 26 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 11 | | package.) | XCV800 | N/A | N/A | + 19 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | GND | All | A1, B9, B11, C7,
D5, E4, E11, F1,
G10, J1, J12, L3,
L5, L7, L9, N12 | 9, 18, 26, 35, 46, 54, 64,
75, 83, 91, 100, 111, 120,
129, 136, 144, | 1, 8, 14, 22, 29, 37, 45, 51, 59, 69, 75, 83, 91, 98, 106, 112, 119, 129, 135, 143, 151, 158, 166, 172, 182, 190, 196, 204, 211, 219, 227, 233 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|---------------------|--|---|--|--| | VCCINT Notes: Superset includes all pins, including the ones in bold type. Subset excludes pins in bold type. In BG352, for XCV300 all the V _{CCINT} pins in the superset must be connected. For XCV150/200, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG432, for XCV400/600/800 all V _{CCINT} pins in the superset must be connected. For XCV300, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG560, for XCV800/1000 all V _{CCINT} pins in the superset must be connected. For XCV400/600, V _{CCINT} pins in the superset must be connected. For XCV400/600, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) | XCV50/100 | C10, D6,
D15, F4,
F17, L3,
L18, R4,
R17, U6,
U15, V10 | N/A | N/A | N/A | | | XCV150/200/300 | Same as
above | A20, C14,
D10, J24,
K4, P2, P25,
V24, W2,
AC10, AE14,
AE19,
B16, D12,
L1, L25,
R23, T1,
AF11, AF16 | A10, A17, B23,
C14, C19, K3,
K29, N2, N29,
T1, T29, W2,
W31, AB2,
AB30, AJ10,
AJ16, AK13,
AK19, AK22,
B26, C7, F1,
F30, AE29, AF1,
AH8, AH24 | N/A | | | XCV400/600/800/1000 | N/A | N/A | Same as above | A21, B14, B18,
B28, C24, E9,
E12, F2, H30,
J1, K32, N1,
N33, U5, U30,
Y2, Y31, AD2,
AD32, AG3,
AG31, AK8,
AK11, AK17,
AK20, AL14,
AL27, AN25,
B12, C22, M3,
N29, AB2,
AB32, AJ13,
AL22 | | V _{CCO} , Bank 0 | All | D7, D8 | A17, B25,
D19 | A21, C29, D21 | A22, A26, A30,
B19, B32 | | V _{CCO} , Bank 1 | All | D13, D14 | A10, D7,
D13 | A1, A11, D11 | A10, A16, B13,
C3, E5 | | V _{CCO} , Bank 2 | All | G17, H17 | B2, H4, K1 | C3, L1, L4 | B2, D1, H1, M1,
R2 | | V _{CCO} , Bank 3 | All | N17, P17 | P4, U1, Y4 | AA1, AA4, AJ3 | V1, AA2, AD1,
AK1, AL2 | | V _{CCO} , Bank 4 | All | U13, U14 | AC8, AE2,
AF10 | AH11, AL1,
AL11 | AM2, AM15,
AN4, AN8, AN12 | | V _{CCO} , Bank 5 | All | U7, U8 | AC14, AC20,
AF17 | AH21, AJ29,
AL21 | AL31, AM21,
AN18, AN24,
AN30 | | V _{CCO} , Bank 6 | All | N4, P4 | U26, W23,
AE25 | AA28, AA31,
AL31 | W32, AB33,
AF33, AK33,
AM32 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |-----------|--------|-------|-------|-------|-------| | GCK0 | All | N8 | W12 | AA14 | AW19 | | GCK1 | All | R8 | Y11 | AB13 | AU22 | | GCK2 | All | C9 | A11 | C13 | D21 | | GCK3 | All | B8 | C11 | E13 | A20 | | MO | All | N3 | AB2 | AD4 | AT37 | | M1 | All | P2 | U5 | W7 | AU38 | | M2 | All | R3 | Y4 | AB6 | AT35 | | CCLK | All | D15 | B22 | D24 | E4 | | PROGRAM | All | P15 | W20 | AA22 | AT5 | | DONE | All | R14 | Y19 | AB21 | AU5 | | INIT | All | N15 | V19 | Y21 | AU2 | | BUSY/DOUT | All | C15 | C21 | E23 | E3 | | D0/DIN | All | D14 | D20 | F22 | C2 | | D1 | All | E16 | H22 | K24 | P4 | | D2 | All | F15 | H20 | K22 | P3 | | D3 | All | G16 | K20 | M22 | R1 | | D4 | All | J16 | N22 | R24 | AD3 | | D5 | All | M16 | R21 | U23 | AG2 | | D6 | All | N16 | T22 | V24 | AH1 | | D7 | All | N14 | Y21 | AB23 | AR4 | | WRITE | All | C13 | A20 | C22 | B4 | | CS | All | B13 | C19 | E21 | D5 | | TDI | All | A15 | B20 | D22 | В3 | | TDO | All | B14 | A21 | C23 | C4 | | TMS | All | D3 | D3 | F5 | E36 | | TCK | All | C4 | C4 | E6 | C36 | | DXN | All | R4 | Y5 | AB7 | AV37 | | DXP | All | P4 | V6 | Y8 | AU35 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|------------|----------|---------------|----------------------------|--------------------------------| | V _{REF} Bank 1 | XCV50 | B9, C11 | N/A | N/A | N/A | | (VREF pins are listed | XCV100/150 | + E11 | A18, B13, E14 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + A14 | + A19 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | A14, C20, C21,
D15, G16 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + B19 | B6, B8, B18,
D11, D13, D17 | | input reference voltage | XCV800 | N/A | N/A | + A17 | + B14 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + B5 | | V _{REF} , Bank 2 | XCV50 | F13, H13 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + F14 | F21, H18, K21 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + E13 | + D22 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | F24, H23, K20,
M23, M26 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + G26 | G1, H4, J1, L2,
V5, W3 | | input reference voltage | XCV800 | N/A | N/A | + K25 | + N1 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + D2 | | V _{REF} , Bank 3 | XCV50 | K16, L14 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + L13 | N21, R19, U21 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + M13 | + U20 | N/A | N/A | | the required device and all smaller devices listed in the same package.) | XCV400 | N/A | N/A | R23, R25, U21,
