Welcome to **E-XFL.COM** Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 384 | | Number of Logic Elements/Cells | 1728 | | Total RAM Bits | 32768 | | Number of I/O | 180 | | Number of Gates | 57906 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 256-BBGA | | Supplier Device Package | 256-PBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv50-4bg256c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## Virtex Device/Package Combinations and Maximum I/O Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) | Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 | |---------|-------|--------|--------|--------|--------|--------|--------|--------|---------| | CS144 | 94 | 94 | | | | | | | | | TQ144 | 98 | 98 | | | | | | | | | PQ240 | 166 | 166 | 166 | 166 | 166 | | | | | | HQ240 | | | | | | 166 | 166 | 166 | | | BG256 | 180 | 180 | 180 | 180 | | | | | | | BG352 | | | 260 | 260 | 260 | | | | | | BG432 | | | | | 316 | 316 | 316 | 316 | | | BG560 | | | | | | 404 | 404 | 404 | 404 | | FG256 | 176 | 176 | 176 | 176 | | | | | | | FG456 | | | 260 | 284 | 312 | | | | | | FG676 | | | | | | 404 | 444 | 444 | | | FG680 | | | | | | | 512 | 512 | 512 | # **Virtex Ordering Information** Figure 1: Virtex Ordering Information Figure 2: Virtex Input/Output Block (IOB) Table 1: Supported Select I/O Standards | I/O Standard | Input Reference
Voltage (V _{REF}) | Output Source
Voltage (V _{CCO}) | Board Termination
Voltage (V _{TT}) | 5 V Tolerant | |--------------------|--|--|---|--------------| | LVTTL 2 – 24 mA | N/A | 3.3 | N/A | Yes | | LVCMOS2 | N/A | 2.5 | N/A | Yes | | PCI, 5 V | N/A | 3.3 | N/A | Yes | | PCI, 3.3 V | N/A | 3.3 | N/A | No | | GTL | 0.8 | N/A | 1.2 | No | | GTL+ | 1.0 | N/A | 1.5 | No | | HSTL Class I | 0.75 | 1.5 | 0.75 | No | | HSTL Class III | 0.9 | 1.5 | 1.5 | No | | HSTL Class IV | 0.9 | 1.5 | 1.5 | No | | SSTL3 Class I &II | 1.5 | 3.3 | 1.5 | No | | SSTL2 Class I & II | 1.25 | 2.5 | 1.25 | No | | CTT | 1.5 | 3.3 | 1.5 | No | | AGP | 1.32 | 3.3 | N/A | No | more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O. In smaller devices, some V_{CCO} pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the V_{CCO} voltage to permit migration to a larger device if necessary. In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO} . In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously. ## **Configurable Logic Block** The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4. Figure 5 shows a more detailed view of a single slice. In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs. ## Look-Up Tables Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing. ## Storage Elements The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators. In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice. Figure 4: 2-Slice Virtex CLB Figure 5: Detailed View of Virtex Slice ### Additional Logic The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs. Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources. ### Arithmetic Logic Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation. The dedicated carry path can also be used to cascade function generators for implementing wide logic functions. #### **BUFTs** Each Virtex CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See **Dedicated Routing**, page 7. Each Virtex BUFT has an independent 3-state control pin and an independent input pin. #### **Block SelectRAM** Virtex FPGAs incorporate several large block SelectRAM memories. These complement the distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs. Block SelectRAM memory blocks are organized in columns. All Virtex devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, and a total of 32 blocks. Table 3 shows the amount of