

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

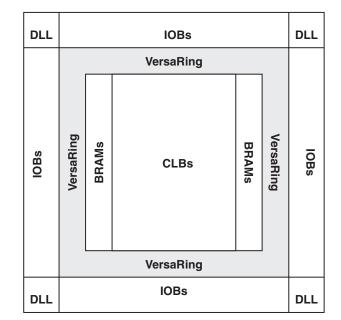
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	4704
Number of Logic Elements/Cells	21168
Total RAM Bits	114688
Number of I/O	404
Number of Gates	888439
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	560-LBGA Exposed Pad, Metal
Supplier Device Package	560-MBGA (42.5x42.5)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xcv800-5bg560c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



DS003-2 (v4.0) March 1, 2013

Virtex[™] 2.5 V Field Programmable Gate Arrays

Product Specification

The output buffer and all of the IOB control signals have independent polarity controls.

vao_b.eps

Figure 1: Virtex Architecture Overview

All pads are protected against damage from electrostatic discharge (ESD) and from over-voltage transients. Two forms of over-voltage protection are provided, one that permits 5 V compliance, and one that does not. For 5 V compliance, a Zener-like structure connected to ground turns on when the output rises to approximately 6.5 V. When PCI 3.3 V compliance is required, a conventional clamp diode is connected to the output supply voltage, $V_{\rm CCO}$.

Optional pull-up and pull-down resistors and an optional weak-keeper circuit are attached to each pad. Prior to configuration, all pins not involved in configuration are forced into their high-impedance state. The pull-down resistors and the weak-keeper circuits are inactive, but inputs can optionally be pulled up.

The activation of pull-up resistors prior to configuration is controlled on a global basis by the configuration mode pins. If the pull-up resistors are not activated, all the pins will float. Consequently, external pull-up or pull-down resistors must be provided on pins required to be at a well-defined logic level prior to configuration.

All Virtex IOBs support IEEE 1149.1-compatible boundary scan testing.

Architectural Description

Virtex Array

The Virtex user-programmable gate array, shown in Figure 1, comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs).

- CLBs provide the functional elements for constructing logic
- IOBs provide the interface between the package pins and the CLBs

CLBs interconnect through a general routing matrix (GRM). The GRM comprises an array of routing switches located at the intersections of horizontal and vertical routing channels. Each CLB nests into a VersaBlock™ that also provides local routing resources to connect the CLB to the GRM.

The VersaRing[™] I/O interface provides additional routing resources around the periphery of the device. This routing improves I/O routability and facilitates pin locking.

The Virtex architecture also includes the following circuits that connect to the GRM.

- Dedicated block memories of 4096 bits each
- Clock DLLs for clock-distribution delay compensation and clock domain control
- 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable horizontal routing resources

Values stored in static memory cells control the configurable logic elements and interconnect resources. These values load into the memory cells on power-up, and can reload if necessary to change the function of the device.

Input/Output Block

The Virtex IOB, Figure 2, features SelectIO™ inputs and outputs that support a wide variety of I/O signalling standards, see Table 1.

The three IOB storage elements function either as edge-triggered D-type flip-flops or as level sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops and independent clock enable signals for each flip-flop.

In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can be independently configured as a synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous Clear.

© 1999-2013 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

General Purpose Routing

Most Virtex signals are routed on the general purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing hierarchy. The general routing resources are located in horizontal and vertical routing channels associated with the rows and columns CLBs. The general-purpose routing resources are listed below.

- Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix through which horizontal and vertical routing resources connect, and is also the means by which the CLB gains access to the general purpose routing.
- 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions.
- 12 buffered Hex lines route GRM signals to another GRMs six-blocks away in each one of the four directions. Organized in a staggered pattern, Hex lines can be driven only at their endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). One third of the Hex lines are bidirectional, while the remaining ones are uni-directional.

 12 Longlines are buffered, bidirectional wires that distribute signals across the device quickly and efficiently. Vertical Longlines span the full height of the device, and horizontal ones span the full width of the device.

I/O Routing

Virtex devices have additional routing resources around their periphery that form an interface between the CLB array and the IOBs. This additional routing, called the VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other system components can be manufactured while the logic design is still in progress.

Dedicated Routing

Some classes of signal require dedicated routing resources to maximize performance. In the Virtex architecture, dedicated routing resources are provided for two classes of signal.

- Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable bus lines are provided per CLB row, permitting multiple busses within a row, as shown in Figure 8.
- Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB.

