Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 2400 | | Number of Logic Elements/Cells | 10800 | | Total RAM Bits | 81920 | | Number of I/O | 404 | | Number of Gates | 468252 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 560-LBGA Exposed Pad, Metal | | Supplier Device Package | 560-MBGA (42.5x42.5) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv400-4bg560c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Virtex Device/Package Combinations and Maximum I/O Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) | Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 | |---------|-------|--------|--------|--------|--------|--------|--------|--------|---------| | CS144 | 94 | 94 | | | | | | | | | TQ144 | 98 | 98 | | | | | | | | | PQ240 | 166 | 166 | 166 | 166 | 166 | | | | | | HQ240 | | | | | | 166 | 166 | 166 | | | BG256 | 180 | 180 | 180 | 180 | | | | | | | BG352 | | | 260 | 260 | 260 | | | | | | BG432 | | | | | 316 | 316 | 316 | 316 | | | BG560 | | | | | | 404 | 404 | 404 | 404 | | FG256 | 176 | 176 | 176 | 176 | | | | | | | FG456 | | | 260 | 284 | 312 | | | | | | FG676 | | | | | | 404 | 444 | 444 | | | FG680 | | | | | | | 512 | 512 | 512 | # **Virtex Ordering Information** Figure 1: Virtex Ordering Information DS003-2 (v4.0) March 1, 2013 # Virtex[™] 2.5 V Field Programmable Gate Arrays ### **Product Specification** The output buffer and all of the IOB control signals have independent polarity controls. vao_b.eps Figure 1: Virtex Architecture Overview All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage protection are provided, one that permits 5 V compliance, and one that does not. For 5 V compliance, a Zener-like structure connected to ground turns on when the output rises to approximately 6.5 V. When PCI 3.3 V compliance is required, a conventional clamp diode is connected to the output supply voltage, $V_{\rm CCO}$. Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each pad. Prior to configuration, all pins not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs can optionally be pulled up. The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins will float. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration. All Virtex IOBs support IEEE 1149.1-compatible boundary scan testing. # **Architectural Description** # **Virtex Array** The Virtex user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing logic - IOBs provide the interface between the package pins and the CLBs CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM. The VersaRing[™] I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking. The Virtex architecture also includes the following circuits that connect to the GRM. - Dedicated block memories of 4096 bits each - Clock DLLs for clock-distribution delay compensation and clock domain control - 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device. # Input/Output Block The Virtex IOB, Figure 2, features SelectIO™ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1. The three IOB storage elements function either as edge-triggered D-type flip-flops or as level sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop. In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear. © 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. Figure 5: Detailed View of Virtex Slice ### Additional Logic The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs. Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources. ### Arithmetic Logic Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation. The dedicated carry path can also be used to cascade function generators for implementing wide logic functions. #### **BUFTs** Each Virtex CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See **Dedicated Routing**, page 7. Each Virtex BUFT has an independent 3-state control pin and an independent input pin. #### **Block SelectRAM** Virtex FPGAs incorporate several large block SelectRAM memories. These complement the distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs. Block SelectRAM memory blocks are organized in columns. All Virtex devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, and a total of 32 blocks. Table 3 shows the amount of block SelectRAM memory that is available in each Virtex device. Table 3: Virtex Block SelectRAM Amounts | Device | # of Blocks | Total Block SelectRAM Bits | |---------|-------------|----------------------------| | XCV50 | 8 | 32,768 | | XCV100 | 10 | 40,960 | | XCV150 | 12 | 49,152 | | XCV200 | 14 | 57,344 | | XCV300 | 16 | 65,536 | | XCV400 | 20 | 81,920 | | XCV600 | 24 | 98,304 | | XCV800 | 28 | 114,688 | | XCV1000 | 32 | 131,072 | Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is selected either from these pads or from signals in the general purpose routing. Figure 9: Global Clock Distribution Network ### Delay-Locked Loop (DLL) Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input. In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices. In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock. See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information. ### **Boundary Scan** Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the $\rm V_{CCO}$ for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and $\rm V_{CCO}$. Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off. Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins. Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed. Figure 15: Serial Configuration Flowchart After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback. Retention of the SelectMAP port is selectable on a design-by-design basis when the bitstream is generated. If retention is selected, PROHIBIT constraints are required to prevent the SelectMAP-port pins from being used as user I/O. Multiple Virtex FPGAs can be configured using the Select-MAP mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, $\overline{\text{WRITE}}$, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by asserting the $\overline{\text{CS}}$ pin of each device in turn and writing the appropriate data. see Table 9 for SelectMAP Write Timing Characteristics. Table 9: SelectMAP Write Timing Characteristics | | Description | | Symbol | | Units | |------|-------------------------------------|-----|------------------------------------------|-----------|----------| | | D ₀₋₇ Setup/Hold | 1/2 | T _{SMDCC} /T _{SMCCD} | 5.0 / 1.7 | ns, min | | | CS Setup/Hold | 3/4 | T _{SMCSCC} /T _{SMCCCS} | 7.0 / 1.7 | ns, min | | CCLK | WRITE Setup/Hold | 5/6 | T _{SMCCW} /T _{SMWCC} | 7.0 / 1.7 | ns, min | | COLK | BUSY Propagation Delay | 7 | T _{SMCKBY} | 12.0 | ns, max | | | Maximum Frequency | | F _{CC} | 66 | MHz, max | | | Maximum Frequency with no handshake | | F _{CCNH} | 50 | MHz, max | ### Write Write operations send packets of configuration data into the FPGA. The sequence of operations for a multi-cycle write operation is shown below. Note that a configuration packet can be split into many such sequences. The packet does not have to complete within one assertion of \overline{CS} , illustrated in Figure 16. - 1. Assert WRITE and CS Low. Note that when CS is asserted on successive CCLKs, WRITE must remain either asserted or de-asserted. Otherwise an abort will be initiated, as described below. - 2. Drive data onto D[7:0]. Note that to avoid contention, the data source should not be enabled while \overline{CS} is Low and \overline{WRITE} is High. Similarly, while \overline{WRITE} is High, no more that one \overline{CS} should be asserted. Figure 18: SelectMAP Write Abort Waveforms ### Boundary-Scan Mode In the boundary-scan mode, configuration is done through the IEEE 