block SelectRAM memory that is available in each Virtex device. Table 3: Virtex Block SelectRAM Amounts | Device | # of Blocks | Total Block SelectRAM Bits | |---------|-------------|----------------------------| | XCV50 | 8 | 32,768 | | XCV100 | 10 | 40,960 | | XCV150 | 12 | 49,152 | | XCV200 | 14 | 57,344 | | XCV300 | 16 | 65,536 | | XCV400 | 20 | 81,920 | | XCV600 | 24 | 98,304 | | XCV800 | 28 | 114,688 | | XCV1000 | 32 | 131,072 | ### General Purpose Routing Most Virtex signals are routed on the general purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing hierarchy. The general routing resources are located in horizontal and vertical routing channels associated with the rows and columns CLBs. The general-purpose routing resources are listed below. - Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix through which horizontal and vertical routing resources connect, and is also the means by which the CLB gains access to the general purpose routing. - 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions. - 12 buffered Hex lines route GRM signals to another GRMs six-blocks away in each one of the four directions. Organized in a staggered pattern, Hex lines can be driven only at their endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). One third of the Hex lines are bidirectional, while the remaining ones are uni-directional. 12 Longlines are buffered, bidirectional wires that distribute signals across the device quickly and efficiently. Vertical Longlines span the full height of the device, and horizontal ones span the full width of the device. ### I/O Routing Virtex devices have additional routing resources around their periphery that form an interface between the CLB array and the IOBs. This additional routing, called the VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other system components can be manufactured while the logic design is still in progress. ### **Dedicated Routing** Some classes of signal require dedicated routing resources to maximize performance. In the Virtex architecture, dedicated routing resources are provided for two classes of signal. - Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable bus lines are provided per CLB row, permitting multiple busses within a row, as shown in Figure 8. - Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB. Figure 8: BUFT Connections to Dedicated Horizontal Bus Lines #### Global Routing Global Routing resources distribute clocks and other signals with very high fanout throughout the device. Virtex devices include two tiers of global routing resources referred to as primary global and secondary local clock routing resources. • The primary global routing resources are four dedicated global nets with dedicated input pins that are designed to distribute high-fanout clock signals with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock pins. The primary global nets can only be driven by global buffers. There are four global buffers, one for each global net. The secondary local clock routing resources consist of 24 backbone lines, 12 across the top of the chip and 12 across bottom. From these lines, up to 12 unique signals per column can be distributed via the 12 longlines in the column. These secondary resources are more flexible than the primary resources since they are not restricted to routing only to clock pins. #### **Clock Distribution** Virtex provides high-speed, low-skew clock distribution through the primary global routing resources described above. A typical clock distribution net is shown in Figure 9. Four global buffers are provided, two at the top center of the device and two at the bottom center. These drive the four primary global nets that in turn drive any clock pin. Figure 11: Boundary Scan Bit Sequence Table 5: Boundary Scan Instructions | Boundary-Scan
