

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	3456
Number of Logic Elements/Cells	15552
Total RAM Bits	98304
Number of I/O	166
Number of Gates	661111
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcv600-5hq240i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Virtex Architecture

Virtex devices feature a flexible, regular architecture that comprises an array of configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all interconnected by a rich hierarchy of fast, versatile routing resources. The abundance of routing resources permits the Virtex family to accommodate even the largest and most complex designs.

Virtex FPGAs are SRAM-based, and are customized by loading configuration data into internal memory cells. In some modes, the FPGA reads its own configuration data from an external PROM (master serial mode). Otherwise, the configuration data is written into the FPGA (Select-MAPTM, slave serial, and JTAG modes).

The standard Xilinx Foundation™ and Alliance Series™ Development systems deliver complete design support for Virtex, covering every aspect from behavioral and schematic entry, through simulation, automatic design translation and implementation, to the creation, downloading, and readback of a configuration bit stream.

Higher Performance

Virtex devices provide better performance than previous generations of FPGA. Designs can achieve synchronous system clock rates up to 200 MHz including I/O. Virtex inputs and outputs comply fully with PCI specifications, and interfaces can be implemented that operate at 33 MHz or 66 MHz. Additionally, Virtex supports the hot-swapping requirements of Compact PCI.

Xilinx thoroughly benchmarked the Virtex family. While performance is design-dependent, many designs operated internally at speeds in excess of 100 MHz and can achieve 200 MHz. Table 2 shows performance data for representative circuits, using worst-case timing parameters.

Table 2: Performance for Common Circuit Functions

Function	Bits	Virtex -6
Register-to-Register		
Adder	16	5.0 ns
Audei	64	7.2 ns
Pipelined Multiplier	8 x 8	5.1 ns
	16 x 16	6.0 ns
Address Decoder	16	4.4 ns
	64	6.4 ns
16:1 Multiplexer		5.4 ns
Parity Tree	9	4.1 ns
	18	5.0 ns
	36	6.9 ns
Chip-to-Chip		
HSTL Class IV		200 MHz
LVTTL,16mA, fast slew		180 MHz

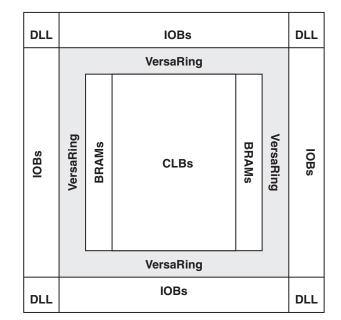
Revision History

Date	Version	Revision
11/98	1.0	Initial Xilinx release.
01/99-02/99	1.2-1.3	Both versions updated package drawings and specs.
05/99	1.4	Addition of package drawings and specifications.
05/99	1.5	Replaced FG 676 & FG680 package drawings.
07/99	1.6	Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments.
09/99	1.7	Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} .
01/00	1.8	Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43.
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.
05/00	2.2	Modified Table 18.
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics.
10/00	2.4	 Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram.
04/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See Virtex Data Sheet section.
03/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.

Virtex Data Sheet

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)



DS003-2 (v4.0) March 1, 2013

Virtex[™] 2.5 V Field Programmable Gate Arrays

Product Specification

The output buffer and all of the IOB control signals have independent polarity controls.

vao_b.eps

Figure 1: Virtex Architecture Overview

All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage protection are provided, one that permits 5 V compliance, and one that does not. For 5 V compliance, a Zener-like structure connected to ground turns on when the output rises to approximately 6.5 V. When PCI 3.3 V compliance is required, a conventional clamp diode is connected to the output supply voltage, $V_{\rm CCO}$.

Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each pad. Prior to configuration, all pins not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs can optionally be pulled up.

The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins will float. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration.

All Virtex IOBs support IEEE 1149.1-compatible boundary scan testing.

Architectural Description

Virtex Array

The Virtex user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs).

- CLBs provide the functional elements for constructing logic
- IOBs provide the interface between the package pins and the CLBs

CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM.

The VersaRing[™] I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking.

The Virtex architecture also includes the following circuits that connect to the GRM.

- Dedicated block memories of 4096 bits each
- Clock DLLs for clock-distribution delay compensation and clock domain control
- 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources

Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device.

Input/Output Block

The Virtex IOB, Figure 2, features SelectIO™ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1.

The three IOB storage elements function either as edge-triggered D-type flip-flops or as level sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop.

