Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 2400 | | Number of Logic Elements/Cells | 10800 | | Total RAM Bits | 81920 | | Number of I/O | 404 | | Number of Gates | 468252 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 676-BGA | | Supplier Device Package | 676-FBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv400-4fg676i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Revision History** | Date | Version | Revision | |-------------|---------|--| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99-02/99 | 1.2-1.3 | Both versions updated package drawings and specs. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See Virtex Data Sheet section. | | 03/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) Figure 2: Virtex Input/Output Block (IOB) Table 1: Supported Select I/O Standards | I/O Standard | Input Reference
Voltage (V _{REF}) | Output Source
Voltage (V _{CCO}) | Board Termination
Voltage (V _{TT}) | 5 V Tolerant | |--------------------|--|--|---|--------------| | LVTTL 2 – 24 mA | N/A | 3.3 | N/A | Yes | | LVCMOS2 | N/A | 2.5 | N/A | Yes | | PCI, 5 V | N/A | 3.3 | N/A | Yes | | PCI, 3.3 V | N/A | 3.3 | N/A | No | | GTL | 0.8 | N/A | 1.2 | No | | GTL+ | 1.0 | N/A | 1.5 | No | | HSTL Class I | 0.75 | 1.5 | 0.75 | No | | HSTL Class III | 0.9 | 1.5 | 1.5 | No | | HSTL Class IV | 0.9 | 1.5 | 1.5 | No | | SSTL3 Class I &II | 1.5 | 3.3 | 1.5 | No | | SSTL2 Class I & II | 1.25 | 2.5 | 1.25 | No | | CTT | 1.5 | 3.3 | 1.5 | No | | AGP | 1.32 | 3.3 | N/A | No | In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data. Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes. #### Instruction Set The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5. ## Data Registers The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins. The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device. The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO. Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE). #### Bit Sequence The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits. From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11. BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area. Figure 10: Virtex Series Boundary Scan Logic ers with a common user interface regardless of their choice of entry and verification tools. The XDM software simplifies the selection of implementation options with pull-down menus and on-line help. Application programs ranging from schematic capture to Placement and Routing (PAR) can be accessed through the XDM software. The program command sequence is generated prior to execution, and stored for documentation. Several advanced software features facilitate Virtex design. RPMs, for example, are schematic-based macros with relative location constraints to guide their placement. They help ensure optimal implementation of common functions. For HDL design entry, the Xilinx FPGA Foundation development system provides interfaces to the following synthesis design environments. - Synopsys (FPGA Compiler, FPGA Express) - Exemplar (Spectrum) - Synplicity (Synplify) For schematic design entry, the Xilinx FPGA Foundation and alliance development system provides interfaces to the following schematic-capture design environments. - Mentor Graphics V8 (Design Architect, QuickSim II) - Viewlogic Systems (Viewdraw) Third-party vendors support many other environments. A standard interface-file specification, Electronic Design Interchange Format (EDIF), simplifies file transfers into and out of the development system. Virtex FPGAs supported by a unified library of standard functions. This library contains over 400 primitives and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, multiplexers, shift registers, and barrel shifters. The "soft macro" portion of the library contains detailed descriptions of