Command | Binary
Code(4:0) | Description | |--------------------------|---------------------|--| | EXTEST | 00000 | Enables boundary-scan EXTEST operation | | SAMPLE/PRELOAD | 00001 | Enables boundary-scan
SAMPLE/PRELOAD
operation | | USER 1 | 00010 | Access user-defined register 1 | | USER 2 | 00011 | Access user-defined register 2 | | CFG_OUT | 00100 | Access the configuration bus for read operations. | | CFG_IN | 00101 | Access the configuration bus for write operations. | | INTEST | 00111 | Enables boundary-scan INTEST operation | | USERCODE | 01000 | Enables shifting out
USER code | | IDCODE | 01001 | Enables shifting out of ID Code | | HIGHZ | 01010 | 3-states output pins while enabling the Bypass Register | | JSTART | 01100 | Clock the start-up
sequence when
StartupClk is TCK | | BYPASS | 11111 | Enables BYPASS | | RESERVED | All other codes | Xilinx reserved instructions | ## Identification Registers The IDCODE register is supported. By using the IDCODE, the device connected to the JTAG port can be determined. The IDCODE register has the following binary format: vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc1 where v = the die version number f = the family code (03h for Virtex family) a = the number of CLB rows (ranges from 010h for XCV50 to 040h for XCV1000) c = the company code (49h for Xilinx) The USERCODE register is supported. By using the USER-CODE, a user-programmable identification code can be loaded and shifted out for examination. The identification code is embedded in the bitstream during bitstream generation and is valid only after configuration. Table 6: IDCODEs Assigned to Virtex FPGAs | FPGA | IDCODE | |---------|-----------| | XCV50 | v0610093h | | XCV100 | v0614093h | | XCV150 | v0618093h | | XCV200 | v061C093h | | XCV300 | v0620093h | | XCV400 | v0628093h | | XCV600 | v0630093h | | XCV800 | v0638093h | | XCV1000 | v0640093h | ### Including Boundary Scan in a Design Since the boundary scan pins are dedicated, no special element needs to be added to the design unless an internal data register (USER1 or USER2) is desired. If an internal data register is used, insert the boundary scan symbol and connect the necessary pins as appropriate. # **Development System** Virtex FPGAs are supported by the Xilinx Foundation and Alliance CAE tools. The basic methodology for Virtex design consists of three interrelated steps: design entry, implementation, and verification. Industry-standard tools are used for design entry and simulation (for example, Synopsys FPGA Express), while Xilinx provides proprietary architecture-specific tools for implementation. The Xilinx development system is integrated under the Xilinx Design Manager (XDM™) software, providing design- Figure 17: SelectMAP Flowchart for Write Operation #### **Abort** During a given assertion of $\overline{\text{CS}}$, the user cannot switch from a write to a read, or vice-versa. This action causes the current packet command to be aborted. The device will remain BUSY until the aborted operation has completed. Following an abort, data is assumed to be unaligned to word boundar- ies, and the FPGA requires a new synchronization word prior to accepting any new packets. To initiate an abort during a write operation, de-assert WRITE. At the rising edge of CCLK, an abort is initiated, as shown in Figure 18. Figure 18: SelectMAP Write Abort Waveforms ## Boundary-Scan Mode In the boundary-scan mode, configuration is done through the IEEE 1149.1 Test Access Port. Note that the PROGRAM pin must be pulled High prior to reconfiguration. A Low on the PROGRAM pin resets the TAP controller and no