Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|-----------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 384 | | Number of Logic Elements/Cells | 1728 | | Total RAM Bits | 32768 | | Number of I/O | 98 | | Number of Gates | 57906 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv50-4tq144c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Virtex Device/Package Combinations and Maximum I/O Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) | Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 | |---------|-------|--------|--------|--------|--------|--------|--------|--------|---------| | CS144 | 94 | 94 | | | | | | | | | TQ144 | 98 | 98 | | | | | | | | | PQ240 | 166 | 166 | 166 | 166 | 166 | | | | | | HQ240 | | | | | | 166 | 166 | 166 | | | BG256 | 180 | 180 | 180 | 180 | | | | | | | BG352 | | | 260 | 260 | 260 | | | | | | BG432 | | | | | 316 | 316 | 316 | 316 | | | BG560 | | | | | | 404 | 404 | 404 | 404 | | FG256 | 176 | 176 | 176 | 176 | | | | | | | FG456 | | | 260 | 284 | 312 | | | | | | FG676 | | | | | | 404 | 444 | 444 | | | FG680 | | | | | | | 512 | 512 | 512 | # **Virtex Ordering Information** Figure 1: Virtex Ordering Information Figure 5: Detailed View of Virtex Slice ### Additional Logic The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs. Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources. ### Arithmetic Logic Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation. The dedicated carry path can also be used to cascade function generators for implementing wide logic functions. #### **BUFTs** Each Virtex CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See **Dedicated Routing**, page 7. Each Virtex BUFT has an independent 3-state control pin and an independent input pin. ### **Block SelectRAM** Virtex FPGAs incorporate several large block SelectRAM memories. These complement the distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs. Block SelectRAM memory blocks are organized in columns. All Virtex devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, and a total of 32 blocks. Table 3 shows the amount of block SelectRAM memory that is available in each Virtex device. Table 3: Virtex Block SelectRAM Amounts | Device | # of Blocks | Total Block SelectRAM Bits | |---------|-------------|----------------------------| | XCV50 | 8 | 32,768 | | XCV100 | 10 | 40,960 | | XCV150 | 12 | 49,152 | | XCV200 | 14 | 57,344 | | XCV300 | 16 | 65,536 | | XCV400 | 20 | 81,920 | | XCV600 | 24 | 98,304 | | XCV800 | 28 | 114,688 | | XCV1000 | 32 | 131,072 | Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is selected either from these pads or from signals in the general purpose routing. Figure 9: Global Clock Distribution Network ### Delay-Locked Loop (DLL) Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input. In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16. The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices. In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock. See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information. ### **Boundary Scan** Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the $\rm V_{CCO}$ for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and $\rm V_{CCO}$. Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off. Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins. Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed. Figure 18: SelectMAP Write Abort Waveforms ### Boundary-Scan Mode In the boundary-scan mode, configuration is done through the IEEE 1149.1 Test Access Port. Note that the PROGRAM pin must be pulled High prior to reconfiguration. A Low on the PROGRAM pin resets the TAP controller and no JTAG operations can be performed. Configuration through the TAP uses the CFG_IN instruction. This instruction allows data input on TDI to be converted into data packets for the internal configuration bus. The following steps are required to configure the FPGA through the boundary-scan port (when using TCK as a start-up clock). - Load the CFG_IN instruction into the boundary-scan instruction register (IR) - 2. Enter the Shift-DR (SDR) state - 3. Shift a configuration bitstream into TDI - 4. Return to Run-Test-Idle (RTI) - 5. Load the JSTART instruction into IR - 6. Enter the SDR state - 7. Clock TCK through the startup sequence - 8. Return to RTI Configuration and readback via the TAP is always available. The boundary-scan mode is selected by a <101> or 001> on the mode pins (M2, M1, M0). For details on TAP characteristics, refer to XAPP139. # **Configuration Sequence** The configuration of Virtex devices is a three-phase process. First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. Configuration is automatically initiated on power-up unless it is delayed by the user, as described below. The configuration process can also be initiated by asserting $\overline{\mathsf{PROGRAM}}$. The end of the memory-clearing phase is signalled by INIT going High, and the completion of the entire process is signalled by DONE going High. The power-up timing of configuration signals is shown in Figure 19. The corresponding timing characteristics are listed in Table 10. Figure 19: Power-Up Timing Configuration Signals Table 10: Power-up Timing Characteristics | Description | Symbol | Value | Units | |---------------------|----------------------|-------|---------| | Power-on Reset | T _{POR} | 2.0 | ms, max | | Program Latency | T _{PL} | 100.0 | μs, max | | CCLK (output) Delay | T _{ICCK} | 0.5 | μs, min | | | | 4.0 | μs, max | | Program Pulse Width | T _{PROGRAM} | 300 | ns, min | ### **Delaying Configuration** INIT can be held Low using an open-drain driver. An open-drain is required since INIT is a bidirectional open-drain pin that is held Low by the FPGA while the configuration memory is being cleared. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded. ### Start-Up Sequence The default Start-up sequence is that one CCLK cycle after DONE goes High, the global 3-state signal (GTS) is released. This permits device outputs to turn on as necessary. One CCLK cycle later, the Global Set/Reset (GSR) and Global Write Enable (GWE) signals are released. This permits the internal storage elements to begin changing state in response to the logic and the user clock. The relative timing of these events can be changed. In addition, the GTS, GSR, and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start in synchronism. The sequence can also be paused at any stage until lock has been achieved on any or all DLLs. ### **Data Stream Format** Virtex devices are configured by sequentially loading frames of data. Table 11 lists the total number of bits required to configure each device. For more detailed information, see application note XAPP151 "Virtex Configuration Architecture Advanced Users Guide". Table 11: Virtex Bit-Stream Lengths | Device | # of Configuration Bits | |---------|-------------------------| | XCV50 | 559,200 | | XCV100 | 781,216 | | XCV150 | 1,040,096 | | XCV200 | 1,335,840 | | XCV300 | 1,751,808 | | XCV400 | 2,546,048 | | XCV600 | 3,607,968 | | XCV800 | 4,715,616 | | XCV1000 | 6,127,744 | # Readback The configuration data stored in the Virtex configuration memory can be readback for verification. Along with the configuration data it is possible to readback the contents all flip-flops/latches, LUTRAMs, and block RAMs. This capability is used for real-time debugging. For more detailed information, see Application Note XAPP138: *Virtex FPGA Series Configuration and Readback*, available online at www.xilinx.com. # **Revision History** | Date | Version | Revision | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99 | 1.2 | Updated package drawings and specs. | | 02/99 | 1.3 | Update of package drawings, updated specifications. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | # **DC Characteristics Over Recommended Operating Conditions** | Symbol | Description | 1 | Device | Min | Max | Units | |---------------------|--------------------------------------------------------------------------------|-------------------------------------|---------|----------|------|-------| | V _{DRINT} | Data Retention V _{CCINT} Voltage | | All | 2.0 | | V | | 21 | (below which configuration data can be | e lost) | | | | | | V_{DRIO} | Data Retention V _{CCO} Voltage (below which configuration data can be | e lost) | All | 1.2 | | V | | I _{CCINTQ} | Quiescent V _{CCINT} supply current ^(1,3) | | XCV50 | | 50 | mA | | | | | XCV100 | | 50 | mA | | | | | XCV150 | | 50 | mA | | | | | XCV200 | | 75 | mA | | | | | XCV300 | | 75 | mA | | | | | XCV400 | | 75 | mA | | | | | XCV600 | | 100 | mA | | | | | XCV800 | | 100 | mA | | | | | XCV1000 | | 100 | mA | | Iccoq | Quiescent V _{CCO} supply current ⁽¹⁾ | | XCV50 | | 2 | mA | | | | | XCV100 | | 2 | mA | | | | | XCV150 | | 2 | mA | | | | | XCV200 | | 2 | mA | | | | | XCV300 | | 2 | mA | | | | | XCV400 | | 2 | mA | | | | | XCV600 | | 2 | mA | | | | | XCV800 | | 2 | mA | | | | | XCV1000 | | 2 | mA | | I _{REF} | V _{REF} current per V _{REF} pin | | All | | 20 | μΑ | | ΙL | Input or output leakage current | | All | -10 | +10 | μΑ | | C _{IN} | Input capacitance (sample tested) | BGA, PQ, HQ, packages | All | | 8 | pF | | I _{RPU} | Pad pull-up (when selected) @ V _{in} = 0 tested) | V, V _{CCO} = 3.3 V (sample | All | Note (2) | 0.25 | mA | | I _{RPD} | Pad pull-down (when selected) @ V _{in} = | = 3.6 V (sample tested) | | Note (2) | 0.15 | mA | - 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating. - 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits. - 3. Multiply I_{CCINTQ} limit by two for industrial grade. ### **Power-On Power Supply Requirements** Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device⁽¹⁾ from 0 V. The current is highest at the fastest suggested ramp rate (0 V to nominal voltage in 2 ms) and is lowest at the slowest allowed ramp rate (0 V to nominal voltage in 50 ms). For more details on power supply requirements, see Application Note XAPP158 on www.xilinx.com. | Product | Description ⁽²⁾ | Current Requirement ^(1,3) | | | |---------------------------------|---------------------------------|--------------------------------------|--|--| | Virtex Family, Commercial Grade | Minimum required current supply | 500 mA | | | | Virtex Family, Industrial Grade | Minimum required current supply | 2 A | | | #### Notes: - Ramp rate used for this specification is from 0 2.7 VDC. Peak current occurs on or near the internal power-on reset threshold of 1.0V and lasts for less than 3 ms. - Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above. - 3. Larger currents can result if ramp rates are forced to be faster. # **DC Input and Output Levels** Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed output currents over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum V_{CCO} for each standard with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested. | Input/Output | | V _{IL} | VI | Н | V _{OL} | V _{OH} | I _{OL} | I _{OH} | |-----------------------|--------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-----------------|-----------------| | Standard | V, min | V, max | V, min | V, max | V, Max | V, Min | mA | mA | | LVTTL ⁽¹⁾ | - 0.5 | 0.8 | 2.0 | 5.5 | 0.4 | 2.4 | 24 | -24 | | LVCMOS2 | - 0.5 | .7 | 1.7 | 5.5 | 0.4 | 1.9 | 12 | -12 | | PCI, 3.3 V | - 0.5 | 44% V _{CCINT} | 60% V _{CCINT} | V _{CCO} + 0.5 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | | PCI, 5.0 V | - 0.5 | 0.8 | 2.0 | 5.5 | 0.55 | 2.4 | Note 2 | Note 2 | | GTL | - 0.5 | V _{REF} - 0.05 | V _{REF} + 0.05 | 3.6 | 0.4 | n/a | 40 | n/a | | GTL+ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.6 | n/a | 36 | n/a | | HSTL I ⁽³⁾ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 8 | -8 | | HSTL III | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 24 | -8 | | HSTL IV | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 48 | -8 | | SSTL3 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.6 | V _{REF} + 0.6 | 8 | -8 | | SSTL3 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.8 | V _{REF} + 0.8 | 16 | -16 | | SSTL2 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.61 | V _{REF} + 0.61 | 7.6 | -7.6 | | SSTL2 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.80 | V _{REF} + 0.80 | 15.2 | -15.2 | | CTT | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.4 | V _{REF} + 0.4 | 8 | -8 | | AGP | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | - V_{OL} and V_{OH} for lower drive currents are sample tested. - 2. Tested according to the relevant specifications. - DC input and output levels for HSTL18 (HSTL I/O standard with V_{CCO} of 1.8 V) are provided in an HSTL white paper on www.xilinx.com. # **CLB Switching Characteristics** Delays originating at F/G inputs vary slightly according to the input used. The values listed below are worst-case. Precise values are provided by the timing analyzer. | Description | Symbol | Min | -6 | -5 | -4 | Units | |----------------------------------------------------------------------|------------------------------------------|----------|-----------|---------|---------|---------| | Combinatorial Delays | | • | | | | | | 4-input function: F/G inputs to X/Y outputs | T _{ILO} | 0.29 | 0.6 | 0.7 | 0.8 | ns, max | | 5-input function: F/G inputs to F5 output | T _{IF5} | 0.32 | 0.7 | 0.8 | 0.9 | ns, max | | 5-input function: F/G inputs to X output | T _{IF5X} | 0.36 | 0.8 | 0.8 | 1.0 | ns, max | | 6-input function: F/G inputs to Y output via F6 MUX | T _{IF6Y} | 0.44 | 0.9 | 1.0 | 1.2 | ns, max | | 6-input function: F5IN input to Y output | T _{F5INY} | 0.17 | 0.32 | 0.36 | 0.42 | ns, max | | Incremental delay routing through transparent latch to XQ/YQ outputs | T _{IFNCTL} | 0.31 | 0.7 | 0.7 | 0.8 | ns, max | | BY input to YB output | T _{BYYB} | 0.27 | 0.53 | 0.6 | 0.7 | ns, max | | Sequential Delays | | | | | | T. | | FF Clock CLK to XQ/YQ outputs | T _{CKO} | 0.54 | 1.1 | 1.2 | 1.4 | ns, max | | Latch Clock CLK to XQ/YQ outputs | T _{CKLO} | 0.6 | 1.2 | 1.4 | 1.6 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Setup T | ime / Hol | d Time | | | | 4-input function: F/G Inputs | T _{ICK} /T _{CKI} | 0.6 / 0 | 1.2 / 0 | 1.4 / 0 | 1.5 / 0 | ns, min | | 5-input function: F/G inputs | T _{IF5CK} /T _{CKIF5} | 0.7 / 0 | 1.3 / 0 | 1.5 / 0 | 1.7 / 0 | ns, min | | 6-input function: F5IN input | T _{F5INCK} /T _{CKF5IN} | 0.46 / 0 | 1.0 / 0 | 1.1 / 0 | 1.2 / 0 | ns, min | | 6-input function: F/G inputs via F6 MUX | T _{IF6CK} /T _{CKIF6} | 0.8 / 0 | 1.5 / 0 | 1.7 / 0 | 1.9 / 0 | ns, min | | BX/BY inputs | T_{DICK}/T_{CKDI} | 0.30 / 0 | 0.6 / 0 | 0.7 / 0 | 0.8 / 0 | ns, min | | CE input | T_{CECK}/T_{CKCE} | 0.37 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | SR/BY inputs (synchronous) | $T_{RCK}T_{CKR}$ | 0.33 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | Clock CLK | | | | | | | | Minimum Pulse Width, High | T _{CH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | T_CL | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Set/Reset | | | | | | | | Minimum Pulse Width, SR/BY inputs | T _{RPW} | 1.3 | 2.5 | 2.8 | 3.3 | ns, min | | Delay from SR/BY inputs to XQ/YQ outputs (asynchronous) | T _{RQ} | 0.54 | 1.1 | 1.3 | 1.4 | ns, max | | Delay from GSR to XQ/YQ outputs | T _{IOGSRQ} | 4.9 | 9.7 | 10.9 | 12.5 | ns, max | | Toggle Frequency (MHz) (for export control) | F _{TOG} (MHz) | 625 | 333 | 294 | 250 | MHz | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # **CLB SelectRAM Switching Characteristics** | | | Speed Grade | | | | | |------------------------------------------------------------|----------------------------------|-------------|------------|-----------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Sequential Delays | | | | | | | | Clock CLK to X/Y outputs (WE active) 16 x 1 mode | T _{SHCKO16} | 1.2 | 2.3 | 2.6 | 3.0 | ns, max | | Clock CLK to X/Y outputs (WE active) 32 x 1 mode | T _{SHCKO32} | 1.2 | 2.7 | 3.1 | 3.5 | ns, max | | Shift-Register Mode | | | | | | | | Clock CLK to X/Y outputs | T _{REG} | 1.2 | 3.7 | 4.1 | 4.7 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Se | tup Time / | Hold Time | T. | · | | F/G address inputs | T _{AS} /T _{AH} | 0.25 / 0 | 0.5 / 0 | 0.6 / 0 | 0.7 / 0 | ns, min | | BX/BY data inputs (DIN) | T _{DS} /T _{DH} | 0.34 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | CE input (WE) | T _{WS} /T _{WH} | 0.38 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | Shift-Register Mode | | 1 | | , | 1 | 1 | | BX/BY data inputs (DIN) | T _{SHDICK} | 0.34 | 0.7 | 0.8 | 0.9 | ns, min | | CE input (WS) | T _{SHCECK} | 0.38 | 0.8 | 0.9 | 1.0 | ns, min | | Clock CLK | | 1 | | | 1 | 1 | | Minimum Pulse Width, High | T _{WPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T _{WPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum clock period to meet address write cycle time | T _{WC} | 2.4 | 4.8 | 5.4 | 6.2 | ns, min | | Shift-Register Mode | | | | | | | | Minimum Pulse Width, High | T _{SRPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T _{SRPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # Global Clock Set-Up and Hold for LVTTL Standard, without DLL | | | | Speed Grade | | | | | | |---------------------------------------------------------------------|--------------------------------------|---------|-------------|---------|--------------|---------------|------------|------------| | Description | Symbol | Device | Min | -6 | -5 | -4 | Units | | | Input Setup and Hold Time Relat standards, adjust the setup time of | | | | | For data inp | ut with diffe | rent | | | Full Delay Global Clock and IFF, without | T _{PSFD} /T _{PHFD} | XCV50 | 0.6 / 0 | 2.3 / 0 | 2.6 / 0 | 2.9 / 0 | ns,
min | | | DLL | | XCV100 | 0.6 / 0 | 2.3 / 0 | 2.6 / 0 | 3.0 / 0 | ns,
min | | | | | XCV150 | 0.6 / 0 | 2.4 / 0 | 2.7 / 0 | 3.1 / 0 | ns,
min | | | | | | XCV200 | 0.7 / 0 | 2.5 / 0 | 2.8 / 0 | 3.2 / 0 | ns,
min | | | | XCV300 | 0.7 / 0 | 2.5 / 0 | 2.8 / 0 | 3.2 / 0 | ns,
min | | | | | XCV400 | 0.7 / 0 | 2.6 / 0 | 2.9 / 0 | 3.3 / 0 | ns,
min | | | | | XCV600 | 0.7 / 0 | 2.6 / 0 | 2.9 / 0 | 3.3 / 0 | ns,
min | | | | | XCV800 | 0.7 / 0 | 2.7 / 0 | 3.1 / 0 | 3.5 / 0 | ns,
min | | | | | XCV1000 | 0.7 / 0 | 2.8 / 0 | 3.1 / 0 | 3.6 / 0 | ns,
