Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 384 | | Number of Logic Elements/Cells | 1728 | | Total RAM Bits | 32768 | | Number of I/O | 166 | | Number of Gates | 57906 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv50-5pq240i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Virtex Device/Package Combinations and Maximum I/O Table 3: Virtex Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins) | Package | XCV50 | XCV100 | XCV150 | XCV200 | XCV300 | XCV400 | XCV600 | XCV800 | XCV1000 | |---------|-------|--------|--------|--------|--------|--------|--------|--------|---------| | CS144 | 94 | 94 | | | | | | | | | TQ144 | 98 | 98 | | | | | | | | | PQ240 | 166 | 166 | 166 | 166 | 166 | | | | | | HQ240 | | | | | | 166 | 166 | 166 | | | BG256 | 180 | 180 | 180 | 180 | | | | | | | BG352 | | | 260 | 260 | 260 | | | | | | BG432 | | | | | 316 | 316 | 316 | 316 | | | BG560 | | | | | | 404 | 404 | 404 | 404 | | FG256 | 176 | 176 | 176 | 176 | | | | | | | FG456 | | | 260 | 284 | 312 | | | | | | FG676 | | | | | | 404 | 444 | 444 | | | FG680 | | | | | | | 512 | 512 | 512 | # **Virtex Ordering Information** Figure 1: Virtex Ordering Information DS003-2 (v4.0) March 1, 2013 # Virtex[™] 2.5 V Field Programmable Gate Arrays #### **Product Specification** The output buffer and all of the IOB control signals have independent polarity controls. vao_b.eps Figure 1: Virtex Architecture Overview All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage protection are provided, one that permits 5 V compliance, and one that does not. For 5 V compliance, a Zener-like structure connected to ground turns on when the output rises to approximately 6.5 V. When PCI 3.3 V compliance is required, a conventional clamp diode is connected to the output supply voltage, $V_{\rm CCO}$. Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each pad. Prior to configuration, all pins not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs can optionally be pulled up. The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins will float. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration. All Virtex IOBs support IEEE 1149.1-compatible boundary scan testing. # **Architectural Description** # **Virtex Array** The Virtex user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing logic - IOBs provide the interface between the package pins and the CLBs CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM. The VersaRing[™] I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking. The Virtex architecture also includes the following circuits that connect to the GRM. - Dedicated block memories of 4096 bits each - Clock DLLs for clock-distribution delay compensation and clock domain control - 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device. # Input/Output Block The Virtex IOB, Figure 2, features SelectIO™ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1. The three IOB storage elements function either as edge-triggered D-type flip-flops or as level sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop. In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear. © 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice. Figure 2: Virtex Input/Output Block (IOB) Table 1: Supported Select I/O Standards | I/O Standard | Input Reference
Voltage (V _{REF}) | Output Source
Voltage (V _{CCO}) | Board Termination
Voltage (V _{TT}) | 5 V Tolerant | |--------------------|--|--|---|--------------| | LVTTL 2 – 24 mA | N/A | 3.3 | N/A | Yes | | LVCMOS2 | N/A | 2.5 | N/A | Yes | | PCI, 5 V | N/A | 3.3 | N/A | Yes | | PCI, 3.3 V | N/A | 3.3 | N/A | No | | GTL | 0.8 | N/A | 1.2 | No | | GTL+ | 1.0 | N/A | 1.5 | No | | HSTL Class I | 0.75 | 1.5 | 0.75 | No | | HSTL Class III | 0.9 | 1.5 | 1.5 | No | | HSTL Class IV | 0.9 | 1.5 | 1.5 | No | | SSTL3 Class I &II | 1.5 | 3.3 | 1.5 | No | | SSTL2 Class I & II | 1.25 | 2.5 | 1.25 | No | | CTT | 1.5 | 3.3 | 1.5 | No | | AGP | 1.32 | 3.3 | N/A | No | #### Input Path A buffer In the Virtex IOB input path routes the input signal either directly to internal logic or through an optional input flip-flop. An optional delay element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is zero. Each input buffer can be configured to conform to any of the low-voltage signalling standards supported. In some of these standards the input buffer utilizes a user-supplied threshold voltage, V_{REF}. The need to supply V_{REF} imposes constraints on which standards can used in close proximity to each other. See I/O Banking, page 3. There are optional pull-up and pull-down resistors at each user I/O input for use after configuration. Their value is in the range 50 k Ω – 100 k Ω . ## **Output Path** The output path includes a 3-state output buffer that drives the output signal onto the pad. The output signal can be routed to the buffer directly from the internal logic or through an optional IOB output flip-flop. The 3-state control of the output can also be routed directly from the internal logic or through a flip-flip that provides synchronous enable and disable. Each output driver can be individually programmed for a wide range of low-voltage signalling