JTAG operations can be performed. Configuration through the TAP uses the CFG_IN instruction. This instruction allows data input on TDI to be converted into data packets for the internal configuration bus. The following steps are required to configure the FPGA through the boundary-scan port (when using TCK as a start-up clock). - Load the CFG_IN instruction into the boundary-scan instruction register (IR) - 2. Enter the Shift-DR (SDR) state - 3. Shift a configuration bitstream into TDI - 4. Return to Run-Test-Idle (RTI) - 5. Load the JSTART instruction into IR - 6. Enter the SDR state - 7. Clock TCK through the startup sequence - 8. Return to RTI Configuration and readback via the TAP is always available. The boundary-scan mode is selected by a <101> or 001> on the mode pins (M2, M1, M0). For details on TAP characteristics, refer to XAPP139. ## **Configuration Sequence** The configuration of Virtex devices is a three-phase process. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. Configuration is automatically initiated on power-up unless it is delayed by the user, as described below. The configuration process can also be initiated by asserting $\overline{\mathsf{PROGRAM}}$. The end of the memory-clearing phase is signalled by INIT going High, and the completion of the entire process is signalled by DONE going High. The power-up timing of configuration signals is shown in Figure 19. The corresponding timing characteristics are listed in Table 10. Figure 19: Power-Up Timing Configuration Signals Table 10: Power-up Timing Characteristics | Description | Symbol | Value | Units | |---------------------|----------------------|-------|---------| | Power-on Reset | T _{POR} | 2.0 | ms, max | | Program Latency | T _{PL} | 100.0 | μs, max | | CCLK (output) Delay | T _{ICCK} | 0.5 | μs, min | | | | 4.0 | μs, max | | Program Pulse Width | T _{PROGRAM} | 300 | ns, min | ## **Delaying Configuration** INIT can be held Low using an open-drain driver. An open-drain is required since INIT is a bidirectional open-drain pin that is held Low by the FPGA while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded. #### Start-Up Sequence The default Start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary. One CCLK cycle later, the Global Set/Reset (GSR) and Global Write Enable (GWE) signals are released. This permits the internal storage elements to begin changing state in response to the logic and the user clock. The relative timing of these events can be changed. In addition, the GTS, GSR, and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start in synchronism. The sequence can also be paused at any stage until lock has been achieved on any or all DLLs. ## **Virtex DC Characteristics** ## **Absolute Maximum Ratings** | Symbol | Description ⁽¹⁾ | | | Units | |--------------------|---|------------------------|-------------|-------| | V _{CCINT} | Supply voltage relative to GND ⁽²⁾ | | -0.5 to 3.0 | V | | V _{CCO} | Supply voltage relative to GND ⁽²⁾ | | -0.5 to 4.0 | V | | V _{REF} | Input Reference Voltage | -0.5 to 3.6 | V | | | V | Input voltage relative to GND ⁽³⁾ | Using V _{REF} | -0.5 to 3.6 | V | | V _{IN} | | Internal threshold | -0.5 to 5.5 | V | | V _{TS} | Voltage applied to 3-state output | | -0.5 to 5.5 | V | | V _{CC} | Longest Supply Voltage Rise Time from 1V-2.375V | | 50 | ms | | T _{STG} | Storage temperature (ambient) | | -65 to +150 | °C | | TJ | Junction temperature ⁽⁴⁾ | Plastic Packages | +125 | °C | #### Notes: - Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time can affect device reliability. - 2. Power supplies can turn on in any order. - 3. For protracted periods (e.g., longer than a day), V_{IN} should not exceed V_{CCO} by more