min | | IFF = Input Flip-Flop or Latch #### Notes: Notes: - 1. Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load. - 2. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # Virtex[™] 2.5 V Field Programmable Gate Arrays DS003-4 (v4.0) March 1, 2013 **Production Product Specification** # **Virtex Pin Definitions** Table 1: Special Purpose Pins | Pin Name | Dedicated
Pin | Direction | Description | |--|------------------|-------------------------------|---| | GCK0, GCK1,
GCK2, GCK3 | Yes | Input | Clock input pins that connect to Global Clock Buffers. These pins become user inputs when not needed for clocks. | | M0, M1, M2 | Yes | Input | Mode pins are used to specify the configuration mode. | | CCLK | Yes | Input or
Output | The configuration Clock I/O pin: it is an input for SelectMAP and slave-serial modes, and output in master-serial mode. After configuration, it is input only, logic level = Don't Care. | | PROGRAM | Yes | Input | Initiates a configuration sequence when asserted Low. | | DONE | Yes | Bidirectional | Indicates that configuration loading is complete, and that the start-up sequence is in progress. The output can be open drain. | | INIT | No | Bidirectional
(Open-drain) | When Low, indicates that the configuration memory is being cleared. The pin becomes a user I/O after configuration. | | BUSY/
DOUT | No | Output | In SelectMAP mode, BUSY controls the rate at which configuration data is loaded. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | | | | In bit-serial modes, DOUT provides header information to downstream devices in a daisy-chain. The pin becomes a user I/O after configuration. | | D0/DIN,
D1, D2,
D3, D4,
D5, D6,
D7 | No | Input or
Output | In SelectMAP mode, D0 - D7 are configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained. In bit-serial modes, DIN is the single data input. This pin becomes a user I/O after configuration. | | WRITE | No | Input | In SelectMAP mode, the active-low Write Enable signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | CS | No | Input | In SelectMAP mode, the active-low Chip Select signal. The pin becomes a user I/O after configuration unless the SelectMAP port is retained. | | TDI, TDO,
TMS, TCK | Yes | Mixed | Boundary-scan Test-Access-Port pins, as defined in IEEE 1149.1. | | DXN, DXP | Yes | N/A | Temperature-sensing diode pins. (Anode: DXP, cathode: DXN) | | V _{CCINT} | Yes | Input | Power-supply pins for the internal core logic. | | V _{CCO} | Yes | Input | Power-supply pins for the output drivers (subject to banking rules) | | V _{REF} | No | Input | Input threshold voltage pins. Become user I/Os when an external threshold voltage is not needed (subject to banking rules). | | GND | Yes | Input | Ground | ^{© 1999-2013} Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|----------|---------|----------| | V _{REF} , Bank 3 | XCV50 | H11, K12 | 60, 68 | 130, 144 | | (V _{REF} pins are listed incrementally. Connect all pins listed for both | XCV100/150 | + J10 | + 66 | + 133 | | | XCV200/300 | N/A | N/A | + 126 | | the required device | XCV400 | N/A | N/A | + 147 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 132 | | package.) | XCV800 | N/A | N/A | + 140 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 4 | XCV50 | L8, L10 | 79, 87 | 97, 111 | | (V _{REF} pins are listed | XCV100/150 | + N10 | + 81 | + 108 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 115 | | the required device and all smaller devices | XCV400 | N/A | N/A | + 94 | | listed in the same | XCV600 | N/A | N/A | + 109 | | package.) | XCV800 | N/A | N/A | + 101 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 5 | XCV50 | L4, L6 | 96, 104 | 70, 84 | | (V _{REF} pins are listed | XCV100/150 | + N4 | + 102 | + 73 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 66 | | the required device