1149.1 Test Access Port. Note that the PROGRAM pin must be pulled High prior to reconfiguration. A Low on the PROGRAM pin resets the TAP controller and no JTAG operations can be performed. Configuration through the TAP uses the CFG_IN instruction. This instruction allows data input on TDI to be converted into data packets for the internal configuration bus. The following steps are required to configure the FPGA through the boundary-scan port (when using TCK as a start-up clock). - Load the CFG_IN instruction into the boundary-scan instruction register (IR) - 2. Enter the Shift-DR (SDR) state - 3. Shift a configuration bitstream into TDI - 4. Return to Run-Test-Idle (RTI) - 5. Load the JSTART instruction into IR - 6. Enter the SDR state - 7. Clock TCK through the startup sequence - 8. Return to RTI Configuration and readback via the TAP is always available. The boundary-scan mode is selected by a <101> or 001> on the mode pins (M2, M1, M0). For details on TAP characteristics, refer to XAPP139. ### **Configuration Sequence** The configuration of Virtex devices is a three-phase process. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. Configuration is automatically initiated on power-up unless it is delayed by the user, as described below. The configuration process can also be initiated by asserting $\overline{\mathsf{PROGRAM}}$. The end of the memory-clearing phase is signalled by INIT going High, and the completion of the entire process is signalled by DONE going High. The power-up timing of configuration signals is shown in Figure 19. The corresponding timing characteristics are listed in Table 10. Figure 19: Power-Up Timing Configuration Signals Table 10: Power-up Timing Characteristics | Description | Symbol | Value | Units | |---------------------|----------------------|-------|---------| | Power-on Reset | T _{POR} | 2.0 | ms, max | | Program Latency | T _{PL} | 100.0 | μs, max | | CCLK (output) Delay | T _{ICCK} | 0.5 | μs, min | | | | 4.0 | μs, max | | Program Pulse Width | T _{PROGRAM} | 300 | ns, min | ### **Delaying Configuration** INIT can be held Low using an open-drain driver. An open-drain is required since INIT is a bidirectional open-drain pin that is held Low by the FPGA while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded. ### Start-Up Sequence The default Start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary. One CCLK cycle later, the Global Set/Reset (GSR) and Global Write Enable (GWE) signals are released. This permits the internal storage elements to begin changing state in response to the logic and the user clock. The relative timing of these events can be changed. In addition, the GTS, GSR, and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start in synchronism. The sequence can also be paused at any stage until lock has been achieved on any or all DLLs. | Date | Version | Revision | |----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Updated SelectMAP Write Timing Characteristics values in Table 9. Converted file to modularized format. See the Virtex Data Sheet section. | | 07/19/01 | 2.6 | Made minor edits to text under Configuration. | | 07/19/02 | 2.7 | Made minor edit to Figure 16 and Figure 18. | | 09/10/02 | 2.8 | Added clarifications in the Configuration, Boundary-Scan Mode, and Block SelectRAM sections. Revised Figure 17. | | 12/09/02 | 2.8.1 | Added clarification in the Boundary Scan section. Corrected number of buffered Hex lines listed in General Purpose Routing section. | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | # **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-3 (v4.0) March 1, 2013 **Production Product Specification** # Virtex Electrical Characteristics Definition of Terms Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: **Advance**: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. **Preliminary**: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. **Production**: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information. Table 1 correlates the current status of each Virtex device with a corresponding speed file designation. Table 1: Virtex Device Speed Grade Designations | | Speed | d Grade Design | ations | |---------|---------|----------------|------------| | Device | Advance | Preliminary | Production | | XCV50 | | | -6, -5, -4 | | XCV100 | | | -6, -5, -4 | | XCV150 | | | -6, -5, -4 | | XCV200 | | | -6, -5, -4 | | XCV300 | | | -6, -5, -4 | | XCV400 | | | -6, -5, -4 | | XCV600 | | | -6, -5, -4 | | XCV800 | | | -6, -5, -4 | | XCV1000 | | | -6, -5, -4 | All specifications are subject to change without notice. # I/O Standard Global Clock Input Adjustments | | | | | Speed | Grade | | | |--------------------------------------------------------|------------------------|-------------------------|-------|-------|-------|-------|------------| | Description | Symbol | Standard ⁽¹⁾ | Min | -6 | -5 | -4 | Units | | Data Input Delay Adjustments | | | | | | | | | Standard-specific global clock input delay adjustments | T _{GPLVTTL} | LVTTL | 0 | 0 | 0 | 0 | ns,
max | | | T _{GPLVCMOS} | LVCMOS2 | -0.02 | -0.04 | -0.04 | -0.05 | ns,
max | | | T _{GPPCl33_3} | PCI, 33 MHz, 3.3
V | -0.05 | -0.11 | -0.12 | -0.14 | ns,
max | | | T _{GPPCl33_5} | PCI, 33 MHz, 5.0
V | 0.13 | 0.25 | 0.28 | 0.33 | ns,
max | | | T _{GPPCl66_3} | PCI, 66 MHz, 3.3
V | -0.05 | -0.11 | -0.12 | -0.14 | ns,
max | | | T _{GPGTL} | GTL | 0.7 | 0.8 | 0.9 | 0.9 | ns,
max | | | T _{GPGTLP} | GTL+ | 0.7 | 0.8 | 0.8 | 0.8 | ns,
max | | | T _{GPHSTL} | HSTL | 0.7 | 0.7 | 0.7 | 0.7 | ns,
max | | | T _{GPSSTL2} | SSTL2 | 0.6 | 0.52 | 0.51 | 0.50 | ns,
max | | | T _{GPSSTL3} | SSTL3 | 0.6 | 0.6 | 0.55 | 0.54 | ns,
max | | | T _{GPCTT} | СТТ | 0.7 | 0.7 | 0.7 | 0.7 | ns,
max | | | T _{GPAGP} | AGP | 0.6 | 0.54 | 0.53 | 0.52 | ns,
max | ^{1.} Input timing for GPLVTTL is measured at 1.4 V. For other I/O standards, see Table 3. ### **Minimum Clock-to-Out for Virtex Devices** | | With DLL | | | | | With | out DLL | | | | | |--------------|-------------|-----|------|------|------|------|---------|------|------|-------|-------| | I/O Standard | All Devices | V50 | V100 | V150 | V200 | V300 | V400 | V600 | V800 | V1000 | Units | | *LVTTL_S2 | 5.2 | 6.0 | 6.0 | 6.0 | 6.0 | 6.1 | 6.1 | 6.1 | 6.1 | 6.1 | ns | | *LVTTL_S4 | 3.5 | 4.3 | 4.3 | 4.3 | 4.3 | 4.4 | 4.4 | 4.4 | 4.4 | 4.4 | ns | | *LVTTL_S6 | 2.8 | 3.6 | 3.6 | 3.6 | 3.6 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | ns | | *LVTTL_S8 | 2.2 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.2 | 3.2 | 3.2 | ns | | *LVTTL_S12 | 2.0 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 2.9 | 3.0 | 3.0 | 3.0 | ns | | *LVTTL_S16 | 1.9 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.9 | 2.9 | 2.9 | ns | | *LVTTL_S24 | 1.8 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.8 | ns | | *LVTTL_F2 | 2.9 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.8 | 3.9 | 3.9 | 3.9 | ns | | *LVTTL_F4 | 1.7 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | 2.7 | 2.7 | ns | | *LVTTL_F6 | 1.2 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.2 | ns | | *LVTTL_F8 | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | *LVTTL_F12 | 1.0 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | ns | | *LVTTL_F16 | 0.9 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | ns | | *LVTTL_F24 | 0.9 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | LVCMOS2 | 1.1 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | ns | | PCI33_3 | 1.5 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.5 | 2.5 | 2.5 | ns | | PCI33_5 | 1.4 | 2.2 | 2.2 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.4 | ns | | PCI66_3 | 1.1 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.1 | 2.1 | ns | | GTL | 1.