than 3.6 V. - 4. For soldering guidelines and thermal considerations, see the "Device Packaging" information on www.xilinx.com. ## **Recommended Operating Conditions** | Symbol | Description | | Min | Max | Units | |-----------------------------------|---|------------|----------|----------------------|-------| | V _{CCINT} ⁽¹⁾ | Input Supply voltage relative to GND, $T_J = 0$ °C to +85°C | Commercial | 2.5 – 5% | 2.5 + 5% | V | | CCINT` / | Input Supply voltage relative to GND, $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$ | Industrial | 2.5 – 5% | 2.5 + 5% | V | | V _{CCO} ⁽⁴⁾ | Supply voltage relative to GND, T _J = 0 °C to +85°C | Commercial | 1.4 | 3.6 | V | | , CCO, | Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C$ | Industrial | 1.4 | 2.5 + 5%
2.5 + 5% | V | | T _{IN} | Input signal transition time | | | 250 | ns | - Correct operation is guaranteed with a minimum V_{CCINT} of 2.375 V (Nominal V_{CCINT} -5%). Below the minimum value, all delay parameters increase by 3% for each 50-mV reduction in V_{CCINT} below the specified range. - 2. At junction temperatures above those listed as Operating Conditions, delay parameters do increase. Please refer to the TRCE report. - 3. Input and output measurement threshold is \sim 50% of V_{CC} . - Min and Max values for V_{CCO} are I/O Standard dependant. ## **DC Characteristics Over Recommended Operating Conditions** | Symbol | Description | 1 | Device | Min | Max | Units | |---------------------|--|-------------------------------------|---------|----------|------|-------| | V _{DRINT} | Data Retention V _{CCINT} Voltage | | All | 2.0 | | V | | 21 | (below which configuration data can be | e lost) | | | | | | V_{DRIO} | Data Retention V _{CCO} Voltage (below which configuration data can be | e lost) | All | 1.2 | | V | | I _{CCINTQ} | Quiescent V _{CCINT} supply current ^(1,3) | | XCV50 | | 50 | mA | | | | | XCV100 | | 50 | mA | | | | | XCV150 | | 50 | mA | | | | | XCV200 | | 75 | mA | | | | | XCV300 | | 75 | mA | | | | | XCV400 | | 75 | mA | | | | | XCV600 | | 100 | mA | | | | | XCV800 | | 100 | mA | | | | | | | 100 | mA | | Iccoq | Quiescent V _{CCO} supply current ⁽¹⁾ | | XCV50 | | 2 | mA | | | | | XCV100 | | 2 | mA | | | | | XCV150 | | 2 | mA | | | | | XCV200 | | 2 | mA | | | | | XCV300 | | 2 | mA | | | | | XCV400 | | 2 | mA | | | | | XCV600 | | 2 | mA | | | | | XCV800 | | 2 | mA | | | | | XCV1000 | | 2 | mA | | I _{REF} | V _{REF} current per V _{REF} pin | | All | | 20 | μΑ | | ΙL | Input or output leakage current | | All | -10 | +10 | μΑ | | C _{IN} | Input capacitance (sample tested) | BGA, PQ, HQ, packages | All | | 8 | pF | | I _{RPU} | Pad pull-up (when selected) @ V _{in} = 0 tested) | V, V _{CCO} = 3.3 V (sample | All | Note (2) | 0.25 | mA | | I _{RPD} | Pad pull-down (when selected) @ V _{in} = | = 3.6 V (sample tested) | | Note (2) | 0.15 | mA | - 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating. - 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits. - 3. Multiply I_{CCINTQ} limit by two for industrial grade. ## **IOB Output Switching Characteristics Standard Adjustments** Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown. | | | | | Speed | Grade | | Unit | |---|-------------------------|-------------------------|-------|-------|-------|-------|------| | Description | Symbol | Standard ⁽¹⁾ | Min | -6 | -5 | -4 | s | | Output Delay Adjustments | | | | | | | | | Standard-specific adjustments for | T _{OLVTTL_S2} | LVTTL, Slow, 2 mA | 4.2 | 14.7 | 15.8 | 17.0 | ns | | output delays terminating at pads (based on standard capacitive load, | T _{OLVTTL_S4} | 4 mA | 2.5 | 7.5 | 8.0 | 8.6 | ns | | Csl) | T _{OLVTTL_S6} | 6 mA | 1.8 | 4.8 | 5.1 | 5.6 | ns | | | T _{OLVTTL_S8} | 