and all smaller devices
listed in the same
package.) | XCV400 | N/A | N/A | + 87 | | | XCV600 | N/A | N/A | + 72 | | | XCV800 | N/A | N/A | + 80 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---|---------------------|--|---|--|--| | V _{CCINT} Notes: • Superset includes all pins, including the ones in bold type. Subset excludes pins in bold type. | XCV50/100 | C10, D6,
D15, F4,
F17, L3,
L18, R4,
R17, U6,
U15, V10 | N/A | N/A | N/A | | In BG352, for XCV300 all the V_{CCINT} pins in the superset must be connected. For XCV150/200, V_{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG432, for XCV400/600/800 all V_{CCINT} pins in the superset must be connected. For XCV300, V_{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG560, for XCV800/1000 all V_{CCINT} pins in the superset must be connected. For XCV400/600, V_{CCINT} pins in the superset must be connected. For XCV400/600, V_{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) | XCV150/200/300 | Same as
above | A20, C14,
D10, J24,
K4, P2, P25,
V24, W2,
AC10, AE14,
AE19,
B16, D12,
L1, L25,
R23, T1,
AF11, AF16 | A10, A17, B23,
C14, C19, K3,
K29, N2, N29,
T1, T29, W2,
W31, AB2,
AB30, AJ10,
AJ16, AK13,
AK19, AK22,
B26, C7, F1,
F30, AE29, AF1,
AH8, AH24 | N/A | | | XCV400/600/800/1000 | N/A | N/A | Same as above | A21, B14, B18,
B28, C24, E9,
E12, F2, H30,
J1, K32, N1,
N33, U5, U30,
Y2, Y31, AD2,
AD32, AG3,
AG31, AK8,
AK11, AK17,
AK20, AL14,
AL27, AN25,
B12, C22, M3,
N29, AB2,
AB32, AJ13,
AL22 | | V _{CCO} , Bank 0 | All | D7, D8 | A17, B25,
D19 | A21, C29, D21 | A22, A26, A30,
B19, B32 | | V _{CCO} , Bank 1 | All | D13, D14 | A10, D7,
D13 | A1, A11, D11 | A10, A16, B13,
C3, E5 | | V _{CCO} , Bank 2 | All | G17, H17 | B2, H4, K1 | C3, L1, L4 | B2, D1, H1, M1,
R2 | | V _{CCO} , Bank 3 | All | N17, P17 | P4, U1, Y4 | AA1, AA4, AJ3 | V1, AA2, AD1,
AK1, AL2 | | V _{CCO} , Bank 4 | All | U13, U14 | AC8, AE2,
AF10 | AH11, AL1,
AL11 | AM2, AM15,
AN4, AN8, AN12 | | V _{CCO} , Bank 5 | All | U7, U8 | AC14, AC20,
AF17 | AH21, AJ29,
AL21 | AL31, AM21,
AN18, AN24,
AN30 | | V _{CCO} , Bank 6 | All | N4, P4 | U26, W23,
AE25 | AA28, AA31,
AL31 | W32, AB33,
AF33, AK33,
AM32 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|----------|---------------|----------------------------|--------------------------------| | V _{REF} , Bank 1 | XCV50 | B9, C11 | N/A | N/A | N/A | | (VREF pins are listed | XCV100/150 | + E11 | A18, B13, E14 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + A14 | + A19 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | A14, C20, C21,
D15, G16 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + B19 | B6, B8, B18,
D11, D13, D17 | | input reference voltage | XCV800 | N/A | N/A | + A17 | + B14 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + B5 | | V _{REF} , Bank 2 | XCV50 | F13, H13 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + F14 | F21, H18, K21 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + E13 | + D22 | N/A | N/A | | the required device and all smaller devices listed in the same package.) Within each bank, if | XCV400 | N/A | N/A | F24, H23, K20,
M23, M26 | N/A | | | XCV600 | N/A | N/A | + G26 | G1, H4, J1, L2,
V5, W3 | | input reference voltage | XCV800 | N/A | N/A | + K25 | + N1 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + D2 | | V _{REF} , Bank 3 | XCV50 | K16, L14 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + L13 | N21, R19, U21 | N/A | N/A | | incrementally. Connect
all pins listed for both
the required device and
all smaller devices
listed in the same
package.)