standards. Each output buffer can source up to 24 mA and sink up to 48mA. Drive strength and slew rate controls minimize bus transients. In most signalling standards, the output High voltage depends on an externally supplied V_{CCO} voltage. The need to supply V_{CCO} imposes constraints on which standards can be used in close proximity to each other. See **I/O Banking**, page 3. An optional weak-keeper circuit is connected to each output. When selected, the circuit monitors the voltage on the pad and weakly drives the pin High or Low to match the input signal. If the pin is connected to a multiple-source signal, the weak keeper holds the signal in its last state if all drivers are disabled. Maintaining a valid logic level in this way eliminates bus chatter. Because the weak-keeper circuit uses the IOB input buffer to monitor the input level, an appropriate V_{REF} voltage must be provided if the signalling standard requires one. The provision of this voltage must comply with the I/O banking rules. #### I/O Banking Some of the I/O standards described above require V_{CCO} and/or V_{REF} voltages. These voltages externally and connected to device pins that serve groups of IOBs, called banks. Consequently, restrictions exist about which I/O standards can be combined within a given bank. Eight I/O banks result from separating each edge of the FPGA into two banks, as shown in Figure 3. Each bank has multiple $V_{\rm CCO}$ pins, all of which must be connected to the same voltage. This voltage is determined by the output standards in use. X8778_b Figure 3: Virtex I/O Banks
Within a bank, output standards can be mixed only if they use the same V_{CCO} . Compatible standards are shown in Table 2. GTL and GTL+ appear under all voltages because their open-drain outputs do not depend on V_{CCO} . Table 2: Compatible Output Standards | V _{CCO} | Compatible Standards | |------------------|--| | 3.3 V | PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL, GTL+ | | 2.5 V | SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+ | | 1.5 V | HSTL I, HSTL III, HSTL IV, GTL, GTL+ | Some input standards require a user-supplied threshold voltage, V_{REF} In this case, certain user-I/O pins are automatically configured as inputs for the V_{REF} voltage. Approximately one in six of the I/O pins in the bank assume this role The V_{REF} pins within a bank are interconnected internally and consequently only one V_{REF} voltage can be used within each bank. All V_{REF} pins in the bank, however, must be connected to the external voltage source for correct operation. Within a bank, inputs that require V_{REF} can be mixed with those that do not. However, only one V_{REF} voltage can be used within a bank. Input buffers that use V_{REF} are not 5 V tolerant. LVTTL, LVCMOS2, and PCI 33 MHz 5 V, are 5 V tolerant. The V_{CCO} and V_{REF} pins for each bank appear in the device Pinout tables and diagrams. The diagrams also show the bank affiliation of each I/O. Within a given package, the number of V_{REF} and V_{CCO} pins can vary depending on the size of device. In larger devices, more I/O pins convert to V_{REF} pins. Since these are always a superset of the V_{REF} pins used for smaller devices, it is possible to design a PCB that permits migration to a larger device if necessary. All the V_{REF} pins for the largest device anticipated must be connected to the V_{REF} voltage, and not used for I/O. In smaller devices, some V_{CCO} pins used in larger devices do not connect within the package. These unconnected pins can be left unconnected externally, or can be connected to the V_{CCO} voltage to permit migration to a larger device if necessary. In TQ144 and PQ/HQ240 packages, all V_{CCO} pins are bonded together internally, and consequently the same V_{CCO} voltage must be connected to all of them. In the CS144 package, bank pairs that share a side are interconnected internally, permitting four choices for V_{CCO} . In both cases, the V_{REF} pins remain internally connected as eight banks, and can be used as described previously. ## **Configurable Logic Block** The basic building block of the Virtex CLB is the logic cell (LC). An LC includes a 4-input function generator, carry logic, and a storage element. The output from the function generator in each LC drives both the CLB output and the D input of the flip-flop. Each Virtex CLB contains four LCs, organized in two similar slices, as shown in Figure 4. Figure 5 shows a more detailed view of a single slice. In addition to the four basic LCs, the Virtex CLB contains logic that combines function generators to provide functions of five or six inputs. Consequently, when estimating the number of system gates provided by a given device, each CLB counts as 4.5 LCs. ## Look-Up Tables Virtex function generators are implemented as 4-input look-up tables (LUTs). In addition to operating as a function generator, each LUT can provide a 16 x 1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM. The Virtex LUT can also provide a 16-bit shift register that is ideal for capturing high-speed or burst-mode data. This mode can also be used to store