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | ns | | GTL+ | 1.7 | 2.5 | 2.5 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.7 | ns | | HSTL I | 1.1 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | ns | | HSTL III | 0.9 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 | ns | | HSTL IV | 0.8 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | ns | | SSTL2 I | 0.9 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | ns | | SSTL2 II | 0.8 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | ns | | SSTL3 I | 0.8 | 1.6 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.8 | 1.8 | ns | | SSTL3 II | 0.7 | 1.5 | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.7 | ns | | CTT | 1.0 | 1.8 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | | AGP | 1.0 | 1.8 | 1.8 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.0 | ns | ^{*}S = Slow Slew Rate, F = Fast Slew Rate ^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. ^{2.} Input and output timing is measured at 1.4 V for LVTTL. For other I/O standards, see Table 3. In all cases, an 8 pF external capacitive load is used. # **Virtex Pin-to-Pin Input Parameter Guidelines** All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted ### Global Clock Set-Up and Hold for LVTTL Standard, with DLL | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | | |--|--|---------|-------------|-----------|-----------|-----------|------------|--|--| | Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in Input Delay Adjustments. | | | | | | | | | | | No Delay
Global Clock and IFF, with DLL | T _{PSDLL} /T _{PHDLL} | XCV50 | 0.40 / -0.4 | 1.7 /-0.4 | 1.8 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV100 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV150 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV200 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV300 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV400 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV600 | 0.40 /0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV800 | 0.40 /-0.4 | 1.7 /-0.4 | 1.9 /-0.4 | 2.1 /-0.4 | ns,
min | | | | | | XCV1000 | 0.40 /-0.4 | 1.7 /-0.4 | 1.9 /0.4 | 2.1 /-0.4 | ns,
min | | | IFF = Input Flip-Flop or Latch - 2. DLL output jitter is already included in the timing calculation. - 3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ^{1.} Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. ### **DLL Timing Parameters** All devices are 100 percent functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions. | | | | | Speed | Grade | | | | |------------------------------------|----------------------|-----|-----|-------|-------|-----|-----|-------| | | | - | -6 | | -5 | | 4 | | | Description | Symbol | Min | Max | Min | Max | Min | Max | Units | | Input Clock Frequency (CLKDLLHF) | FCLKINHF | 60 | 200 | 60 | 180 | 60 | 180 | MHz | | Input Clock Frequency (CLKDLL) | FCLKINLF | 25 | 100 | 25 | 90 | 25 | 90 | MHz | | Input Clock Pulse Width (CLKDLLHF) | T _{DLLPWHF} | 2.0 | - | 2.4 | - | 2.4 | - | ns | | Input Clock Pulse Width (CLKDLL) | T _{DLLPWLF} | 2.5 | - | 3.0 | | 3.0 | - | ns | #### Notes: ### **DLL Clock Tolerance, Jitter, and Phase Information** All DLL output jitter and phase specifications determined through statistical measurement at the package pins using a clock mirror configuration and matched drivers. | | | | CLK | DLLHF | CLI | KDLL | | |--|---------------------|--------------------|-----|-------|-----|-------------|-------| | Description | Symbol | F _{CLKIN} | Min | Max | Min | Max | Units | | Input Clock Period Tolerance | T _{IPTOL} | | - | 1.0 | - | 1.0 | ns | | Input Clock Jitter Tolerance (Cycle to Cycle) | T _{IJITCC} | | - | ± 