Within each bank, if | XCV200/300 | + M13 | + U20 | N/A | N/A | | | XCV400 | N/A | N/A | R23, R25, U21,
W22, W23 | N/A | | | XCV600 | N/A | N/A | + W26 | AC1, AJ2, AK3,
AL4, AR1, Y1 | | input reference voltage | XCV800 | N/A | N/A | + U25 | + AF3 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AP4 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|---|--|--|---| | V _{REF} , Bank 7 | XCV50 | C1, H3 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect all pins listed for both | XCV100/150 | + D1 | E2, H4, K3 | N/A | N/A | | | XCV200/300 | + B1 | + D2 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | F4, G4, K6, M2,
M5 | N/A | | listed in the same package.) | XCV600 | N/A | N/A | + H1 | E38, G38, L36,
N36, U36, U38 | | Within each bank, if input reference voltage | XCV800 | N/A | N/A | + K1 | + N38 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + F36 | | GND | All | A1, A16, B2,
B15, F6, F7,
F10, F11,
G6, G7, G8,
G9, G10,
G11, H7,
H8, H9, H10,
J7, J8, J9,
J10, K6, K7,
K8, K9, K10,
K11, L6, L7,
L10, L11,
R2, R15, T1,
T16 | A1, A22, B2, B21, C3, C20, J9, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, L9, L10, L11, L12, L13, L14, M9, M10, M11, M12, M13, M14, N9, N10, N11, N12, N13, N14, P9, P10, P11, P12, P13, P14, Y3, Y20, AA2, AA21, AB1, AB22 | A1, A26, B2, B9, B14, B18, B25, C3, C24, D4, D23, E5, E22, J2, J25, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N2, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, P25, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17, V2, V25, AB5, AB22, AC4, AC23, AD3, AD24, AE2, AE9, AE13, AE18, AE25, AF1, AF26 | A1, A2, A3, A37, A38, A39, AA5, AA35, AH4, AH5, AH35, AR19, AR20, AR21, AR28, AR35, AT4, AT12, AT20, AT28, AT36, AU1, AU3, AU20, AU37, AU39, AV1, AV2, AV38, AV39, AW1, AW2, AW3, AW37, AW38, AW37, AW38, AW39, B1, B2, B38, B39, C1, C3, C20, C37, C39, D4, D12, D20, D28, D36, E5, E12, E19, E20, E21, E28, E35, M4, M5, M35, M36, W5, W35, Y3, Y4, Y5, Y35, Y36, Y37 | # **Pinout Diagrams** The following diagrams, CS144 Pin Function Diagram, page 17 through FG680 Pin Function Diagram, page 27, illustrate the locations of special-purpose pins on Virtex FPGAs. Table 5 lists the symbols used in these diagrams. The diagrams also show I/O-bank boundaries. Table 5: Pinout Diagram Symbols | Symbol | Pin Function | |------------|--| | * | General I/O | | * | Device-dependent general I/O, n/c on smaller devices | | V | V _{CCINT} | | V | Device-dependent V _{CCINT} , n/c on smaller devices | | 0 | V _{CCO} | | R | V _{REF} | | r | Device-dependent V _{REF} remains I/O on smaller devices | | G | Ground | | Ø, 1, 2, 3 | Global Clocks | Table 5: Pinout Diagram Symbols (Continued) | Symbol | Pin Function | | | |--|------------------------------------|--|--| | 0 , 0 , 2 | M0, M1, M2 | | | | (0), (1), (2),
(3), (4), (5), (6),
(7) | D0/DIN, D1, D2, D3, D4, D5, D6, D7 | | | | В | DOUT/BUSY | | | | D | DONE | | | | Р | PROGRAM | | | | I | INIT | | | | K | CCLK | | | | W | WRITE | | | | S | <u>CS</u> | | | | Т | Boundary-scan Test Access Port | | | | + | Temperature diode, anode | | | | _ | Temperature diode, cathode | | | | n | No connect | | | # **CS144 Pin Function Diagram** Figure 1: CS144 Pin Function Diagram # PQ240/HQ240 Pin Function Diagram Figure 3: PQ240/HQ240 Pin Function Diagram # **BG352 Pin Function Diagram** DS003_19_100600 Figure 5: BG352 Pin Function Diagram ### **FG676 Pin Function Diagram** Figure 10: FG676 Pin Function Diagram #### Notes: Packages FG456 and FG676 are layout compatible. # FG680 Pin Function Diagram Figure 11: FG680 Pin Function Diagram