data in applications such as Digital Signal Processing. ## Storage Elements The storage elements in the Virtex slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven either by the function generators within the slice or directly from slice inputs, bypassing the function generators. In addition to Clock and Clock Enable signals, each Slice has synchronous set and reset signals (SR and BY). SR forces a storage element into the initialization state specified for it in the configuration. BY forces it into the opposite state. Alternatively, these signals can be configured to operate asynchronously. All of the control signals are independently invertible, and are shared by the two flip-flops within the slice. Figure 4: 2-Slice Virtex CLB Figure 5: Detailed View of Virtex Slice ### Additional Logic The F5 multiplexer in each slice combines the function generator outputs. This combination provides either a function generator that can implement any 5-input function, a 4:1 multiplexer, or selected functions of up to nine inputs. Similarly, the F6 multiplexer combines the outputs of all four function generators in the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each CLB has four direct feedthrough paths, one per LC. These paths provide extra data input lines or additional local routing that does not consume logic resources. #### Arithmetic Logic Dedicated carry logic provides fast arithmetic carry capability for high-speed arithmetic functions. The Virtex CLB supports two separate carry chains, one per Slice. The height of the carry chains is two bits per CLB. The arithmetic logic includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. In addition, a dedicated AND gate improves the efficiency of multiplier implementation. The dedicated carry path can also be used to cascade function generators for implementing wide logic functions. #### **BUFTs** Each Virtex CLB contains two 3-state drivers (BUFTs) that can drive on-chip busses. See **Dedicated Routing**, page 7. Each Virtex BUFT has an independent 3-state control pin and an independent input pin. #### **Block SelectRAM** Virtex FPGAs incorporate several large block SelectRAM memories. These complement the distributed LUT SelectRAMs that provide shallow RAM structures implemented in CLBs. Block SelectRAM memory blocks are organized in columns. All Virtex devices contain two such columns, one along each vertical edge. These columns extend the full height of the chip. Each memory block is four CLBs high, and consequently, a Virtex device 64 CLBs high contains 16 memory blocks per column, and a total of 32 blocks. Table 3 shows the amount of block SelectRAM memory that is available in each Virtex device. Table 3: Virtex Block SelectRAM Amounts | Device | # of Blocks | Total Block SelectRAM Bits | |---------|-------------|----------------------------| | XCV50 | 8 | 32,768 | | XCV100 | 10 | 40,960 | | XCV150 | 12 | 49,152 | | XCV200 | 14 | 57,344 | | XCV300 | 16 | 65,536 | | XCV400 | 20 | 81,920 | | XCV600 | 24 | 98,304 | | XCV800 | 28 | 114,688 | | XCV1000 | 32 | 131,072 | In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data. Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes. #### Instruction Set The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5. # Data Registers The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins. The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device. The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO. Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE). #### Bit Sequence The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits. From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11. BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area. Figure 10: Virtex Series Boundary Scan Logic ers with a common user interface regardless of their choice of entry and verification tools. The XDM software simplifies the selection of implementation options with pull-down menus and on-line help. Application programs ranging from schematic capture to Placement and Routing (PAR) can be accessed through the XDM software. The program command sequence is generated prior to execution, and stored for documentation. Several advanced software features facilitate Virtex design. RPMs, for example, are schematic-based macros with relative location constraints to guide their placement. They help ensure optimal implementation of common functions. For HDL design entry, the Xilinx FPGA Foundation development system provides interfaces to the