In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear.

© 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Four dedicated clock pads are provided, one adjacent to each of the global buffers. The input to the global buffer is

selected either from these pads or from signals in the general purpose routing.

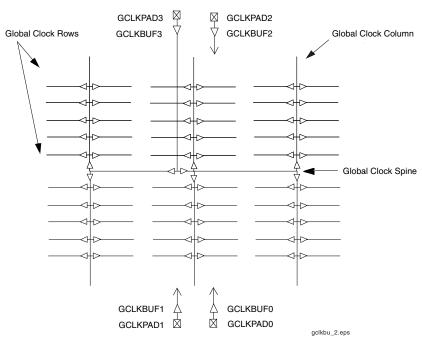


Figure 9: Global Clock Distribution Network

Delay-Locked Loop (DLL)

Associated with each global clock input buffer is a fully digital Delay-Locked Loop (DLL) that can eliminate skew between the clock input pad and internal clock-input pins throughout the device. Each DLL can drive two global clock networks. The DLL monitors the input clock and the distributed clock, and automatically adjusts a clock delay element. Clock edges reach internal flip-flops one to four clock periods after they arrive at the input. This closed-loop system effectively eliminates clock-distribution delay by ensuring that clock edges arrive at internal flip-flops in synchronism with clock edges arriving at the input.

In addition to eliminating clock-distribution delay, the DLL provides advanced control of multiple clock domains. The DLL provides four quadrature phases of the source clock, can double the clock, or divide the clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16.

The DLL also operates as a clock mirror. By driving the output from a DLL off-chip and then back on again, the DLL can be used to de-skew a board level clock among multiple Virtex devices.

In order to guarantee that the system clock is operating correctly prior to the FPGA starting up after configuration, the DLL can delay the completion of the configuration process until after it has achieved lock.

See **DLL Timing Parameters**, page 21 of Module 3, for frequency range information.

Boundary Scan

Virtex devices support all the mandatory boundary-scan instructions specified in the IEEE standard 1149.1. A Test Access Port (TAP) and registers are provided that implement the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS, IDCODE, USERCODE, and HIGHZ instructions. The TAP also supports two internal scan chains and configuration/readback of the device.The TAP uses dedicated package pins that always operate using LVTTL. For TDO to operate using LVTTL, the $\rm V_{CCO}$ for Bank 2 should be 3.3 V. Otherwise, TDO switches rail-to-rail between ground and $\rm V_{CCO}$.

Boundary-scan operation is independent of individual IOB configurations, and unaffected by package type. All IOBs, including un-bonded ones, are treated as independent 3-state bidirectional pins in a single scan chain. Retention of the bidirectional test capability after configuration facilitates the testing of external interconnections, provided the user design or application is turned off.

Table 5 lists the boundary-scan instructions supported in Virtex FPGAs. Internal signals can be captured during EXTEST by connecting them to un-bonded or unused IOBs. They can also be connected to the unused outputs of IOBs defined as unidirectional input pins.

Before the device is configured, all instructions except USER1 and USER2 are available. After configuration, all instructions are available. During configuration, it is recommended that those operations using the boundary-scan register (SAMPLE/PRELOAD, INTEST, EXTEST) not be performed.

In addition to the test instructions outlined above, the boundary-scan circuitry can be used to configure the FPGA, and also to read back the configuration data.

Figure 10 is a diagram of the Virtex Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes.

Instruction Set

The Virtex Series boundary scan instruction set also includes instructions to configure the device and read back configuration data (CFG_IN, CFG_OUT, and JSTART). The complete instruction set is coded as shown in Table 5.

Data Registers

The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out, and 3-State Control. Non-IOB pins have appropriate partial bit population if input-only or output-only. Each EXTEST CAPTURED-OR state captures all In, Out, and 3-state pins.

The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device.

The FPGA supports up to two additional internal scan chains that can be specified using the BSCAN macro. The macro provides two user pins (SEL1 and SEL2) which are decodes of the USER1 and USER2 instructions respectively. For these instructions, two corresponding pins (TDO1 and TDO2) allow user scan data to be shifted out of TDO.

Likewise, there are individual clock pins (DRCK1 and DRCK2) for each user register. There is a common input pin (TDI) and shared output pins that represent the state of the TAP controller (RESET, SHIFT, and UPDATE).