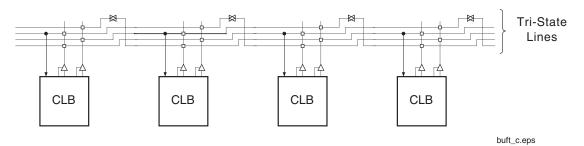


Figure 8: BUFT Connections to Dedicated Horizontal Bus Lines

Global Routing

Global Routing resources distribute clocks and other signals with very high fanout throughout the device. Virtex devices include two tiers of global routing resources referred to as primary global and secondary local clock routing resources.

• The primary global routing resources are four dedicated global nets with dedicated input pins that are designed to distribute high-fanout clock signals with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock pins. The primary global nets can only be driven by global buffers. There are four global buffers, one for each global net. The secondary local clock routing resources consist of 24 backbone lines, 12 across the top of the chip and 12 across bottom. From these lines, up to 12 unique signals per column can be distributed via the 12 longlines in the column. These secondary resources are more flexible than the primary resources since they are not restricted to routing only to clock pins.

Clock Distribution

Virtex provides high-speed, low-skew clock distribution through the primary global routing resources described above. A typical clock distribution net is shown in Figure 9.

Four global buffers are provided, two at the top center of the device and two at the bottom center. These drive the four primary global nets that in turn drive any clock pin.

Virtex DC Characteristics

Absolute Maximum Ratings

Symbol	Description ⁽¹⁾		Units		
V _{CCINT}	Supply voltage relative to GND ⁽²⁾		-0.5 to 3.0	V	
V _{CCO}	Supply voltage relative to GND ⁽²⁾		-0.5 to 4.0	V	
V _{REF}	Input Reference Voltage	ce Voltage			
V	Input voltage relative to GND ⁽³⁾	Using V _{REF}	-0.5 to 3.6	V	
V _{IN}		Internal threshold	-0.5 to 5.5	V	
V _{TS}	Voltage applied to 3-state output		-0.5 to 5.5	V	
V _{CC}	Longest Supply Voltage Rise Time from 1V-2.375V		50	ms	
T _{STG}	Storage temperature (ambient)	-65 to +150	°C		
TJ	Junction temperature ⁽⁴⁾	Plastic Packages	+125	°C	

Notes:

- Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress
 ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions
 is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time can affect device reliability.
- 2. Power supplies can turn on in any order.
- 3. For protracted periods (e.g., longer than a day), V_{IN} should not exceed V_{CCO} by more than 3.6 V.
- 4. For soldering guidelines and thermal considerations, see the "Device Packaging" information on www.xilinx.com.

Recommended Operating Conditions

Symbol	Description			Max	Units
V _{CCINT} ⁽¹⁾ Input Supply voltage relative to GND, T _J = 0 °C to +85°C C		Commercial	2.5 – 5%	2.5 + 5%	V
CCINT` /	Input Supply voltage relative to GND, T _J = -40°C to +100°C Industrial			2.5 + 5%	V
V _{CCO} ⁽⁴⁾	Supply voltage relative to GND, T _J = 0 °C to +85°C	Commercial	1.4	3.6	V
, CCO,	Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C$	Industrial	1.4	3.6	V
T _{IN}	Input signal transition time			250	ns

- Correct operation is guaranteed with a minimum V_{CCINT} of 2.375 V (Nominal V_{CCINT} -5%). Below the minimum value, all delay parameters increase by 3% for each 50-mV reduction in V_{CCINT} below the specified range.
- 2. At junction temperatures above those listed as Operating Conditions, delay parameters do increase. Please refer to the TRCE report.
- 3. Input and output measurement threshold is \sim 50% of V_{CC} .
- Min and Max values for V_{CCO} are I/O Standard dependant.