common logic functions, but does not contain any partitioning or placement information. The performance of these macros depends, therefore, on the partitioning and placement obtained during implementation. RPMs, on the other hand, do contain predetermined partitioning and placement information that permits optimal implementation of these functions. Users can create their own library of soft macros or RPMs based on the macros and primitives in the standard library. The design environment supports hierarchical design entry, with high-level schematics that comprise major functional blocks, while lower-level schematics define the logic in these blocks. These hierarchical design elements are automatically combined by the implementation tools. Different design entry tools can be combined within a hierarchical design, thus allowing the most convenient entry method to be used for each portion of the design. ## **Design Implementation** The place-and-route tools (PAR) automatically provide the implementation flow described in this section. The partitioner takes the EDIF net list for the design and maps the logic into the architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines the best locations for these blocks based on their interconnections and the desired performance. Finally, the router interconnects the blocks. The PAR algorithms support fully automatic implementation of most designs. For demanding applications, however, the user can exercise various degrees of control over the process. User partitioning, placement, and routing information is optionally specified during the design-entry process. The implementation of highly structured designs can benefit greatly from basic floor planning. The implementation software incorporates Timing Wizard® timing-driven placement and routing. Designers specify timing requirements along entire paths during design entry. The timing path analysis routines in PAR then recognize these user-specified requirements and accommodate them. Timing requirements are entered on a schematic in a form directly relating to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system along entire signal paths is automatically tailored to user-generated specifications. Specific timing information for individual nets is unnecessary. ### **Design Verification** In addition to conventional software simulation, FPGA users can use in-circuit debugging techniques. Because Xilinx devices are infinitely reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors. The development system supports both software simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database, and back-annotates this information into the net list for use by the simulator. Alternatively, the user can verify timing-critical portions of the design using the TRACE® static timing analyzer. For in-circuit debugging, the development system includes a download and readback cable. This cable connects the FPGA in the target system to a PC or workstation. After downloading the design into the FPGA, the designer can single-step the logic, readback the contents of the flip-flops, and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes. Figure 17: SelectMAP Flowchart for Write Operation #### **Abort** During a given assertion of $\overline{\text{CS}}$, the user cannot switch from a write to a read, or vice-versa. This action causes the current packet command to be aborted. The device will remain BUSY until the aborted operation has completed. Following an abort, data is assumed to be unaligned to word boundar- ies, and the FPGA requires a new synchronization word prior to accepting any new packets. To initiate an abort during a write operation, de-assert WRITE. At the rising edge of CCLK, an abort is initiated, as shown in Figure 18. | Date | Version | Revision | |----------|---------|---| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Updated SelectMAP Write Timing Characteristics values in Table 9. Converted file to modularized format. See the Virtex Data Sheet section. | | 07/19/01 | 2.6 | Made minor edits to text under Configuration. | | 07/19/02 | 2.7 | Made minor edit to Figure 16 and Figure 18. | | 09/10/02 | 2.8 | Added clarifications in the Configuration, Boundary-Scan Mode, and Block