Bit Sequence

The order within each IOB is: In, Out, 3-State. The input-only pins contribute only the In bit to the boundary scan I/O data register, while the output-only pins contributes all three bits.

From a cavity-up view of the chip (as shown in EPIC), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 11.

BSDL (Boundary Scan Description Language) files for Virtex Series devices are available on the Xilinx web site in the File Download area.

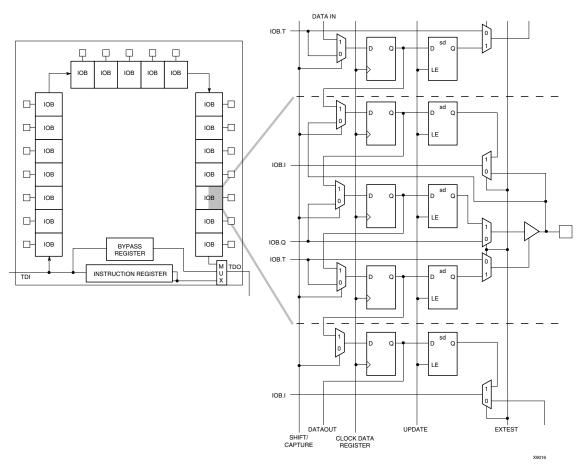


Figure 10: Virtex Series Boundary Scan Logic

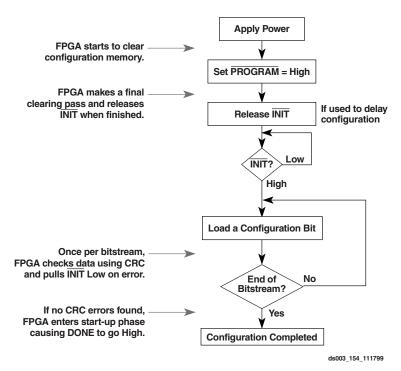


Figure 15: Serial Configuration Flowchart

After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback.

Retention of the SelectMAP port is selectable on a design-by-design basis when the bitstream is generated. If retention is selected, PROHIBIT constraints are required to prevent the SelectMAP-port pins from being used as user I/O.

Multiple Virtex FPGAs can be configured using the Select-MAP mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, $\overline{\text{WRITE}}$, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by asserting the $\overline{\text{CS}}$ pin of each device in turn and writing the appropriate data. see Table 9 for SelectMAP Write Timing Characteristics.

Table 9: SelectMAP Write Timing Characteristics

	Description		Symbol		Units
	D ₀₋₇ Setup/Hold	1/2	T _{SMDCC} /T _{SMCCD}	5.0 / 1.7	ns, min
	CS Setup/Hold	3/4	T _{SMCSCC} /T _{SMCCCS}	7.0 / 1.7	ns, min
CCLK	WRITE Setup/Hold	5/6	T _{SMCCW} /T _{SMWCC}	7.0 / 1.7	ns, min
COLK	BUSY Propagation Delay	7	T _{SMCKBY}	12.0	ns, max
	Maximum Frequency		F _{CC}	66	MHz, max
	Maximum Frequency with no handshake		F _{CCNH}	50	MHz, max

Write

Write operations send packets of configuration data into the FPGA. The sequence of operations for a multi-cycle write operation is shown below. Note that a configuration packet can be split into many such sequences. The packet does not have to complete within one assertion of \overline{CS} , illustrated in Figure 16.

- 1. Assert WRITE and CS Low. Note that when CS is asserted on successive CCLKs, WRITE must remain either asserted or de-asserted. Otherwise an abort will be initiated, as described below.
- 2. Drive data onto D[7:0]. Note that to avoid contention, the data source should not be enabled while \overline{CS} is Low and \overline{WRITE} is High. Similarly, while \overline{WRITE} is High, no more that one \overline{CS} should be asserted.