following synthesis design environments. - Synopsys (FPGA Compiler, FPGA Express) - Exemplar (Spectrum) - Synplicity (Synplify) For schematic design entry, the Xilinx FPGA Foundation and alliance development system provides interfaces to the following schematic-capture design environments. - Mentor Graphics V8 (Design Architect, QuickSim II) - Viewlogic Systems (Viewdraw) Third-party vendors support many other environments. A standard interface-file specification, Electronic Design Interchange Format (EDIF), simplifies file transfers into and out of the development system. Virtex FPGAs supported by a unified library of standard functions. This library contains over 400 primitives and macros, ranging from 2-input AND gates to 16-bit accumulators, and includes arithmetic functions, comparators, counters, data registers, decoders, encoders, I/O functions, latches, Boolean functions, multiplexers, shift registers, and barrel shifters. The "soft macro" portion of the library contains detailed descriptions of common logic functions, but does not contain any partitioning or placement information. The performance of these macros depends, therefore, on the partitioning and placement obtained during implementation. RPMs, on the other hand, do contain predetermined partitioning and placement information that permits optimal implementation of these functions. Users can create their own library of soft macros or RPMs based on the macros and primitives in the standard library. The design environment supports hierarchical design entry, with high-level schematics that comprise major functional blocks, while lower-level schematics define the logic in these blocks. These hierarchical design elements are automatically combined by the implementation tools. Different design entry tools can be combined within a hierarchical design, thus allowing the most convenient entry method to be used for each portion of the design. # **Design Implementation** The place-and-route tools (PAR) automatically provide the implementation flow described in this section. The partitioner takes the EDIF net list for the design and maps the logic into the architectural resources of the FPGA (CLBs and IOBs, for example). The placer then determines the best locations for these blocks based on their interconnections and the desired performance. Finally, the router interconnects the blocks. The PAR algorithms support fully automatic implementation of most designs. For demanding applications, however, the user can exercise various degrees of control over the process. User partitioning, placement, and routing information is optionally specified during the design-entry process. The implementation of highly structured designs can benefit greatly from basic floor planning. The implementation software incorporates Timing Wizard® timing-driven placement and routing. Designers specify timing requirements along entire paths during design entry. The timing path analysis routines in PAR then recognize these user-specified requirements and accommodate them. Timing requirements are entered on a schematic in a form directly relating to the system requirements, such as the targeted clock frequency, or the maximum allowable delay between two registers. In this way, the overall performance of the system along entire signal paths is automatically tailored to user-generated specifications. Specific timing information for individual nets is unnecessary. ## **Design Verification** In addition to conventional software simulation, FPGA users can use in-circuit debugging techniques. Because Xilinx devices are infinitely reprogrammable, designs can be verified in real time without the need for extensive sets of software simulation vectors. The development system supports both software simulation and in-circuit debugging techniques. For simulation, the system extracts the post-layout timing information from the design database, and back-annotates this information into the net list for use by the simulator. Alternatively, the user can verify timing-critical portions of the design using the TRACE® static timing analyzer. For in-circuit debugging, the development system includes a download and readback cable. This cable connects the FPGA in the target system to a PC or workstation. After downloading the design into the FPGA, the designer can single-step the logic, readback the contents of the flip-flops, and so observe the internal logic state. Simple modifications can be downloaded into the system in a matter of minutes. #### Master-Serial Mode In master-serial mode, the CCLK output of the FPGA drives a Xilinx Serial PROM that feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the rising CCLK edge. The interface is identical to slave-serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Switching to a lower frequency is prohibited. The CCLK frequency is set using the ConfigRate option in the bitstream generation software. The maximum CCLK frequency that can be selected is 60 MHz. When selecting a CCLK frequency, ensure that the serial PROM and any daisy-chained FPGAs are fast enough to support the clock rate. On power-up, the CCLK frequency is 2.5 MHz. This frequency is used until the ConfigRate bits have been loaded when the frequency changes to the selected ConfigRate. Unless a different frequency is specified in the design, the default ConfigRate is 4 MHz. Figure 12 shows a full master/slave system. In this system, the left-most device operates in master-serial mode. The remaining devices operate in slave-serial mode. The SPROM RESET pin is driven by $\overline{\text{INIT}}$, and the $\overline{\text{CE}}$ input is driven by DONE. There is the potential for contention on the DONE pin, depending on the start-up sequence options chosen. Figure 14 shows