SelectRAM sections. Revised Figure 17. | | 12/09/02 | 2.8.1 | Added clarification in the Boundary Scan section. Corrected number of buffered Hex lines listed in General Purpose Routing section. | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | ## **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-3 (v4.0) March 1, 2013 **Production Product Specification** # Virtex Electrical Characteristics Definition of Terms Electrical and switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: **Advance**: These speed files are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. **Preliminary**: These speed files are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. **Production**: These speed files are released once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are representative of worst-case supply voltage and junction temperature conditions. The parameters included are common to popular designs and typical applications. Contact the factory for design considerations requiring more detailed information. Table 1 correlates the current status of each Virtex device with a corresponding speed file designation. Table 1: Virtex Device Speed Grade Designations | | Speed Grade Designations | | | | | | |---------|--------------------------|-------------|------------|--|--|--| | Device | Advance | Preliminary | Production | | | | | XCV50 | | | -6, -5, -4 | | | | | XCV100 | | | -6, -5, -4 | | | | | XCV150 | | | -6, -5, -4 | | | | | XCV200 | | | -6, -5, -4 | | | | | XCV300 | | | -6, -5, -4 | | | | | XCV400 | | | -6, -5, -4 | | | | | XCV600 | | | -6, -5, -4 | | | | | XCV800 | | | -6, -5, -4 | | | | | XCV1000 | | | -6, -5, -4 | | | | All specifications are subject to change without notice. | | | Speed Grade | | | | | |---|--|-------------|---------|-------------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Clock CLK to Pad delay with OBUFT enabled (non-3-state) | T _{IOCKP} | 1.0 | 2.9 | 3.2 | 3.5 | ns, max | | Clock CLK to Pad high-impedance (synchronous) ⁽¹⁾ | T _{IOCKHZ} | 1.1 | 2.3 | 2.5 | 2.9 | ns, max | | Clock CLK to valid data on Pad delay, plus enable delay for OBUFT | T _{IOCKON} | 1.5 | 3.4 | 3.7 | 4.1 | ns, max | | Setup and Hold Times before/after Clock | CLK ⁽²⁾ | | Setup | Time / Hold | Time | 1 | | O input | T _{IOOCK} /T _{IOCKO} | 0.51 / 0 | 1.1 / 0 | 1.2 / 0 | 1.3 / 0 | ns, min | | OCE input | T _{IOOCECK} /T _{IOCKOCE} | 0.37 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | SR input (OFF) | T _{IOSRCKO} /T _{IOCKOSR} | 0.52 / 0 | 1.1 / 0 | 1.2 / 0 | 1.4 / 0 | ns, min | | 3-State Setup Times, T input | T _{IOTCK} /T _{IOCKT} | 0.34 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | 3-State Setup Times, TCE input | T _{IOTCECK} /T _{IOCKTCE} | 0.41 / 0 | 0.9 / 0 | 0.9 / 0 | 1.1 / 0 | ns, min | | 3-State Setup Times, SR input (TFF) | T _{IOSRCKT} /T _{IOCKTSR} | 0.49 / 0 | 1.0 / 0 | 1.1 / 0 | 1.3 / 0 | ns, min | | Set/Reset Delays | | | | | | | | SR input to Pad (asynchronous) | T _{IOSRP} | 1.6 | 3.8 | 4.1 | 4.6 | ns, max | | SR input to Pad high-impedance (asynchronous) ⁽¹⁾ | T _{IOSRHZ} | 1.6 | 3.1 | 3.4 | 3.9 | ns, max | | SR input to valid data on Pad (asynchronous) | T _{IOSRON} | 2.0 | 4.2 | 4.6 | 5.1 | ns, max | | GSR to Pad | T _{IOGSRQ} | 4.9 | 9.7 | 10.9 | 12.5 | ns, max | #### Notes: - 1. 3-state turn-off delays should not be adjusted. - 2. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ## **CLB Arithmetic Switching Characteristics** Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment listed. Precise values are provided by the timing analyzer. | | | Speed Grade | | | | | |--|--------------------------------------|-------------|---------|---------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Combinatorial Delays | | | | | • | • | | F operand inputs to X via XOR | T _{OPX} | 0.37 | 0.8 | 0.9 | 1.0 | ns, max | | F operand input to XB output | T _{OPXB} | 0.54 | 1.1 | 1.3 | 1.4 | ns, max | | F operand input to Y via XOR | T _{OPY} | 0.8 | 1.5 | 1.7 | 2.0 | ns, max | | F operand input to YB output | T _{OPYB} | 0.8 | 1.5 | 1.7 | 2.0 | ns, max | | F operand input to COUT output | T _{OPCYF} | 0.6 | 1.2 | 1.3 | 1.5 | ns, max | | G operand inputs to Y via XOR | T _{OPGY} | 0.46 | 1.0 | 1.1 | 1.2 | ns, max | | G operand input to YB output | T _{OPGYB} | 0.8 | 1.6 | 1.8 | 2.1 | ns, max | | G operand input to COUT output | T _{OPCYG} | 0.7 | 1.3 | 1.4 | 1.6 | ns, max | | BX initialization input to COUT | T _{BXCY} | 0.41 | 0.9 | 1.0 | 1.1 | ns, max | | CIN input to X output via XOR | T _{CINX} | 0.21 | 0.41 | 0.46 | 0.53 | ns, max | | CIN input to XB | T _{CINXB} | 0.02 | 0.04 | 0.05 | 0.06 | ns, max | | CIN input to Y via XOR | T _{CINY} | 0.23 | 0.46 | 0.52 | 0.6 | ns, max | | CIN input to YB | T _{CINYB} | 0.23 | 0.45 | 0.51 | 0.6 | ns, max | | CIN input to COUT output | T _{BYP} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | | Multiplier Operation | | | | | | • | | F1/2 operand inputs to XB output via AND | T _{FANDXB} | 0.18 | 0.36 | 0.40 | 0.46 | ns, max | | F1/2 operand inputs to YB output via AND | T _{FANDYB} | 0.40 | 0.8 | 0.9 | 1.1 | ns, max | | F1/2 operand inputs to COUT output via AND | T _{FANDCY} | 0.22 | 0.43 | 0.48 | 0.6 | ns, max | | G1/2 operand inputs to YB output via AND | T _{GANDYB} | 0.25 | 0.50 | 0.6 | 0.7 | ns, max | | G1/2 operand inputs to COUT output via AND | T _{GANDCY} | 0.07 | 0.13 | 0.15 | 0.17 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | Setup Time / Hold Time | | | | | • | | CIN input to FFX | T _{CCKX} /T _{CKCX} | 0.50 / 0 | 1.0 / 0 | 1.2 / 0 | 1.3 / 0 | ns, min | | CIN input to FFY | T _{CCKY} /T _{CKCY} | 0.53 / 0 | 1.1 / 0 | 1.2 / 0 | 1.4 / 0 | ns, min | #### Notes: ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ## **Block RAM Switching Characteristics** | | Speed Grade | | | | | | |--|--------------------------------------|---------|------------|----------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Sequential Delays | | | | | | | | Clock CLK to DOUT output | T _{BCKO} | 1.7 | 3.4 | 3.8 | 4.3 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Setu | p Time / H | old Time | | | | ADDR inputs | T _{BACK} /T _{BCKA} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | DIN inputs | T _{BDCK} /T _{BCKD} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | EN input | T _{BECK} /T _{BCKE} | 1.3 / 0 | 2.6 / 0 | 3.0 / 0 | 3.4 / 0 | ns, min | | RST input | T _{BRCK} /T _{BCKR} | 1.3 / 0 | 2.5 / 0 | 2.7 / 0 | 3.2 / 0 | ns, min | | WEN input | T _{BWCK} /T _{BCKW} | 1.2 / 0 | 2.3 / 0 | 2.6 / 0 | 3.0 / 0 | ns, min | | Clock CLK | | | | | | | | Minimum Pulse Width, High | T _{BPWH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | T _{BPWL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | CLKA -> CLKB setup time for different ports | T _{BCCS} | | 3.0 | 3.5 | 4.0 | ns, min | #### Notes: ## **TBUF Switching Characteristics** | | | Speed Grade | | | | | |--|------------------|-------------|------|------|------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Combinatorial Delays | | | | | | | | IN input to OUT output | T _{IO} | 0 | 0 | 0 | 0 | ns, max | | TRI input to OUT output high-impedance | T _{OFF} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | | TRI input to valid