W22, W23 | N/A | | | XCV600 | N/A | N/A | + W26 | AC1, AJ2, AK3,
AL4, AR1, Y1 | | Within each bank, if input reference voltage | XCV800 | N/A | N/A | + U25 | + AF3 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AP4 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|------------|---------|---------------------|------------------------------------|--| | V _{REF} Bank 4 | XCV50 | P9, T12 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect | XCV100/150 | + T11 | AA13, AB16,
AB19 | N/A | N/A | | all pins listed for both the required device and | XCV200/300 | + R13 | + AB20 | N/A | N/A | | all smaller devices
listed in the same
package.) | XCV400 | N/A | N/A | AC15, AD18,
AD21, AD22,
AF15 | N/A | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV600 | N/A | N/A | + AF20 | AT19, AU7,
AU17, AV8,
AV10, AW11 | | pins are general i/o. | XCV800 | N/A | N/A | + AF17 | + AV14 | | | XCV1000 | N/A | N/A | N/A | + AU6 | | V _{REF} Bank 5 | XCV50 | T4, P8 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + R5 | W8, Y10, AA5 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + T2 | + Y6 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | AA10, AB8, AB12,
AC7, AF12 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + AF8 | AT27, AU29,
AU31, AV35,
AW21, AW23 | | input reference voltage is not required, all V _{REF} | XCV800 | N/A | N/A | + AE10 | + AT25 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AV36 | | V _{REF} Bank 6 | XCV50 | J3, N1 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + M1 | N2, R4, T3 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + N2 | + Y1 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | AB3, R1, R4, U6,
V5 | N/A | | listed in the same package.) Within each bank, if input reference voltage | XCV600 | N/A | N/A | + Y1 | AB35, AD37,
AH39, AK39,
AM39, AN36 | | is not required, all V _{REF} | XCV800 | N/A | N/A | + U2 | + AE39 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AT39 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|---|--|--|---| | V _{REF} , Bank 7 | XCV50 | C1, H3 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + D1 | E2, H4, K3 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + B1 | + D2 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | F4, G4, K6, M2,
M5 | N/A | | listed in the same package.) | XCV600 | N/A | N/A | + H1 | E38, G38, L36,
N36, U36, U38 | | Within each bank, if input reference voltage | XCV800 | N/A | N/A | + K1 | + N38 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + F36 | | GND | All | A1, A16, B2,
B15, F6, F7,
F10, F11,
G6, G7, G8,
G9, G10,
G11, H7,
H8, H9, H10,
J7, J8, J9,
J10, K6, K7,
K8, K9, K10,
K11, L6, L7,
L10, L11,
R2, R15, T1,
T16 | A1, A22, B2, B21, C3, C20, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13, P14, Y3, Y20, AA2, AA21, AB1, AB22 | A1, A26, B2, B9, B14, B18, B25, C3, C24, D4, D23, E5, E22, J2, J25, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N2, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, P25, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17, V2, V25, AB5, AB22, AC4, AC23, AD3, AD24, AE2, AE9, AE13, AE18, AE25, AF1, AF26 | A1, A2, A3, A37, A38, A39, AA5, AA35, AH4, AH5, AH35, AR19, AR20, AR21, AR28, AR35, AT4, AT12, AT20, AT28, AT36, AU1, AU3, AU20, AU37, AU39, AV1, AV2, AV38, AV39, AW1, AW2, AW3, AW37, AW38, AW39, B1, B2, B38, B39, C1, C3, C20, C37, C39, D4, D12, D20, D28, D36, E5, E12, E19, E20, E21, E28, E35, M4, M5, M35, M36, W5, W35, Y3, Y4, Y5, Y35, Y36, Y37 | ## **BG560 Pin Function Diagram** DS003_22_100300 Figure 7: BG560 Pin Function Diagram ## **FG456 Pin Function Diagram** (Top view) Figure 9: FG456 Pin Function Diagram #### Notes: Packages FG456 and FG676 are layout compatible. # **Revision History** | Date | Version | Revision | |-------------|---------|--| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99-02/99 | 1.2-1.3 | Both versions updated package drawings and specs. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected pinout info for devices in the BG256, BG432, and BG560 pkgs in Table 18. Corrected BG256 Pin Function Diagram. | | 04/02/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See section Virtex Data Sheet, below. | | 04/19/01 | 2.6 | Corrected pinout information for FG676 device in Table 4. (Added AB22 pin.) | | 07/19/01 | 2.7 | Clarified V_{CCINT} pinout information and added AE19 pin for BG352 devices in Table 3. Changed pinouts listed for BG352 XCV400 devices in banks 0 thru 7. | | 07/19/02 | 2.8 | Changed pinouts listed for GND in TQ144 devices (see Table 2). | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)