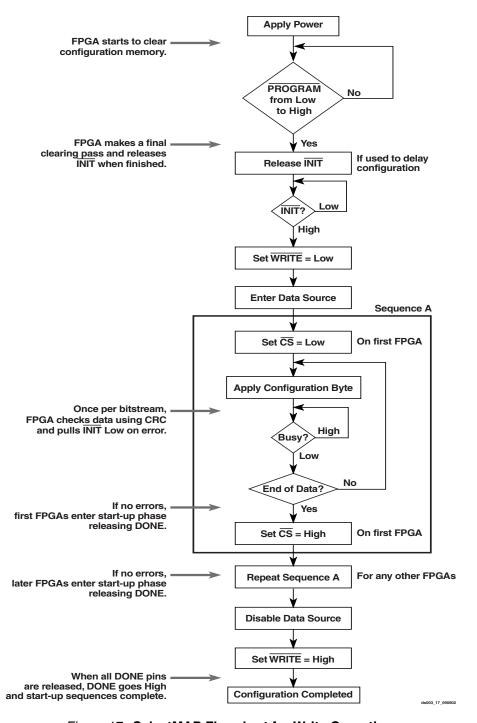


Figure 17: SelectMAP Flowchart for Write Operation

Abort

During a given assertion of $\overline{\text{CS}}$, the user cannot switch from a write to a read, or vice-versa. This action causes the current packet command to be aborted. The device will remain BUSY until the aborted operation has completed. Following an abort, data is assumed to be unaligned to word boundar-

ies, and the FPGA requires a new synchronization word prior to accepting any new packets.

To initiate an abort during a write operation, de-assert WRITE. At the rising edge of CCLK, an abort is initiated, as shown in Figure 18.

Date	Version	Revision
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.
05/00	2.2	Modified Table 18.
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics.
10/00	2.4	 Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram.
04/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Updated SelectMAP Write Timing Characteristics values in Table 9. Converted file to modularized format. See the Virtex Data Sheet section.
07/19/01	2.6	Made minor edits to text under Configuration.
07/19/02	2.7	Made minor edit to Figure 16 and Figure 18.
09/10/02	2.8	Added clarifications in the Configuration, Boundary-Scan Mode, and Block SelectRAM sections. Revised Figure 17.
12/09/02	2.8.1	 Added clarification in the Boundary Scan section. Corrected number of buffered Hex lines listed in General Purpose Routing section.
03/01/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.

Virtex Data Sheet

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)

Virtex DC Characteristics

Absolute Maximum Ratings

Symbol	Description ⁽¹⁾			Units
V _{CCINT}	Supply voltage relative to GND ⁽²⁾		-0.5 to 3.0	V
V _{CCO}	Supply voltage relative to GND ⁽²⁾	Supply voltage relative to GND ⁽²⁾		V
V _{REF}	Input Reference Voltage	-0.5 to 3.6	V	
V	Input voltage relative to GND ⁽³⁾	Using V _{REF}	-0.5 to 3.6	V
V _{IN}		Internal threshold	-0.5 to 5.5	V
V _{TS}	Voltage applied to 3-state output		-0.5 to 5.5	V
V _{CC}	Longest Supply Voltage Rise Time from 1V-2.375V		50	ms
T _{STG}	Storage temperature (ambient)	-65 to +150	°C	
TJ	Junction temperature ⁽⁴⁾	Plastic Packages	+125	°C

Notes:

- Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress
 ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
 is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time can affect device reliability.
- 2. Power supplies can turn on in any order.
- 3. For protracted periods (e.g., longer than a day), V_{IN} should not exceed V_{CCO} by more than 3.6 V.
- 4. For soldering guidelines and thermal considerations, see the "Device Packaging" information on www.xilinx.com.

Recommended Operating Conditions

Symbol	Description		Min	Max	Units
V _{CCINT} ⁽¹⁾	Input Supply voltage relative to GND, $T_J = 0$ °C to +85°C	Commercial	2.5 – 5%	2.5 + 5%	V
CCINT` /	Input Supply voltage relative to GND, $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$	Industrial	2.5 – 5%	2.5 + 5%	V
V _{CCO} ⁽⁴⁾	Supply voltage relative to GND, T _J = 0 °C to +85°C	Commercial	1.4	3.6	V
, CCO,	Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C$	Industrial	1.4	3.6	V
T _{IN}	Input signal transition time			250	ns

Notes:

- Correct operation is guaranteed with a minimum V_{CCINT} of 2.375 V (Nominal V_{CCINT} -5%). Below the minimum value, all delay parameters increase by 3% for each 50-mV reduction in V_{CCINT} below the specified range.
- 2. At junction temperatures above those listed as Operating Conditions, delay parameters do increase. Please refer to the TRCE report.
- 3. Input and output measurement threshold is \sim 50% of V_{CC} .
- Min and Max values for V_{CCO} are I/O Standard dependant.