data on OUT output | T _{ON} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | ## **JTAG Test Access Port Switching Characteristics** | | | | Speed Grade | | | | |---|---------------------|------|-------------|------|----------|--| | Description | Symbol | -6 | -5 | -4 | Units | | | TMS and TDI Setup times before TCK | T _{TAPTCK} | 4.0 | 4.0 | 4.0 | ns, min | | | TMS and TDI Hold times after TCK | T _{TCKTAP} | 2.0 | 2.0 | 2.0 | ns, min | | | Output delay from clock TCK to output TDO | T _{TCKTDO} | 11.0 | 11.0 | 11.0 | ns, max | | | Maximum TCK clock frequency | F _{TCK} | 33 | 33 | 33 | MHz, max | | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # **Product Obsolete/Under Obsolescence** Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|----------|---------|----------| | V _{REF} , Bank 3 | XCV50 | H11, K12 | 60, 68 | 130, 144 | | (V _{REF} pins are listed incrementally. Connect all pins listed for both | XCV100/150 | + J10 | + 66 | + 133 | | | XCV200/300 | N/A | N/A | + 126 | | the required device | XCV400 | N/A | N/A | + 147 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 132 | | package.) | XCV800 | N/A | N/A | + 140 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 4 | XCV50 | L8, L10 | 79, 87 | 97, 111 | | (V _{REF} pins are listed | XCV100/150 | + N10 | + 81 | + 108 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 115 | | the required device and all smaller devices | XCV400 | N/A | N/A | + 94 | | listed in the same | XCV600 | N/A | N/A | + 109 | | package.) | XCV800 | N/A | N/A | + 101 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 5 | XCV50 | L4, L6 | 96, 104 | 70, 84 | | (V _{REF} pins are listed | XCV100/150 | + N4 | + 102 | + 73 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 66 | | the required device | XCV400 | N/A | N/A | + 87 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 72 | | package.) | XCV800 | N/A | N/A | + 80 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|--|--|--| | V _{REF} , Bank 6 | XCV50 | H2, K1 | 116, 123 | 36, 50 | | (V _{REF} pins are listed | XCV100/150 | + J3 | + 118 | + 47 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 54 | | the required device | XCV400 | N/A | N/A | + 33 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 48 | | package.) | XCV800 | N/A | N/A | + 40 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 7 | XCV50 | D4, E1 | 133, 140 | 9, 23 | | (V _{REF} pins are listed | XCV100/150 | + D2 | + 138 | + 12 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 5 | | the required device | XCV400 | N/A | N/A | + 26 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 11 | | package.) | XCV800 | N/A | N/A | + 19 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | GND | All | A1, B9, B11, C7,
D5, E4, E11, F1,
G10, J1, J12, L3,
L5, L7, L9, N12 | 9, 18, 26, 35, 46, 54, 64,
75, 83, 91, 100, 111, 120,
129, 136, 144, | 1, 8, 14, 22, 29, 37, 45, 51, 59, 69, 75, 83, 91, 98, 106, 112, 119, 129, 135, 143, 151, 158, 166, 172, 182, 190, 196, 204, 211, 219, 227, 233 | Table 3: Virtex Pinout Tables (BGA) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |-----------|--------|-------|-------|-------|-------| | GCK0 | All | Y11 | AE13 | AL16 | AL17 | | GCK1 | All | Y10 | AF14 | AK16 | AJ17 | | GCK2 | All | A10 | B14 | A16 | D17 | | GCK3 | All | B10 | D14 | D17 | A17 | | MO | All | Y1 | AD24 | AH28 | AJ29 | | M1 | All | U3 | AB23 | AH29 | AK30 | | M2 | All | W2 | AC23 | AJ28 | AN32 | | CCLK | All | B19 | C3 | D4 | C4 | | PROGRAM | All | Y20 | AC4 | АН3 | AM1 | | DONE | All | W19 | AD3 | AH4 | AJ5 | | INIT | All | U18 | AD2 | AJ2 | AH5 | | BUSY/DOUT | All | D18 | E4 | D3 | D4 | | D0/DIN | All | C19 | D3 | C2 | E4 | | D1 | All | E20 | G1 | K4 | K3 | | D2 | All | G19 | J3 | K2 | L4 | | D3 | All | J19 | M3 | P4 | P3 | | D4 | All | M19 | R3 | V4 | W4 | | D5 | All | P19 | U4 | AB1 | AB5 | | D6 | All | T20 | V3 | AB3 | AC4 | | D7 | All | V19 | AC3 | AG4 | AJ4 | | WRITE | All | A19 | D5 | B4 | D6 | | CS | All | B18 | C4 | D5 | A2 | | TDI | All | C17 | В3 | В3 | D5 | | TDO | All | A20 | D4 | C4 | E6 | | TMS | All | D3 | D23 | D29 | B33 | | TCK | All | A1 | C24 | D28 | E29 | | DXN | All | W3 | AD23 | AH27 | AK29 | | DXP | All | V4 | AE24 | AK29 | AJ28 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|---------------------|--|---|--|--| | VCCINT Notes: Superset includes all pins, including the ones in bold type. Subset excludes pins in bold type. Subset excludes pins in bold type. In BG352, for XCV300 all the VCCINT pins in the superset must be connected. For XCV150/200, VCCINT pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG432, for XCV400/600/800 all VCCINT pins in the superset must be connected. For XCV300, VCCINT pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG560, for XCV800/1000 all VCCINT pins in the superset must be connected. For XCV400/600, VCCINT pins in the superset must be connected. For XCV400/600, VCCINT pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) | XCV50/100 | C10, D6,
D15, F4,
F17, L3,
L18, R4,
R17, U6,
U15, V10 | N/A | N/A | N/A | | | XCV150/200/300 | Same as
above | A20, C14,
D10, J24,
K4, P2, P25,
V24, W2,
AC10, AE14,
AE19,
B16, D12,
L1, L25,
R23, T1,
AF11, AF16 | A10, A17, B23,
C14, C19, K3,
K29, N2, N29,
T1, T29, W2,
W31, AB2,
AB30, AJ10,
AJ16, AK13,
AK19, AK22,
B26, C7, F1,
F30, AE29, AF1,
AH8, AH24 | N/A | | | XCV400/600/800/1000 | N/A | N/A | Same as above | A21, B14, B18,
B28, C24, E9,
E12, F2, H30,
J1, K32, N1,
N33, U5, U30,
Y2, Y31, AD2,
AD32, AG3,
AG31, AK8,
AK11, AK17,
AK20, AL14,
AL27, AN25,
B12, C22, M3,
N29, AB2,
AB32, AJ13,
AL22 | | V _{CCO} , Bank 0 | All | D7, D8 | A17, B25,
D19 | A21, C29, D21 | A22, A26, A30,
B19, B32 | | V _{CCO} , Bank 1 | All | D13, D14 | A10, D7,
D13 | A1, A11, D11 | A10, A16, B13,
C3, E5 | | V _{CCO} , Bank 2 | All | G17, H17 | B2, H4, K1 | C3, L1, L4 | B2, D1, H1, M1,
R2 | | V _{CCO} , Bank 3 | All | N17, P17 | P4, U1, Y4 | AA1, AA4, AJ3 | V1, AA2, AD1,
AK1, AL2 | | V _{CCO} , Bank 4 | All | U13, U14 | AC8, AE2,
AF10 | AH11, AL1,
AL11 | AM2, AM15,
AN4, AN8, AN12 | | V _{CCO} , Bank 5 | All | U7, U8 | AC14, AC20,
AF17 | AH21, AJ29,
AL21 | AL31, AM21,
AN18, AN24,
AN30 | | V _{CCO} , Bank 6 | All | N4, P4 | U26, W23,
AE25 | AA28, AA31,
AL31 | W32, AB33,
AF33, AK33,
AM32 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|----------|---------------|----------------------------|--------------------------------| | V _{REF} , Bank 1 | XCV50 | B9, C11 | N/A | N/A | N/A | | (VREF pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices | XCV100/150 | + E11 | A18, B13, E14 | N/A | N/A | | | XCV200/300 | + A14 | + A19 | N/A | N/A | | | XCV400 | N/A | N/A | A14, C20, C21,
D15, G16 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + B19 | B6, B8, B18,
D11, D13, D17 | | input reference voltage | XCV800 | N/A | N/A | + A17 | + B14 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + B5 | | V _{REF} , Bank 2 | XCV50 | F13, H13 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + F14 | F21, H18, K21 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + E13 | + D22 | N/A | N/A | | the required device and all smaller devices listed in the same package.) Within each bank, if | XCV400 | N/A | N/A | F24, H23, K20,
M23, M26 | N/A | | | XCV600 | N/A | N/A | + G26 | G1, H4, J1, L2,
V5, W3 | | input reference voltage | XCV800 | N/A | N/A | + K25 | + N1 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + D2 | | V _{REF} , Bank 3 | XCV50 | K16, L14 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + L13 | N21, R19, U21 | N/A | N/A | | incrementally. Connect
all pins listed for both
the required device and
all smaller devices
listed in the same
package.)