				Speed Grade			
Description	Device	Symbol	Min	-6	-5	-4	Units
Setup and Hold Times with resp register ⁽¹⁾	ect to Clock (CLK at IOB input		Setup	Time / Hol	d Time	
Pad, no delay	All	T _{IOPICK} /T _{IOICKP}	0.8 / 0	1.6 / 0	1.8 / 0	2.0 / 0	ns, min
Pad, with delay	XCV50	T _{IOPICKD} /T _{IOICKPD}	1.9 / 0	3.7 / 0	4.1 / 0	4.7 / 0	ns, min
	XCV100		1.9 / 0	3.7 / 0	4.1 / 0	4.7 / 0	ns, min
	XCV150		1.9 / 0	3.8 / 0	4.3 / 0	4.9 / 0	ns, min
	XCV200		2.0 / 0	3.9 / 0	4.4 / 0	5.0 / 0	ns, min
	XCV300		2.0 / 0	3.9 / 0	4.4 / 0	5.0 / 0	ns, min
	XCV400		2.1 / 0	4.1 / 0	4.6 / 0	5.3 / 0	ns, min
	XCV600		2.1 / 0	4.2 / 0	4.7 / 0	5.4 / 0	ns, min
	XCV800		2.2 / 0	4.4 / 0	4.9 / 0	5.6 / 0	ns, min
	XCV1000		2.3 / 0	4.5 / 0	5.0 / 0	5.8 / 0	ns, min
ICE input	All	T _{IOICECK} /T _{IOCKICE}	0.37/ 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, max
Set/Reset Delays							
SR input (IFF, synchronous)	All	T _{IOSRCKI}	0.49	1.0	1.1	1.3	ns, max
SR input to IQ (asynchronous)	All	T _{IOSRIQ}	0.70	1.4	1.6	1.8	ns, max
GSR to output IQ	All	T _{GSRQ}	4.9	9.7	10.9	12.5	ns, max

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

^{2.} Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3.

		Speed Grade				
Description	Symbol	Min	-6	-5	-4	Units
Clock CLK to Pad delay with OBUFT enabled (non-3-state)	T _{IOCKP}	1.0	2.9	3.2	3.5	ns, max
Clock CLK to Pad high-impedance (synchronous) ⁽¹⁾	T _{IOCKHZ}	1.1	2.3	2.5	2.9	ns, max
Clock CLK to valid data on Pad delay, plus enable delay for OBUFT	T _{IOCKON}	1.5	3.4	3.7	4.1	ns, max
Setup and Hold Times before/after Clock	CLK ⁽²⁾		Setup	Time / Hold	Time	1
O input	T _{IOOCK} /T _{IOCKO}	0.51 / 0	1.1 / 0	1.2 / 0	1.3 / 0	ns, min
OCE input	T _{IOOCECK} /T _{IOCKOCE}	0.37 / 0	0.8 / 0	0.9 / 0	1.0 / 0	ns, min
SR input (OFF)	T _{IOSRCKO} /T _{IOCKOSR}	0.52 / 0	1.1 / 0	1.2 / 0	1.4 / 0	ns, min
3-State Setup Times, T input	T _{IOTCK} /T _{IOCKT}	0.34 / 0	0.7 / 0	0.8 / 0	0.9 / 0	ns, min
3-State Setup Times, TCE input	T _{IOTCECK} /T _{IOCKTCE}	0.41 / 0	0.9 / 0	0.9 / 0	1.1 / 0	ns, min
3-State Setup Times, SR input (TFF)	T _{IOSRCKT} /T _{IOCKTSR}	0.49 / 0	1.0 / 0	1.1 / 0	1.3 / 0	ns, min
Set/Reset Delays						
SR input to Pad (asynchronous)	T _{IOSRP}	1.6	3.8	4.1	4.6	ns, max
SR input to Pad high-impedance (asynchronous) ⁽¹⁾	T _{IOSRHZ}	1.6	3.1	3.4	3.9	ns, max
SR input to valid data on Pad (asynchronous)	T _{IOSRON}	2.0	4.2	4.6	5.1	ns, max
GSR to Pad	T _{IOGSRQ}	4.9	9.7	10.9	12.5	ns, max

- 1. 3-state turn-off delays should not be adjusted.
- 2. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

IOB Output Switching Characteristics Standard Adjustments

Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown.