8 mA | 1.2 | 3.0 | 3.3 | 3.5 | ns | | | T _{OLVTTL_S12} | 12 mA | 1.0 | 1.9 | 2.1 | 2.2 | ns | | | T _{OLVTTL_S16} | 16 mA | 0.9 | 1.7 | 1.9 | 2.0 | ns | | | T _{OLVTTL_S24} | 24 mA | 0.8 | 1.3 | 1.4 | 1.6 | ns | | | T _{OLVTTL_F2} | LVTTL, Fast, 2mA | 1.9 | 13.1 | 14.0 | 15.1 | ns | | | T _{OLVTTL_F4} | 4 mA | 0.7 | 5.3 | 5.7 | 6.1 | ns | | | T _{OLVTTL_F6} | 6 mA | 0.2 | 3.1 | 3.3 | 3.6 | ns | | | T _{OLVTTL_F8} | 8 mA | 0.1 | 1.0 | 1.1 | 1.2 | ns | | | T _{OLVTTL_F12} | 12 mA | 0 | 0 | 0 | 0 | ns | | | T _{OLVTTL_F16} | 16 mA | -0.10 | -0.05 | -0.05 | -0.05 | ns | | | T _{OLVTTL_F24} | 24 mA | -0.10 | -0.20 | -0.21 | -0.23 | ns | | | T _{OLVCMOS2} | LVCMOS2 | 0.10 | 0.10 | 0.11 | 0.12 | ns | | | T _{OPCl33_3} | PCI, 33 MHz, 3.3 V | 0.50 | 2.3 | 2.5 | 2.7 | ns | | | T _{OPCl33_5} | PCI, 33 MHz, 5.0 V | 0.40 | 2.8 | 3.0 | 3.3 | ns | | | T _{OPCI66_3} | PCI, 66 MHz, 3.3 V | 0.10 | -0.40 | -0.42 | -0.46 | ns | | | T _{OGTL} | GTL | 0.6 | 0.50 | 0.54 | 0.6 | ns | | | T _{OGTLP} | GTL+ | 0.7 | 0.8 | 0.9 | 1.0 | ns | | | T _{OHSTL_I} | HSTL I | 0.10 | -0.50 | -0.53 | -0.5 | ns | | | T _{OHSTL_III} | HSTL III | -0.10 | -0.9 | -0.9 | -1.0 | ns | | | T _{OHSTL_IV} | HSTL IV | -0.20 | -1.0 | -1.0 | -1.1 | ns | | | T _{OSSTL2_I} | SSTL2 I | -0.10 | -0.50 | -0.53 | -0.5 | ns | | | T _{OSSLT2_II} | SSTL2 II | -0.20 | -0.9 | -0.9 | -1.0 | ns | | | T _{OSSTL3_I} | SSTL3 I | -0.20 | -0.50 | -0.53 | -0.5 | ns | | | T _{OSSTL3_II} | SSTL3 II | -0.30 | -1.0 | -1.0 | -1.1 | ns | | | T _{OCTT} | CTT | 0 | -0.6 | -0.6 | -0.6 | ns | | | T _{OAGP} | AGP | 0 | -0.9 | -0.9 | -1.0 | ns | ^{1.} Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see Table 2 and Table 3. ## **DLL Timing Parameters** All devices are 100 percent functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions. | | Speed Grade | | | | | | | | | | |------------------------------------|----------------------|-----|-----|-----|-------|-----|-----|-------|---|--| | | | - | -6 | | -6 -5 | | 5 | - | 4 | | | Description | Symbol | Min | Max | Min | Max | Min | Max | Units | | | | Input Clock Frequency (CLKDLLHF) | FCLKINHF | 60 | 200 | 60 | 180 | 60 | 180 | MHz | | | | Input Clock Frequency (CLKDLL) | FCLKINLF | 25 | 100 | 25 | 90 | 25 | 90 | MHz | | | | Input Clock Pulse Width (CLKDLLHF) | T _{DLLPWHF} | 2.0 | - | 2.4 | - | 2.4 | - | ns | | | | Input Clock Pulse Width (CLKDLL) | T _{DLLPWLF} | 2.5 | - | 3.0 | | 3.0 | - | ns | | | #### Notes: ### **DLL Clock Tolerance, Jitter, and Phase Information** All DLL output jitter and phase specifications determined through statistical measurement at the package pins using a clock mirror configuration and matched drivers. | | | | CLKDLLHF | | CLKDLL | | | |--|---------------------|--------------------|----------|-------|--------|-------|-------| | Description | Symbol | F _{CLKIN} | Min | Max | Min | Max | Units | | Input Clock Period Tolerance | T _{IPTOL} | | - | 1.0 | - | 1.0 | ns | | Input Clock Jitter Tolerance (Cycle to Cycle) | T _{IJITCC} | | - | ± 150 | - | ± 300 | ps | | Time Required for DLL to Acquire Lock | T _{LOCK} | > 60 MHz | ı | 20 | - | 20 | μs | | | | 50 - 60 MHz | ı | - | - | 25 | μs | | | | 40 - 50 MHz | ı | - | - | 50 | μs | | | | 30 - 40 MHz | ı | - | - | 90 | μs | | | | 25 - 30 MHz | ı | - | - | 120 | μs | | Output Jitter (cycle-to-cycle) for any DLL Clock Output (1) | T _{OJITCC} | | | ± 60 | | ± 60 | ps | | Phase Offset between CLKIN and CLKO ⁽²⁾ | T _{PHIO} | | | ± 100 | | ± 100 | ps | | Phase Offset between Clock Outputs on the DLL ⁽³⁾ | T _{PHOO} | | | ± 140 | | ± 140 | ps | | Maximum Phase Difference between CLKIN and CLKO ⁽⁴⁾ | T _{PHIOM} | | | ± 160 | | ± 160 | ps | | Maximum Phase Difference between Clock Outputs on the DLL (5) | T _{PHOOM} | | | ± 200 | | ± 200 | ps | - 1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter. - Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, excluding Output Jitter and input clock jitter. - Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL outputs, excluding Output Jitter and input clock jitter. - 4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter). - Maximum Phase Difference between Clock Outputs on the DLL is the sum of Output Jitter and Phase Offset between any DLL clock outputs, or the greatest difference between any two DLL output rising edges sue to DLL alone (excluding input clock jitter). - 6. All specifications correspond to Commercial Operating Temperatures (0°C to +85°C). ^{1.} All specifications correspond to Commercial Operating Temperatures (0°C to + 85°C). # **Product Obsolete/Under Obsolescence** Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|---|---|--| | V _{CCO} | All | Banks 0 and 1:
A2, A13, D7
Banks 2 and 3:
B12, G11, M13
Banks 4 and 5:
N1, N7, N13
Banks 6 and 7:
B2, G2, M2 | No I/O Banks in this package: 1, 17, 37, 55, 73, 92, 109, 128 | No I/O Banks in this package: 15, 30, 44, 61, 76, 90, 105, 121, 136, 150, 165, 180, 197, 212, 226, 240 | | V _{RFF} Bank 0 | XCV50 | C4, D6 | 5, 13 | 218, 232 | | (V _{REF} pins are listed | XCV100/150 | + B4 | + 7 | + 229 | | incrementally. Connect | XCV200/300 | N/A | N/A | + 236 | | all pins listed for both the required device | XCV400 | N/A | N/A | + 215 | | and all smaller devices | XCV600 | N/A | N/A | + 230 | | listed in the same package.) | XCV800 | N/A | N/A | + 222 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 1 | XCV50 | A10, B8 | 22, 30 | 191, 205 | | (V _{REF} pins are listed | XCV100/150 | + D9 | + 28 | + 194 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 187 | | the required device | XCV400 | N/A | N/A | + 208 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 193 | | package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + 201 | | V _{REF} , Bank 2 | XCV50 | D11, F10 | 42, 50 | 157, 171 | | (V _{REF} pins are listed | XCV100/150 | + D13 | + 44 | + 168 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 175 | | the required device
and all smaller devices
listed in the same | XCV400 | N/A | N/A | + 154 | | | XCV600 | N/A | N/A | + 169 | | package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV800 | N/A | N/A | + 161 | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |--|---------------------|--|---|--|--| | VCCINT Notes: Superset includes all pins, including the ones in bold type. Subset excludes pins in bold type. In BG352, for XCV300 all the V _{CCINT} pins in the superset must be connected. For XCV150/200, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG432, for XCV400/600/800 all V _{CCINT} pins in the superset must be connected. For XCV300, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG560, for XCV800/1000 all V _{CCINT} pins in the subset must be connected. For XCV400/600, V _{CCINT} pins in the superset must be connected. For XCV400/600, V _{CCINT} pins in the subset must be connected. For XCV400/600, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) | XCV50/100 | C10, D6,
D15, F4,
F17, L3,
L18, R4,
R17, U6,
U15, V10 | N/A | N/A | N/A | | | XCV150/200/300 | Same as
above | A20, C14,
D10, J24,
K4, P2, P25,
V24, W2,
AC10, AE14,
AE19,
B16, D12,
L1, L25,
R23, T1,
AF11, AF16 | A10, A17, B23,
C14, C19, K3,
K29, N2, N29,
T1, T29, W2,
W31, AB2,
AB30, AJ10,
AJ16, AK13,
AK19, AK22,
B26, C7, F1,
F30, AE29, AF1,
AH8, AH24 | N/A | | | XCV400/600/800/1000 | N/A | N/A | Same as above | A21, B14, B18,
B28, C24, E9,
E12, F2, H30,
J1, K32, N1,
N33, U5, U30,
Y2, Y31, AD2,
AD32, AG3,
AG31, AK8,
AK11, AK17,
AK20, AL14,
AL27, AN25,