Within each bank, if | XCV200/300 | + M13 | + U20 | N/A | N/A | | | XCV400 | N/A | N/A | R23, R25, U21,
W22, W23 | N/A | | | XCV600 | N/A | N/A | + W26 | AC1, AJ2, AK3,
AL4, AR1, Y1 | | input reference voltage | XCV800 | N/A | N/A | + U25 | + AF3 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AP4 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|---------|---------------------|------------------------------------|--| | V _{REF} Bank 4
(V _{REF} pins are listed
incrementally. Connect | XCV50 | P9, T12 | N/A | N/A | N/A | | | XCV100/150 | + T11 | AA13, AB16,
AB19 | N/A | N/A | | all pins listed for both the required device and | XCV200/300 | + R13 | + AB20 | N/A | N/A | | all smaller devices
listed in the same
package.) | XCV400 | N/A | N/A | AC15, AD18,
AD21, AD22,
AF15 | N/A | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV600 | N/A | N/A | + AF20 | AT19, AU7,
AU17, AV8,
AV10, AW11 | | pins are general i/o. | XCV800 | N/A | N/A | + AF17 | + AV14 | | | XCV1000 | N/A | N/A | N/A | + AU6 | | V _{REF} Bank 5 | XCV50 | T4, P8 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + R5 | W8, Y10, AA5 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + T2 | + Y6 | N/A | N/A | | the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV400 | N/A | N/A | AA10, AB8, AB12,
AC7, AF12 | N/A | | | XCV600 | N/A | N/A | + AF8 | AT27, AU29,
AU31, AV35,
AW21, AW23 | | | XCV800 | N/A | N/A | + AE10 | + AT25 | | | XCV1000 | N/A | N/A | N/A | + AV36 | | V _{REF} Bank 6 | XCV50 | J3, N1 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage | XCV100/150 | + M1 | N2, R4, T3 | N/A | N/A | | | XCV200/300 | + N2 | + Y1 | N/A | N/A | | | XCV400 | N/A | N/A | AB3, R1, R4, U6,
V5 | N/A | | | XCV600 | N/A | N/A | + Y1 | AB35, AD37,
AH39, AK39,
AM39, AN36 | | is not required, all V _{REF} | XCV800 | N/A | N/A | + U2 | + AE39 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AT39 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|---|--|--|---| | V _{REF} , Bank 7 | XCV50 | C1, H3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices | XCV100/150 | + D1 | E2, H4, K3 | N/A | N/A | | | XCV200/300 | + B1 | + D2 | N/A | N/A | | | XCV400 | N/A | N/A | F4, G4, K6, M2,
M5 | N/A | | listed in the same package.) | XCV600 | N/A | N/A | + H1 | E38, G38, L36,
N36, U36, U38 | | Within each bank, if input reference voltage | XCV800 | N/A | N/A | + K1 | + N38 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + F36 | | GND | All | A1, A16, B2,
B15, F6, F7,
F10, F11,
G6, G7, G8,
G9, G10,
G11, H7,
H8, H9, H10,
J7, J8, J9,
J10, K6, K7,
K8, K9, K10,
K11, L6, L7,
L10, L11,
R2, R15, T1,
T16 | A1, A22, B2, B21, C3, C20, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13, P14, Y3, Y20, AA2, AA21, AB1, AB22 | A1, A26, B2, B9, B14, B18, B25, C3, C24, D4, D23, E5, E22, J2, J25, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N2, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, P25, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17, V2, V25, AB5, AB22, AC4, AC23, AD3, AD24, AE2, AE9, AE13, AE18, AE25, AF1, AF26 | A1, A2, A3, A37, A38, A39, AA5, AA35, AH4, AH5, AH35, AR19, AR20, AR21, AR28, AR35, AT4, AT12, AT20, AT28, AT36, AU1, AU3, AU20, AU37, AU39, AV1, AV2, AV38, AV39, AW1, AW2, AW3, AW37, AW38, AW37, AW38, AW39, B1, B2, B38, B39, C1, C3, C20, C37, C39, D4, D12, D20, D28, D36, E5, E12, E19, E20, E21, E28, E35, M4, M5, M35, M36, W5, W35, Y3, Y4, Y5, Y35, Y36, Y37 | ## **BG432 Pin Function Diagram** DS003_21_100300 Figure 6: BG432 Pin Function Diagram ## **FG456 Pin Function Diagram** (Top view) Figure 9: FG456 Pin Function Diagram #### Notes: Packages FG456 and FG676 are layout compatible.