the timing of master-serial configuration. Master-serial mode is selected by a <000> or <100> on the mode pins (M2, M1, M0). Table 8 shows the timing information for Figure 14. Figure 14: Master-Serial Mode Programming Switching Characteristics At power-up, V_{CC} must rise from 1.0 V to V_{CC} min in less than 50 ms, otherwise delay configuration by pulling PROGRAM Low until V_{CC} is valid. The sequence of operations necessary to configure a Virtex FPGA serially appears in Figure 15. #### SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the FPGA with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, a Chip Select (\overline{CS}) signal and a Write signal (\overline{WRITE}) . If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If WRITE is not asserted, configuration data is read out of the FPGA as part of a readback operation. In the SelectMAP mode, multiple Virtex devices can be chained in parallel. DATA pins (D7:D0), CCLK, WRITE, BUSY, PROGRAM, DONE, and INIT can be connected in parallel between all the FPGAs. Note that the data is organized with the MSB of each byte on pin DO and the LSB of each byte on D7. The CS pins are kept separate, insuring that each FPGA can be selected individually. WRITE should be Low before loading the first bitstream and returned High after the last device has been programmed. Use $\overline{\text{CS}}$ to select the appropriate FPGA for loading the bitstream and sending the configuration data. at the end of the bitstream, deselect the loaded device and select the next target FPGA by setting its $\overline{\text{CS}}$ pin High. A free-running oscillator or other externally generated signal can be used for CCLK. The BUSY signal can be ignored for frequencies below 50 MHz. For details about frequencies above 50 MHz, see XAPP138, Virtex Configuration and Readback. Once all the devices have been programmed, the DONE pin goes High. Figure 15: Serial Configuration Flowchart After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback. Retention of the SelectMAP port is selectable on a design-by-design basis when the bitstream is generated. If retention is selected, PROHIBIT constraints are required to prevent the SelectMAP-port pins from being used as user I/O. Multiple Virtex FPGAs can be configured using the Select-MAP mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, $\overline{\text{WRITE}}$, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by asserting the $\overline{\text{CS}}$ pin of each device in turn and writing the appropriate data. see Table 9 for SelectMAP Write Timing Characteristics. Table 9: SelectMAP Write Timing Characteristics | | Description | | Symbol | | Units | |------|-------------------------------------|-----|--|-----------|----------| | | D ₀₋₇ Setup/Hold | 1/2 | T _{SMDCC} /T _{SMCCD} | 5.0 / 1.7 | ns, min | | | CS Setup/Hold | 3/4 | T _{SMCSCC} /T _{SMCCCS} | 7.0 / 1.7 | ns, min | | CCLK | WRITE Setup/Hold | 5/6 | T _{SMCCW} /T _{SMWCC} | 7.0 / 1.7 | ns, min | | COLK | BUSY Propagation Delay | 7 | T _{SMCKBY} | 12.0 | ns, max | | | Maximum Frequency | | F _{CC} | 66 | MHz, max | | | Maximum Frequency with no handshake | | F _{CCNH} | 50 | MHz, max | ### Write Write operations send packets of configuration data into the FPGA. The sequence of operations for a multi-cycle write operation is shown below. Note that a configuration packet can be split into many
such sequences. The packet does not have to complete within one assertion of \overline{CS} , illustrated in Figure 16. - 1. Assert WRITE and CS Low. Note that when CS is asserted on successive CCLKs, WRITE must remain either asserted or de-asserted. Otherwise an abort will be initiated, as described below. - 2. Drive data onto D[7:0]. Note that to avoid contention, the data source should not be enabled while \overline{CS} is Low and \overline{WRITE} is High. Similarly, while \overline{WRITE} is High, no more that one \overline{CS} should be asserted. ### **Power-On Power Supply Requirements** Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply. This is the time required to reach the nominal power supply voltage of the device⁽¹⁾ from 0 V. The current is highest at the fastest suggested ramp rate (0 V to nominal voltage in 2 ms) and is lowest at the slowest allowed ramp rate (0 V to nominal voltage in 50 ms). For more details on power supply requirements, see Application Note XAPP158 on www.xilinx.com. | Product | Description ⁽²⁾ | Current Requirement ^(1,3) | |---------------------------------|---------------------------------|--------------------------------------| | Virtex Family, Commercial Grade | Minimum required current supply | 500 mA | | Virtex Family, Industrial Grade | Minimum required current supply | 2 A | #### Notes: - Ramp rate used for this specification is from 0 2.7 VDC. Peak current occurs on or near the internal power-on reset threshold of 1.0V and lasts for less than 3 ms. - Devices are guaranteed to initialize properly with the minimum current available from the power supply as noted above. - 3. Larger currents can result if ramp rates are forced to be faster. # **DC Input and Output