150 | - | ± 300 | ps | | Time Required for DLL to Acquire Lock | T _{LOCK} | > 60 MHz | - | 20 | - | 20 | μs | | | | 50 - 60 MHz | - | - | - | 25 | μs | | | | 40 - 50 MHz | - | - | - | 50 | μs | | | | 30 - 40 MHz | - | - | - | 90 | μs | | | | 25 - 30 MHz | - | - | - | 120 | μs | | Output Jitter (cycle-to-cycle) for any DLL Clock Output (1) | T _{OJITCC} | | | ± 60 | | ± 60 | ps | | Phase Offset between CLKIN and CLKO ⁽²⁾ | T _{PHIO} | | | ± 100 | | ± 100 | ps | | Phase Offset between Clock Outputs on the DLL ⁽³⁾ | T _{PHOO} | | | ± 140 | | ± 140 | ps | | Maximum Phase Difference between CLKIN and CLKO ⁽⁴⁾ | T _{PHIOM} | | | ± 160 | | ± 160 | ps | | Maximum Phase Difference between Clock Outputs on the DLL (5) | T _{PHOOM} | | | ± 200 | | ± 200 | ps | - 1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter. - Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, excluding Output Jitter and input clock jitter. - Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL outputs, excluding Output Jitter and input clock jitter. - 4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter). - Maximum Phase Difference between Clock Outputs on the DLL is the sum of Output Jitter and Phase Offset between any DLL clock outputs, or the greatest difference between any two DLL output rising edges sue to DLL alone (excluding input clock jitter). - 6. All specifications correspond to Commercial Operating Temperatures (0°C to +85°C). ^{1.} All specifications correspond to Commercial Operating Temperatures (0°C to + 85°C). # **Product Obsolete/Under Obsolescence** Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|------------|----------|---------------------|---------------------------|------------------------------------| | V _{REF} , Bank 3 | XCV50 | M18, V20 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + R19 | R4, V4, Y3 | N/A | N/A | | incrementally. Connect all pins listed for both the required device and all | XCV200/300 | + P18 | + AC2 | V2, AB4, AD4,
AF3 | N/A | | smaller devices listed in the | XCV400 | N/A | N/A | + U2 | V4, W5, | | same package.) | | | | | AD3, AE5, AK2 | | Within each bank, if input reference voltage is not | XCV600 | N/A | N/A | + AC3 | + AF1 | | required, all V _{REF} pins are | XCV800 | N/A | N/A | + Y3 | + AA4 | | general I/O. | XCV1000 | N/A | N/A | N/A | + AH4 | | V _{REF} , Bank 4 | XCV50 | V12, Y18 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all | XCV100/150 | + W15 | AC12, AE5,
AE8, | N/A | N/A | | pins listed for both the required device and all smaller devices listed in the | XCV200/300 | + V14 | + AE4 | AJ7, AL4, AL8,
AL13 | N/A | | same package.) Within each bank, if input reference voltage is not | XCV400 | N/A | N/A | + AK15 | AL7, AL10,
AL16, AM4,
AM14 | | required, all V _{REF} pins are | XCV600 | N/A | N/A | + AK8 | + AL9 | | general I/O. | XCV800 | N/A | N/A | + AJ12 | + AK13 | | | XCV1000 | N/A | N/A | N/A | + AN3 | | V _{REF} , Bank 5 | XCV50 | V9, Y3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not | XCV100/150 | + W6 | AC15, AC18,
AD20 | N/A | N/A | | | XCV200/300 | + V7 | + AE23 | AJ18, AJ25,
AK23, AK27 | N/A | | | XCV400 | N/A | N/A | + AJ17 | AJ18, AJ25,
AL20, AL24,
AL29 | | required, all V _{REF} pins are general I/O. | XCV600 | N/A | N/A | + AL24 | + AM26 | | | XCV800 | N/A | N/A | + AH19 | + AN23 | | | XCV1000 | N/A | N/A | N/A | + AK28 | | V _{REF} , Bank 6 | XCV50 | M2, R3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input | XCV100/150 | + T1 | R24, Y26,
AA25, | N/A | N/A | | | XCV200/300 | + T3 | + AD26 | V28, AB28,
AE30, AF28 | N/A | | | XCV400 | N/A | N/A | + U28 | V29, Y32, AD31,