DC Characteristics Over Recommended Operating Conditions

Symbol	Description	1	Device	Min	Max	Units
V _{DRINT}	Data Retention V _{CCINT} Voltage		All	2.0		V
21	(below which configuration data can be	e lost)				
V_{DRIO}	Data Retention V _{CCO} Voltage (below which configuration data can be	e lost)	All	1.2		V
I _{CCINTQ}	Quiescent V _{CCINT} supply current ^(1,3)		XCV50		50	mA
			XCV100		50	mA
			XCV150		50	mA
			XCV200		75	mA
			XCV300		75	mA
			XCV400		75	mA
			XCV600		100	mA
			XCV800		100	mA
			XCV1000		100	mA
Iccoq	Quiescent V _{CCO} supply current ⁽¹⁾		XCV50		2	mA
			XCV100		2	mA
			XCV150		2	mA
			XCV200		2	mA
			XCV300		2	mA
			XCV400		2	mA
			XCV600		2	mA
			XCV800		2	mA
			XCV1000		2	mA
I _{REF}	V _{REF} current per V _{REF} pin		All		20	μΑ
ΙL	Input or output leakage current		All	-10	+10	μΑ
C _{IN}	Input capacitance (sample tested)	BGA, PQ, HQ, packages	All		8	pF
I _{RPU}	Pad pull-up (when selected) @ V _{in} = 0 tested)	V, V _{CCO} = 3.3 V (sample	All	Note (2)	0.25	mA
I _{RPD}	Pad pull-down (when selected) @ V _{in} =	= 3.6 V (sample tested)		Note (2)	0.15	mA

Notes:

- 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating.
- 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits.
- 3. Multiply I_{CCINTQ} limit by two for industrial grade.

Block RAM Switching Characteristics

	Speed Grade					
Description	Symbol	Min	-6	-5	-4	Units
Sequential Delays						
Clock CLK to DOUT output	T _{BCKO}	1.7	3.4	3.8	4.3	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾		Setu	p Time / H	old Time		
ADDR inputs	T _{BACK} /T _{BCKA}	0.6 / 0	1.2 / 0	1.3 / 0	1.5 / 0	ns, min
DIN inputs	T _{BDCK} /T _{BCKD}	0.6 / 0	1.2 / 0	1.3 / 0	1.5 / 0	ns, min
EN input	T _{BECK} /T _{BCKE}	1.3 / 0	2.6 / 0	3.0 / 0	3.4 / 0	ns, min
RST input	T _{BRCK} /T _{BCKR}	1.3 / 0	2.5 / 0	2.7 / 0	3.2 / 0	ns, min
WEN input	T _{BWCK} /T _{BCKW}	1.2 / 0	2.3 / 0	2.6 / 0	3.0 / 0	ns, min
Clock CLK						
Minimum Pulse Width, High	T _{BPWH}	0.8	1.5	1.7	2.0	ns, min
Minimum Pulse Width, Low	T _{BPWL}	0.8	1.5	1.7	2.0	ns, min
CLKA -> CLKB setup time for different ports	T _{BCCS}		3.0	3.5	4.0	ns, min

Notes:

TBUF Switching Characteristics

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Combinatorial Delays						
IN input to OUT output	T _{IO}	0	0	0	0	ns, max
TRI input to OUT output high-impedance	T _{OFF}	0.05	0.09	0.10	0.11	ns, max
TRI input to valid data on OUT output	T _{ON}	0.05	0.09	0.10	0.11	ns, max

JTAG Test Access Port Switching Characteristics

		Speed Grade			
Description	Symbol	-6	-5	-4	Units
TMS and TDI Setup times before TCK	T _{TAPTCK}	4.0	4.0	4.0	ns, min
TMS and TDI Hold times after TCK	T _{TCKTAP}	2.0	2.0	2.0	ns, min
Output delay from clock TCK to output TDO	T _{TCKTDO}	11.0	11.0	11.0	ns, max
Maximum TCK clock frequency	F _{TCK}	33	33	33	MHz, max