Levels** Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed output currents over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at minimum V_{CCO} for each standard with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested. | Input/Output | V _{IL} | | VI | V _{IH} | | V _{OH} | I _{OL} | I _{OH} | |-----------------------|-----------------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-----------------|-----------------| | Standard | V, min | V, max | V, min | V, max | V, Max | V, Min | mA | mA | | LVTTL ⁽¹⁾ | - 0.5 | 0.8 | 2.0 | 5.5 | 0.4 | 2.4 | 24 | -24 | | LVCMOS2 | - 0.5 | .7 | 1.7 | 5.5 | 0.4 | 1.9 | 12 | -12 | | PCI, 3.3 V | - 0.5 | 44% V _{CCINT} | 60% V _{CCINT} | V _{CCO} + 0.5 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | | PCI, 5.0 V | - 0.5 | 0.8 | 2.0 | 5.5 | 0.55 | 2.4 | Note 2 | Note 2 | | GTL | - 0.5 | V _{REF} - 0.05 | V _{REF} + 0.05 | 3.6 | 0.4 | n/a | 40 | n/a | | GTL+ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.6 | n/a | 36 | n/a | | HSTL I ⁽³⁾ | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 8 | -8 | | HSTL III | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 24 | -8 | | HSTL IV | - 0.5 | V _{REF} – 0.1 | V _{REF} + 0.1 | 3.6 | 0.4 | V _{CCO} - 0.4 | 48 | -8 | | SSTL3 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.6 | V _{REF} + 0.6 | 8 | -8 | | SSTL3 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.8 | V _{REF} + 0.8 | 16 | -16 | | SSTL2 I | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.61 | V _{REF} + 0.61 | 7.6 | -7.6 | | SSTL2 II | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.80 | V _{REF} + 0.80 | 15.2 | -15.2 | | CTT | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | V _{REF} - 0.4 | V _{REF} + 0.4 | 8 | -8 | | AGP | - 0.5 | V _{REF} - 0.2 | V _{REF} + 0.2 | 3.6 | 10% V _{CCO} | 90% V _{CCO} | Note 2 | Note 2 | - V_{OL} and V_{OH} for lower drive currents are sample tested. - 2. Tested according to the relevant specifications. - DC input and output levels for HSTL18 (HSTL I/O standard with V_{CCO} of 1.8 V) are provided in an HSTL white paper on www.xilinx.com. # **Virtex Switching Characteristics** All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer (TRCE in the Xilinx Development System) and back-annotated to the simulation net list. All timing parameters assume worst-case operating conditions (supply voltage and junction temperature). Values apply to all Virtex devices unless otherwise noted. # **IOB Input Switching Characteristics** Input delays associated with the pad are specified for LVTTL levels. For other standards, adjust the delays with the values shown in , page 6. | | | | | Speed | Grade | | | |--|---------|---------------------|------|-------|-------|-----|---------| | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | | Propagation Delays | | | | | | | | | Pad to I output, no delay | All | T _{IOPI} | 0.39 | 0.8 | 0.9 | 1.0 | ns, max | | Pad to I output, with delay | XCV50 | T _{IOPID} | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV100 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV150 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV200 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV300 | | 0.8 | 1.5 | 1.7 | 1.9 | ns, max | | | XCV400 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV600 | | 0.9 | 1.8 | 2.0 | 2.3 | ns, max | | | XCV800 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | | XCV1000 | | 1.1 | 2.1 | 2.4 | 2.7 | ns, max | | Pad to output IQ via transparent latch, no delay | All | T _{IOPLI} | 0.8 | 1.6 | 1.8 | 2.0 | ns, max | | Pad to output IQ via transparent | XCV50 | T _{IOPLID} | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | latch, with delay | XCV100 | | 1.9 | 3.7 | 4.2 | 4.8 | ns, max | | | XCV150 | | 2.0 | 3.9 | 4.3 | 4.9 | ns, max | | | XCV200 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV300 | | 2.0 | 4.0 | 4.4 | 5.1 | ns, max | | | XCV400 | | 2.1 | 4.1 | 4.6 | 5.3 | ns, max | | | XCV600 | | 2.1 | 4.2 | 4.7 | 5.4 | ns, max | | | XCV800 | | 2.2 | 4.4 | 4.9 | 5.6 | ns, max | | | XCV1000 | | 2.3 | 4.5 | 5.1 | 5.8 | ns, max | | Sequential Delays | | | · | | | | | | Clock CLK | All | | | | | | | | Minimum Pulse Width, High | | T _{CH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | | T _{CL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Clock CLK to output IQ | | T _{IOCKIQ} | 0.2 | 0.7 | 0.7 | 8.0 | ns, max | | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | |---|---------|--|---------|---------|------------|---------|---------| | Setup and Hold Times with respect to Clock CLK at IOB input register ⁽¹⁾ | | | | Setup | Time / Hol | d Time | | | Pad, no delay | All | T _{IOPICK} /T _{IOICKP} | 0.8 / 0 | 1.6 / 0 | 1.8 / 0 | 2.0 / 0 | ns, min | | Pad, with delay | XCV50 | T _{IOPICKD} /T _{IOICKPD} | 1.9 / 0 | 3.7 / 0 | 4.1 / 0 | 4.7 / 0 | ns, min | | | XCV100 | | 1.9 / 0 | 3.7 / 0 | 4.1 / 0 | 4.7 / 0 | ns, min | | | XCV150 | | 1.9 / 0 | 3.8 / 0 | 4.3 / 0 | 4.9 / 0 | ns, min | | | XCV200 | | 2.0 / 0 | 3.9 / 0 | 4.4 / 0 | 5.0 / 0 | ns, min | | | XCV300 | | 2.0 / 0 | 3.9 / 0 | 4.4 / 0 | 5.0 / 0 | ns, min | | | XCV400 | | 2.1 / 0 | 4.1 / 0 | 4.6 / 0 | 5.3 / 0 | ns, min | | | XCV600 | | 2.1 / 0 | 4.2 / 0 | 4.7 / 0 | 5.4 / 0 | ns, min | | | XCV800 | | 2.2 / 0 | 4.4 / 0 | 4.9 / 0 | 5.6 / 0 | ns, min | | | XCV1000 | | 2.3 / 0 | 4.5 / 0 | 5.0 / 0 | 5.8 / 0 | ns, min | | ICE input | All | T _{IOICECK} /T _{IOCKICE} | 0.37/ 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, max | | Set/Reset Delays | | | | | | | | | SR input (IFF, synchronous) | All | T _{IOSRCKI} | 0.49 | 1.0 | 1.1 | 1.3 | ns, max | | SR input to IQ (asynchronous) | All | T _{IOSRIQ} | 0.70 | 1.4 | 1.6 | 1.8 | ns, max | | GSR to output IQ | All | T _{GSRQ} | 4.9 | 9.7 | 10.9 | 12.5 | ns, max | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ^{2.} Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3. # I/O Standard Global Clock Input Adjustments | | | | | Speed Grade | | | | | |--|------------------------|-------------------------|-------|-------------|-------|-------|------------|--| | Description | Symbol | Standard ⁽¹⁾ | Min | -6 | -5 | -4 | Units | | | Data Input Delay Adjustments | | | | | | | | | | Standard-specific global clock input delay adjustments | T _{GPLVTTL} | LVTTL | 0 | 0 | 0 | 0 | ns,
max | | | | T _{GPLVCMOS} | LVCMOS2 | -0.02 | -0.04 | -0.04 | -0.05 | ns,
max | | | | T _{GPPCl33_3} | PCI, 33 MHz, 3.3
V | -0.05 | -0.11 | -0.12 | -0.14 | ns,
max | | | | T _{GPPCl33_5} | PCI, 33 MHz, 5.0
V | 0.13 | 0.25 | 0.28 | 0.33 | ns,
max | | | | T _{GPPCl66_3} | PCI, 66 MHz, 3.3
V | -0.05 | -0.11 | -0.12 | -0.14 | ns,
max | | | | T _{GPGTL} | GTL | 0.7 | 0.8 | 0.9 | 0.9 | ns,
max | | | | T _{GPGTLP} | GTL+ | 0.7 | 0.8 | 0.8 | 0.8 | ns,
max | | | | T _{GPHSTL} | HSTL | 0.7 | 0.7 | 0.7 | 0.7 | ns,
max | | | | T _{GPSSTL2} | SSTL2 | 0.6 | 0.52 | 0.51 | 0.50 | ns,
max | | | | T _{GPSSTL3} | SSTL3 | 0.6 | 0.6 | 0.55 | 0.54 | ns,
max | | | | T _{GPCTT} | СТТ | 0.7 | 0.7 | 0.7 | 0.7 | ns,
max | | | | T _{GPAGP} | AGP | 0.6 | 0.54 | 0.53 | 0.52 | ns,
max | | ^{1.} Input timing for GPLVTTL is measured at
1.4 V. For other I/O standards, see Table 3. # **CLB Arithmetic Switching Characteristics** Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment listed. Precise values are provided by the timing analyzer. | | | | Speed | Grade | | | |--|--------------------------------------|----------|---------|---------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Combinatorial Delays | | | | | • | | | F operand inputs to X via XOR | T _{OPX} | 0.37 | 0.8 | 0.9 | 1.0 | ns, max | | F operand input to XB output | T _{OPXB} | 0.54 | 1.1 | 1.3 | 1.4 | ns, max | | F operand input to Y via XOR | T _{OPY} | 0.8 | 1.5 | 1.7 | 2.0 | ns, max | | F operand input to YB output | T _{OPYB} | 0.8 | 1.5 | 1.7 | 2.0 | ns, max | | F operand input to COUT output | T _{OPCYF} | 0.6 | 1.2 | 1.3 | 1.5 | ns, max | | G operand inputs to Y via XOR | T _{OPGY} | 0.46 | 1.0 | 1.1 | 1.2 | ns, max | | G operand input to YB output | T _{OPGYB} | 0.8 | 1.6 | 1.8 | 2.1 | ns, max | | G operand input to COUT output | T _{OPCYG} | 0.7 | 1.3 | 1.4 | 1.6 | ns, max | | BX initialization input to COUT | T _{BXCY} | 0.41 | 0.9 | 1.0 | 1.1 | ns, max | | CIN input to X output via XOR | T _{CINX} | 0.21 | 0.41 | 0.46 | 0.53 | ns, max | | CIN input to XB | T _{CINXB} | 0.02 | 0.04 | 0.05 | 0.06 | ns, max | | CIN input to Y via XOR | T _{CINY} | 0.23 | 0.46 | 0.52 | 0.6 | ns, max | | CIN input to YB | T _{CINYB} | 0.23 | 0.45 | 0.51 | 0.6 | ns, max | | CIN input to COUT output | T _{BYP} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | | Multiplier Operation | | | | | | | | F1/2 operand inputs to XB output via AND | T _{FANDXB} | 0.18 | 0.36 | 0.40 | 0.46 | ns, max | | F1/2 operand inputs to YB output via AND | T _{FANDYB} | 0.40 | 0.8 | 0.9 | 1.1 | ns, max | | F1/2 operand inputs to COUT output via AND | T _{FANDCY} | 0.22 | 0.43 | 0.48 | 0.6 | ns, max | | G1/2 operand inputs to YB output via AND | T _{GANDYB} | 0.25 | 0.50 | 0.6 | 0.7 | ns, max | | G1/2 operand inputs to COUT output via AND | T _{GANDCY} | 0.07 | 0.13 | 0.15 | 0.17 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | Setup Time / Hold Time | | | | | | | CIN input to FFX | T _{CCKX} /T _{CKCX} | 0.50 / 0 | 1.0 / 0 | 1.2 / 0 | 1.3 / 0 | ns, min | | CIN input to FFY | T _{CCKY} /T _{CKCY} | 0.53 / 0 | 1.1 / 0 | 1.2 / 0 | 1.4 / 0 | ns, min | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. | Date | Version | Revision | | | | |----------|---------|---|--|--|--| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | | | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | | | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | | | | 05/00 | 2.2 | Modified Table 18. | | | | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | | | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | | | | 04/02/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See the Virtex Data Sheet section. | | | | | 04/19/01 | 2.6 | Clarified TIOCKP and TIOCKON IOB Output Switching Characteristics descriptors. | | | | | 07/19/01 | 2.7 | Under Absolute Maximum Ratings, changed (T _{SOL}) to 220 °C. | | | | | 07/26/01 | 2.8 | Removed T _{SOL} parameter and added footnote to Absolute Maximum Ratings table. | | | | | 10/29/01 | 2.9 | Updated the speed grade designations used in data sheets, and added Table 1, which