AE29, AK32 | | reference voltage is not | XCV600 | N/A | N/A | + AC28 | + AE31 | | required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + Y30 | + AA30 | | general I/O. | XCV1000 | N/A | N/A | N/A | + AH30 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |-----------|--------|-------|-------|-------|-------| | GCK0 | All | N8 | W12 | AA14 | AW19 | | GCK1 | All | R8 | Y11 | AB13 | AU22 | | GCK2 | All | C9 | A11 | C13 | D21 | | GCK3 | All | B8 | C11 | E13 | A20 | | M0 | All | N3 | AB2 | AD4 | AT37 | | M1 | All | P2 | U5 | W7 | AU38 | | M2 | All | R3 | Y4 | AB6 | AT35 | | CCLK | All | D15 | B22 | D24 | E4 | | PROGRAM | All | P15 | W20 | AA22 | AT5 | | DONE | All | R14 | Y19 | AB21 | AU5 | | INIT | All | N15 | V19 | Y21 | AU2 | | BUSY/DOUT | All | C15 | C21 | E23 | E3 | | D0/DIN | All | D14 | D20 | F22 | C2 | | D1 | All | E16 | H22 | K24 | P4 | | D2 | All | F15 | H20 | K22 | P3 | | D3 | All | G16 | K20 | M22 | R1 | | D4 | All | J16 | N22 | R24 | AD3 | | D5 | All | M16 | R21 | U23 | AG2 | | D6 | All | N16 | T22 | V24 | AH1 | | D7 | All | N14 | Y21 | AB23 | AR4 | | WRITE | All | C13 | A20 | C22 | B4 | | CS | All | B13 | C19 | E21 | D5 | | TDI | All | A15 | B20 | D22 | В3 | | TDO | All | B14 | A21 | C23 | C4 | | TMS | All | D3 | D3 | F5 | E36 | | TCK | All | C4 | C4 | E6 | C36 | | DXN | All | R4 | Y5 | AB7 | AV37 | | DXP | All | P4 | V6 | Y8 | AU35 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|--------|-------|---|---|-------| | No Connect (No-connect pins are listed incrementally. All pins listed for both the required device and all larger devices listed in the same package are no connects.) | XCV800 | N/A | N/A | A2, A3, A15, A25,
B1, B6, B11, B16,
B21, B24, B26,
C1, C2, C25, C26,
F2, F6, F21, F25,
L2, L25, N25, P2,
T2, T25, AA2,
AA6, AA21, AA25,
AD1, AD2, AD25,
AE1, AE3, AE6,
AE11, AE14,
AE16, AE21,
AE24, AE26, AF2,
AF24, AF25 | N/A | | | XCV600 | N/A | N/A | same as above | N/A | | | XCV400 | N/A | N/A | + A9, A10, A13,
A16, A24, AC1,
AC25, AE12,
AE15, AF3, AF10,
AF11, AF13,
AF14, AF16,
AF18, AF23, B4,
B12, B13, B15,
B17, D1, D25,
H26, J1, K26, L1,
M1, M25, N1, N26,
P1, P26, R2, R26,
T1, T26, U26, V1 | N/A | | | XCV300 | N/A | D4, D19, W4,
W19 | N/A | N/A | | | XCV200 | N/A | + A2, A6, A12,
B11, B16, C2,
D1, D18, E17,
E19, G2, G22,
L2, L19, M2,
M21, R3, R20,
U3, U18, Y22,
AA1, AA3, AA11,
AA16, AB7,
AB12, AB21, | N/A | N/A | | | XCV150 | N/A | + A13, A14,
C8, C9, E13,
F11, H21, J1, J4,
K2, K18, K19,
M17, N1, P1, P5,
P22, R22, W13,
W15, AA9,
AA10, AB8,
AB14 | N/A | N/A | # **Pinout Diagrams** The following diagrams, CS144 Pin Function Diagram, page 17 through FG680 Pin Function Diagram, page 27, illustrate the locations of special-purpose pins on Virtex FPGAs. Table 5 lists the symbols used in these diagrams. The diagrams also show I/O-bank boundaries. Table 5: Pinout Diagram Symbols | Symbol | Pin Function | |------------|--| | * | General I/O | | * | Device-dependent general I/O, n/c on smaller devices | | V | V _{CCINT} | | V | Device-dependent V _{CCINT} , n/c on smaller devices | | 0 | V _{CCO} | | R | V _{REF} | | r | Device-dependent V _{REF} remains I/O on smaller devices | | G | Ground | | Ø, 1, 2, 3 | Global Clocks | Table 5: Pinout Diagram Symbols (Continued) | Symbol | Pin Function | | | |--|------------------------------------|--|--| | 0 , 0 , 2 | M0, M1, M2 | | | | (0), (1), (2),
(3), (4), (5), (6),
(7) | D0/DIN, D1, D2, D3, D4, D5, D6, D7 | | | | В | DOUT/BUSY | | | | D | DONE | | | | Р | PROGRAM | | | | I | INIT | | | | K | CCLK | | | | W | WRITE | | | | S | <u>CS</u> | | | | Т | Boundary-scan Test Access Port | | | | + | Temperature diode, anode | | | | _ | Temperature diode, cathode | | | | n | No connect | | | # **CS144 Pin Function Diagram** Figure 1: CS144 Pin Function Diagram ### **TQ144 Pin Function Diagram** Figure 2: TQ144 Pin Function Diagram ### **BG432 Pin Function Diagram** DS003_21_100300 Figure 6: BG432 Pin Function Diagram ### **FG256 Pin Function Diagram** Figure 8: FG256 Pin Function Diagram