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

Virtex Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted

Global Clock Set-Up and Hold for LVTTL Standard, with DLL

			Speed Grade						
Description	Symbol	Device	Min	-6	-5	-4	Units		
Input Setup and Hold Time Relative to Global Clock Input Signal for LVTTL Standard. For data input with different standards, adjust the setup time delay by the values shown in Input Delay Adjustments.									
No Delay Global Clock and IFF, with DLL	T _{PSDLL} /T _{PHDLL}	XCV50	0.40 / -0.4	1.7 /-0.4	1.8 /0.4	2.1 /-0.4	ns, min		
		XCV100	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min		
		XCV150	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min		
		XCV200	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min		
		XCV300	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min		
		XCV400	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min		
		XCV600	0.40 /0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min		
		XCV800	0.40 /-0.4	1.7 /-0.4	1.9 /-0.4	2.1 /-0.4	ns, min		
		XCV1000	0.40 /-0.4	1.7 /-0.4	1.9 /0.4	2.1 /-0.4	ns, min		

IFF = Input Flip-Flop or Latch

Notes:

- 2. DLL output jitter is already included in the timing calculation.
- 3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

^{1.} Set-up time is measured relative to the Global Clock input signal with the fastest route and the lightest load. Hold time is measured relative to the Global Clock input signal with the slowest route and heaviest load.

Date	Version	Revision				
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.				
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.				
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.				
05/00	2.2	Modified Table 18.				
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. 				
10/00	2.4	 Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. 				
04/02/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See the Virtex Data Sheet section. 				
04/19/01	2.6	Clarified TIOCKP and TIOCKON IOB Output Switching Characteristics descriptors.				
07/19/01	2.7	Under Absolute Maximum Ratings, changed (T _{SOL}) to 220 °C.				
07/26/01	2.8	Removed T _{SOL} parameter and added footnote to Absolute Maximum Ratings table.				
10/29/01	2.9	 Updated the speed grade designations used in data sheets, and added Table 1, which shows the current speed grade designation for each device. 				
02/01/02	3.0	Added footnote to DC Input and Output Levels table.				
07/19/02	3.1	 Removed mention of MIL-M-38510/605 specification. Added link to xapp158 from the Power-On Power Supply Requirements section. 				
09/10/02	3.2	 Added Clock CLK to IOB Input Switching Characteristics and IOB Output Switching Characteristics. 				
03/01/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.				

Virtex Data Sheet

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)

Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued)

Pin Name	Device	CS144	TQ144	PQ/HQ240
V _{CCO}	All	Banks 0 and 1: A2, A13, D7 Banks 2 and 3: B12, G11, M13 Banks 4 and 5: N1, N7, N13 Banks 6 and 7: B2, G2, M2	No I/O Banks in this package: 1, 17, 37, 55, 73, 92, 109, 128	No I/O Banks in this package: 15, 30, 44, 61, 76, 90, 105, 121, 136, 150, 165, 180, 197, 212, 226, 240
V _{RFF} Bank 0	XCV50	C4, D6	5, 13	218, 232
(V _{REF} pins are listed	XCV100/150	+ B4	+ 7	+ 229
incrementally. Connect	XCV200/300	N/A	N/A	+ 236
all pins listed for both the required device	XCV400	N/A	N/A	+ 215
and all smaller devices	XCV600	N/A	N/A	+ 230
listed in the same package.)	XCV800	N/A	N/A	+ 222
Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.				
V _{REF} , Bank 1	XCV50	A10, B8	22, 30	191, 205
(V _{REF} pins are listed	XCV100/150	+ D9	+ 28	+ 194
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 187
the required device	XCV400	N/A	N/A	+ 208
and all smaller devices listed in the same	XCV600	N/A	N/A	+ 193
package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV800	N/A	N/A	+ 201
V _{REF} , Bank 2	XCV50	D11, F10	42, 50	157, 171
(V _{REF} pins are listed	XCV100/150	+ D13	+ 44	+ 168
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 175
the required device	XCV400	N/A	N/A	+ 154
and all smaller devices listed in the same	XCV600	N/A	N/A	+ 169
package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV800	N/A	N/A	+ 161

Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued)

Pin Name	Device	CS144	TQ144	PQ/HQ240
V _{REF} , Bank 6	XCV50	H2, K1	116, 123	36, 50
(V _{REF} pins are listed	XCV100/150	+ J3	+ 118	+ 47
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 54
the required device	XCV400	N/A	N/A	+ 33
and all smaller devices listed in the same	XCV600	N/A	N/A	+ 48
package.)	XCV800	N/A	N/A	+ 40
Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.				
V _{REF} , Bank 7	XCV50	D4, E1	133, 140	9, 23
(V _{REF} pins are listed	XCV100/150	+ D2	+ 138	+ 12
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 5
the required device	XCV400	N/A	N/A	+ 26
and all smaller devices listed in the same	XCV600	N/A	N/A	+ 11
package.)	XCV800	N/A	N/A	+ 19
Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.				
GND	All	A1, B9, B11, C7, D5, E4, E11, F1, G10, J1, J12, L3, L5, L7, L9, N12	9, 18, 26, 35, 46, 54, 64, 75, 83, 91, 100, 111, 120, 129, 136, 144,	1, 8, 14, 22, 29, 37, 45, 51, 59, 69, 75, 83, 91, 98, 106, 112, 119, 129, 135, 143, 151, 158, 166, 172, 182, 190, 196, 204, 211, 219, 227, 233