B12, C22, M3,
N29, AB2,
AB32, AJ13,
AL22 | | V _{CCO} , Bank 0 | All | D7, D8 | A17, B25,
D19 | A21, C29, D21 | A22, A26, A30,
B19, B32 | | V _{CCO} , Bank 1 | All | D13, D14 | A10, D7,
D13 | A1, A11, D11 | A10, A16, B13,
C3, E5 | | V _{CCO} , Bank 2 | All | G17, H17 | B2, H4, K1 | C3, L1, L4 | B2, D1, H1, M1,
R2 | | V _{CCO} , Bank 3 | All | N17, P17 | P4, U1, Y4 | AA1, AA4, AJ3 | V1, AA2, AD1,
AK1, AL2 | | V _{CCO} , Bank 4 | All | U13, U14 | AC8, AE2,
AF10 | AH11, AL1,
AL11 | AM2, AM15,
AN4, AN8, AN12 | | V _{CCO} , Bank 5 | All | U7, U8 | AC14, AC20,
AF17 | AH21, AJ29,
AL21 | AL31, AM21,
AN18, AN24,
AN30 | | V _{CCO} , Bank 6 | All | N4, P4 | U26, W23,
AE25 | AA28, AA31,
AL31 | W32, AB33,
AF33, AK33,
AM32 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |-----------|--------|-------|-------|-------|-------| | GCK0 | All | N8 | W12 | AA14 | AW19 | | GCK1 | All | R8 | Y11 | AB13 | AU22 | | GCK2 | All | C9 | A11 | C13 | D21 | | GCK3 | All | B8 | C11 | E13 | A20 | | M0 | All | N3 | AB2 | AD4 | AT37 | | M1 | All | P2 | U5 | W7 | AU38 | | M2 | All | R3 | Y4 | AB6 | AT35 | | CCLK | All | D15 | B22 | D24 | E4 | | PROGRAM | All | P15 | W20 | AA22 | AT5 | | DONE | All | R14 | Y19 | AB21 | AU5 | | INIT | All | N15 | V19 | Y21 | AU2 | | BUSY/DOUT | All | C15 | C21 | E23 | E3 | | D0/DIN | All | D14 | D20 | F22 | C2 | | D1 | All | E16 | H22 | K24 | P4 | | D2 | All | F15 | H20 | K22 | P3 | | D3 | All | G16 | K20 | M22 | R1 | | D4 | All | J16 | N22 | R24 | AD3 | | D5 | All | M16 | R21 | U23 | AG2 | | D6 | All | N16 | T22 | V24 | AH1 | | D7 | All | N14 | Y21 | AB23 | AR4 | | WRITE | All | C13 | A20 | C22 | B4 | | CS | All | B13 | C19 | E21 | D5 | | TDI | All | A15 | B20 | D22 | В3 | | TDO | All | B14 | A21 | C23 | C4 | | TMS | All | D3 | D3 | F5 | E36 | | TCK | All | C4 | C4 | E6 | C36 | | DXN | All | R4 | Y5 | AB7 | AV37 | | DXP | All | P4 | V6 | Y8 | AU35 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|---|--|--|---| | V _{REF} , Bank 7 | XCV50 | C1, H3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both the required device and all smaller devices | XCV100/150 | + D1 | E2, H4, K3 | N/A | N/A | | | XCV200/300 | + B1 | + D2 | N/A | N/A | | | XCV400 | N/A | N/A | F4, G4, K6, M2,
M5 | N/A | | listed in the same package.) | XCV600 | N/A | N/A | + H1 | E38, G38, L36,
N36, U36, U38 | | Within each bank, if input reference voltage | XCV800 | N/A | N/A | + K1 | + N38 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + F36 | | GND | All | A1, A16, B2,
B15, F6, F7,
F10, F11,
G6, G7, G8,
G9, G10,
G11, H7,
H8, H9, H10,
J7, J8, J9,
J10, K6, K7,
K8, K9, K10,
K11, L6, L7,
L10, L11,
R2, R15, T1,
T16 | A1, A22, B2, B21, C3, C20, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13, P14, Y3, Y20, AA2, AA21, AB1, AB22 | A1, A26, B2, B9, B14, B18, B25, C3, C24, D4, D23, E5, E22, J2, J25, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N2, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, P25, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17, V2, V25, AB5, AB22, AC4, AC23, AD3, AD24, AE2, AE9, AE13, AE18, AE25, AF1, AF26 | A1, A2, A3, A37, A38, A39, AA5, AA35, AH4, AH5, AH35, AR19, AR20, AR21, AR28, AR35, AT4, AT12, AT20, AT28, AT36, AU1, AU3, AU20, AU37, AU39, AV1, AV2, AV38, AV39, AW1, AW2, AW3, AW37, AW38, AW37, AW38, AW39, B1, B2, B38, B39, C1, C3, C20, C37, C39, D4, D12, D20, D28, D36, E5, E12, E19, E20, E21, E28, E35, M4, M5, M35, M36, W5, W35, Y3, Y4, Y5, Y35, Y36, Y37 | ## **TQ144 Pin Function Diagram** Figure 2: TQ144 Pin Function Diagram ## **FG456 Pin Function Diagram** (Top view) Figure 9: FG456 Pin Function Diagram #### Notes: Packages FG456 and FG676 are layout compatible. ## **FG680 Pin Function Diagram** Figure 11: FG680 Pin Function Diagram