shows the current speed grade designation for each device. | | | | | 02/01/02 | 3.0 | Added footnote to DC Input and Output Levels table. | | | | | 07/19/02 | 3.1 | Removed mention of MIL-M-38510/605 specification. Added link to xapp158 from the Power-On Power Supply Requirements section. | | | | | 09/10/02 | 3.2 | Added Clock CLK to IOB Input Switching Characteristics and IOB Output Switching Characteristics. | | | | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | | | | # **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | |--|------------|----------|---------|----------| | V _{REF} , Bank 3 | XCV50 | H11, K12 | 60, 68 | 130, 144 | | (V _{REF} pins are listed | XCV100/150 | + J10 | + 66 | + 133 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 126 | | the required device | XCV400 | N/A | N/A | + 147 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 132 | | package.) | XCV800 | N/A | N/A | + 140 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 4 | XCV50 | L8, L10 | 79, 87 | 97, 111 | | (V _{REF} pins are listed | XCV100/150 | + N10 | + 81 | + 108 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 115 | | the required device and all smaller devices | XCV400 | N/A | N/A | + 94 | | listed in the same | XCV600 | N/A | N/A | + 109 | | package.) | XCV800 | N/A | N/A | + 101 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | V _{REF} , Bank 5 | XCV50 | L4, L6 | 96, 104 | 70, 84 | | (V _{REF} pins are listed | XCV100/150 | + N4 | + 102 | + 73 | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 66 | | the required device | XCV400 | N/A | N/A | + 87 | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 72 | | package.) | XCV800 | N/A | N/A | + 80 | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued) | Pin Name | Device | CS144 | TQ144 | PQ/HQ240 | | |--|------------|--|--|--|--| | V _{REF} , Bank 6 | XCV50 | H2, K1 | 116, 123 | 36, 50 | | | (V _{REF} pins are listed | XCV100/150 | + J3 | + 118 | + 47 | | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 54 | | | the required device | XCV400 | N/A | N/A | + 33 | | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 48 | | | package.) | XCV800 | N/A | N/A | + 40 | | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | | V _{REF} , Bank 7 | XCV50 | D4, E1 | 133, 140 | 9, 23 | | | (V _{REF} pins are listed | XCV100/150 | + D2 | + 138 | + 12 | | | incrementally. Connect all pins listed for both | XCV200/300 | N/A | N/A | + 5 | | | the required device | XCV400 | N/A | N/A | + 26 | | | and all smaller devices listed in the same | XCV600 | N/A | N/A | + 11 | | | package.) | XCV800 | N/A | N/A | + 19 | | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | | | | | | | GND | All | A1, B9, B11, C7,
D5, E4, E11, F1,
G10, J1, J12, L3,
L5, L7, L9, N12 | 9, 18, 26, 35, 46, 54, 64,
75, 83, 91, 100, 111, 120,
129, 136, 144, | 1, 8, 14, 22, 29, 37, 45, 51, 59, 69, 75, 83, 91, 98, 106, 112, 119, 129, 135, 143, 151, 158, 166, 172, 182, 190, 196, 204, 211, 219, 227, 233 | | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |--|---------------------|--|---
--|--| | V _{CCINT} Notes: • Superset includes all pins, including the ones in bold type. Subset excludes pins in bold type. | XCV50/100 | C10, D6,
D15, F4,
F17, L3,
L18, R4,
R17, U6,
U15, V10 | N/A | N/A | N/A | | In BG352, for XCV300 all the V _{CCINT} pins in the superset must be connected. For XCV150/200, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG432, for XCV400/600/800 all V _{CCINT} pins in the superset must be connected. | XCV150/200/300 | Same as
above | A20, C14,
D10, J24,
K4, P2, P25,
V24, W2,
AC10, AE14,
AE19,
B16, D12,
L1, L25,
R23, T1,
AF11, AF16 | A10, A17, B23,
C14, C19, K3,
K29, N2, N29,
T1, T29, W2,
W31, AB2,
AB30, AJ10,
AJ16, AK13,
AK19, AK22,
B26, C7, F1,
F30, AE29, AF1,
AH8, AH24 | N/A | | connected. For XCV300, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) In BG560, for XCV800/1000 all V _{CCINT} pins in the superset must be connected. For XCV400/600, V _{CCINT} pins in the subset must be connected, and pins in bold type can be left unconnected (these unconnected pins cannot be used as user I/O.) | XCV400/600/800/1000 | N/A | N/A | Same as above | A21, B14, B18,
B28, C24, E9,
E12, F2, H30,
J1, K32, N1,
N33, U5, U30,
Y2, Y31, AD2,
AD32, AG3,
AG31, AK8,
AK11, AK17,
AK20, AL14,
AL27, AN25,
B12, C22, M3,
N29, AB2,
AB32, AJ13,
AL22 | | V _{CCO} , Bank 0 | All | D7, D8 | A17, B25,
D19 | A21, C29, D21 | A22, A26, A30,
B19, B32 | | V _{CCO} , Bank 1 | All | D13, D14 | A10, D7,
D13 | A1, A11, D11 | A10, A16, B13,
C3, E5 | | V _{CCO} , Bank 2 | All | G17, H17 | B2, H4, K1 | C3, L1, L4 | B2, D1, H1, M1,
R2 | | V _{CCO} , Bank 3 | All | N17, P17 | P4, U1, Y4 | AA1, AA4, AJ3 | V1, AA2, AD1,
AK1, AL2 | | V _{CCO} , Bank 4 | All | U13, U14 | AC8, AE2,
AF10 | AH11, AL1,
AL11 | AM2, AM15,
AN4, AN8, AN12 | | V _{CCO} , Bank 5 | All | U7, U8 | AC14, AC20,
AF17 | AH21, AJ29,
AL21 | AL31, AM21,
AN18, AN24,
AN30 | | V _{CCO} , Bank 6 | All | N4, P4 | U26, W23,
AE25 | AA28, AA31,
AL31 | W32, AB33,
AF33, AK33,
AM32 | ## **BG256 Pin Function Diagram** Figure 4: BG256 Pin Function Diagram