Table 3: Virtex Pinout Tables (BGA) (Continued)

Pin Name	Device	BG256	BG352	BG432	BG560
V _{REF} , Bank 3	XCV50	M18, V20	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ R19	R4, V4, Y3	N/A	N/A
incrementally. Connect all pins listed for both the required device and all	XCV200/300	+ P18	+ AC2	V2, AB4, AD4, AF3	N/A
smaller devices listed in the	XCV400	N/A	N/A	+ U2	V4, W5,
same package.)					AD3, AE5, AK2
Within each bank, if input reference voltage is not	XCV600	N/A	N/A	+ AC3	+ AF1
required, all V _{REF} pins are	XCV800	N/A	N/A	+ Y3	+ AA4
general I/O.	XCV1000	N/A	N/A	N/A	+ AH4
V _{REF} , Bank 4	XCV50	V12, Y18	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all	XCV100/150	+ W15	AC12, AE5, AE8,	N/A	N/A
pins listed for both the required device and all smaller devices listed in the	XCV200/300	+ V14	+ AE4	AJ7, AL4, AL8, AL13	N/A
same package.) Within each bank, if input reference voltage is not	XCV400	N/A	N/A	+ AK15	AL7, AL10, AL16, AM4, AM14
required, all V _{REF} pins are	XCV600	N/A	N/A	+ AK8	+ AL9
general I/O.	XCV800	N/A	N/A	+ AJ12	+ AK13
	XCV1000	N/A	N/A	N/A	+ AN3
V _{REF} , Bank 5	XCV50	V9, Y3	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all pins listed for both the	XCV100/150	+ W6	AC15, AC18, AD20	N/A	N/A
required device and all smaller devices listed in the	XCV200/300	+ V7	+ AE23	AJ18, AJ25, AK23, AK27	N/A
within each bank, if input reference voltage is not	XCV400	N/A	N/A	+ AJ17	AJ18, AJ25, AL20, AL24, AL29
required, all V _{REF} pins are general I/O.	XCV600	N/A	N/A	+ AL24	+ AM26
	XCV800	N/A	N/A	+ AH19	+ AN23
	XCV1000	N/A	N/A	N/A	+ AK28
V _{REF} , Bank 6	XCV50	M2, R3	N/A	N/A	N/A
(V _{REF} pins are listed incrementally. Connect all	XCV100/150	+ T1	R24, Y26, AA25,	N/A	N/A
pins listed for both the required device and all smaller devices listed in the	XCV200/300	+ T3	+ AD26	V28, AB28, AE30, AF28	N/A
same package.) Within each bank, if input	XCV400	N/A	N/A	+ U28	V29, Y32, AD31, AE29, AK32
reference voltage is not	XCV600	N/A	N/A	+ AC28	+ AE31
required, all V _{REF} pins are general I/O.	XCV800	N/A	N/A	+ Y30	+ AA30
general I/O.	XCV1000	N/A	N/A	N/A	+ AH30

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{REF} Bank 1	XCV50	B9, C11	N/A	N/A	N/A
(VREF pins are listed	XCV100/150	+ E11	A18, B13, E14	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ A14	+ A19	N/A	N/A
the required device and all smaller devices	XCV400	N/A	N/A	A14, C20, C21, D15, G16	N/A
listed in the same package.) Within each bank, if	XCV600	N/A	N/A	+ B19	B6, B8, B18, D11, D13, D17
input reference voltage	XCV800	N/A	N/A	+ A17	+ B14
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ B5
V _{REF} , Bank 2	XCV50	F13, H13	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ F14	F21, H18, K21	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ E13	+ D22	N/A	N/A
the required device and all smaller devices	XCV400	N/A	N/A	F24, H23, K20, M23, M26	N/A
listed in the same package.) Within each bank, if	XCV600	N/A	N/A	+ G26	G1, H4, J1, L2, V5, W3
input reference voltage	XCV800	N/A	N/A	+ K25	+ N1
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ D2
V _{REF} , Bank 3	XCV50	K16, L14	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ L13	N21, R19, U21	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ M13	+ U20	N/A	N/A
the required device and all smaller devices	XCV400	N/A	N/A	R23, R25, U21, W22, W23	N/A
listed in the same package.) Within each bank, if	XCV600	N/A	N/A	+ W26	AC1, AJ2, AK3, AL4, AR1, Y1
input reference voltage	XCV800	N/A	N/A	+ U25	+ AF3
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AP4

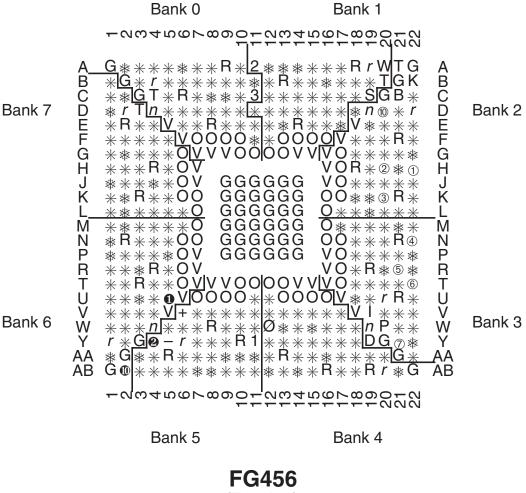


Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
No Connect (No-connect pins are listed incrementally. All pins listed for both the required device and all larger devices listed in the same package are no connects.)	XCV800	N/A	N/A	A2, A3, A15, A25, B1, B6, B11, B16, B21, B24, B26, C1, C2, C25, C26, F2, F6, F21, F25, L2, L25, N25, P2, T2, T25, AA2, AA6, AA21, AA25, AD1, AD2, AD25, AE1, AE3, AE6, AE11, AE14, AE16, AE21, AE24, AE26, AF2, AF24, AF25	N/A
	XCV600	N/A	N/A	same as above	N/A
	XCV400	N/A	N/A	+ A9, A10, A13, A16, A24, AC1, AC25, AE12, AE15, AF3, AF10, AF11, AF13, AF14, AF16, AF18, AF23, B4, B12, B13, B15, B17, D1, D25, H26, J1, K26, L1, M1, M25, N1, N26, P1, P26, R2, R26, T1, T26, U26, V1	N/A
	XCV300	N/A	D4, D19, W4, W19	N/A	N/A
	XCV200	N/A	+ A2, A6, A12, B11, B16, C2, D1, D18, E17, E19, G2, G22, L2, L19, M2, M21, R3, R20, U3, U18, Y22, AA1, AA3, AA11, AA16, AB7, AB12, AB21,	N/A	N/A
	XCV150	N/A	+ A13, A14, C8, C9, E13, F11, H21, J1, J4, K2, K18, K19, M17, N1, P1, P5, P22, R22, W13, W15, AA9, AA10, AB8, AB14	N/A	N/A

FG456 Pin Function Diagram

(Top view)

Figure 9: FG456 Pin Function Diagram

Notes:

Packages FG456 and FG676 are layout compatible.

Revision History

Date	Version	Revision
11/98	1.0	Initial Xilinx release.
01/99-02/99	1.2-1.3	Both versions updated package drawings and specs.
05/99	1.4	Addition of package drawings and specifications.
05/99	1.5	Replaced FG 676 & FG680 package drawings.
07/99	1.6	Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments.
09/99	1.7	Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} .
01/00	1.8	Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43.
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.
05/00	2.2	Modified Table 18.
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics.
10/00	2.4	 Corrected pinout info for devices in the BG256, BG432, and BG560 pkgs in Table 18. Corrected BG256 Pin Function Diagram.
04/02/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See section Virtex Data Sheet, below.
04/19/01	2.6	Corrected pinout information for FG676 device in Table 4. (Added AB22 pin.)
07/19/01	2.7	 Clarified V_{CCINT} pinout information and added AE19 pin for BG352 devices in Table 3. Changed pinouts listed for BG352 XCV400 devices in banks 0 thru 7.
07/19/02	2.8	Changed pinouts listed for GND in TQ144 devices (see Table 2).
03/01/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.

Virtex Data Sheet

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)