				Speed	Grade		Unit
Description	Symbol	Standard ⁽¹⁾	Min	-6	-5	-4	s
Output Delay Adjustments							
Standard-specific adjustments for	T _{OLVTTL_S2}	LVTTL, Slow, 2 mA	4.2	14.7	15.8	17.0	ns
output delays terminating at pads (based on standard capacitive load,	T _{OLVTTL_S4}	4 mA	2.5	7.5	8.0	8.6	ns
Csl)	T _{OLVTTL_S6}	6 mA	1.8	4.8	5.1	5.6	ns
	T _{OLVTTL_S8}	8 mA	1.2	3.0	3.3	3.5	ns
	T _{OLVTTL_S12}	12 mA	1.0	1.9	2.1	2.2	ns
	T _{OLVTTL_S16}	16 mA	0.9	1.7	1.9	2.0	ns
	T _{OLVTTL_S24}	24 mA	0.8	1.3	1.4	1.6	ns
	T _{OLVTTL_F2}	LVTTL, Fast, 2mA	1.9	13.1	14.0	15.1	ns
	T _{OLVTTL_F4}	4 mA	0.7	5.3	5.7	6.1	ns
	T _{OLVTTL_F6}	6 mA	0.2	3.1	3.3	3.6	ns
	T _{OLVTTL_F8}	8 mA	0.1	1.0	1.1	1.2	ns
	T _{OLVTTL_F12}	12 mA	0	0	0	0	ns
	T _{OLVTTL_F16}	16 mA	-0.10	-0.05	-0.05	-0.05	ns
	T _{OLVTTL_F24}	24 mA	-0.10	-0.20	-0.21	-0.23	ns
	T _{OLVCMOS2}	LVCMOS2	0.10	0.10	0.11	0.12	ns
	T _{OPCl33_3}	PCI, 33 MHz, 3.3 V	0.50	2.3	2.5	2.7	ns
	T _{OPCl33_5}	PCI, 33 MHz, 5.0 V	0.40	2.8	3.0	3.3	ns
	T _{OPCI66_3}	PCI, 66 MHz, 3.3 V	0.10	-0.40	-0.42	-0.46	ns
	T _{OGTL}	GTL	0.6	0.50	0.54	0.6	ns
	T _{OGTLP}	GTL+	0.7	0.8	0.9	1.0	ns
	T _{OHSTL_I}	HSTL I	0.10	-0.50	-0.53	-0.5	ns
	T _{OHSTL_III}	HSTL III	-0.10	-0.9	-0.9	-1.0	ns
	T _{OHSTL_IV}	HSTL IV	-0.20	-1.0	-1.0	-1.1	ns
	T _{OSSTL2_I}	SSTL2 I	-0.10	-0.50	-0.53	-0.5	ns
	T _{OSSLT2_II}	SSTL2 II	-0.20	-0.9	-0.9	-1.0	ns
	T _{OSSTL3_I}	SSTL3 I	-0.20	-0.50	-0.53	-0.5	ns
	T _{OSSTL3_II}	SSTL3 II	-0.30	-1.0	-1.0	-1.1	ns
	T _{OCTT}	CTT	0	-0.6	-0.6	-0.6	ns
	T _{OAGP}	AGP	0	-0.9	-0.9	-1.0	ns

^{1.} Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see Table 2 and Table 3.

Calculation of T_{ioop} as a Function of Capacitance

 T_{ioop} is the propagation delay from the O Input of the IOB to the pad. The values for T_{ioop} were based on the standard capacitive load (CsI) for each I/O standard as listed in Table 2.

Table 2: Constants for Calculating T_{ioop}

Standard	Csl (pF)	fl (ns/pF)
LVTTL Fast Slew Rate, 2mA drive	35	0.41
LVTTL Fast Slew Rate, 4mA drive	35	0.20
LVTTL Fast Slew Rate, 6mA drive	35	0.13
LVTTL Fast Slew Rate, 8mA drive	35	0.079
LVTTL Fast Slew Rate, 12mA drive	35	0.044
LVTTL Fast Slew Rate, 16mA drive	35	0.043
LVTTL Fast Slew Rate, 24mA drive	35	0.033
LVTTL Slow Slew Rate, 2mA drive	35	0.41
LVTTL Slow Slew Rate, 4mA drive	35	0.20
LVTTL Slow Slew Rate, 6mA drive	35	0.100
LVTTL Slow Slew Rate, 8mA drive	35	0.086
LVTTL Slow Slew Rate, 12mA drive	35	0.058
LVTTL Slow Slew Rate, 16mA drive	35	0.050
LVTTL Slow Slew Rate, 24mA drive	35	0.048
LVCMOS2	35	0.041
PCI 33MHz 5V	50	0.050
PCI 33MHZ 3.3 V	10	0.050
PCI 66 MHz 3.3 V	10	0.033
GTL	0	0.014
GTL+	0	0.017
HSTL Class I	20	0.022
HSTL Class III	20	0.016
HSTL Class IV	20	0.014
SSTL2 Class I	30	0.028
SSTL2 Class II	30	0.016
SSTL3 Class I	30	0.029
SSTL3 Class II	30	0.016
СТТ	20	0.035
AGP	10	0.037

Notes:

- I/O parameter measurements are made with the capacitance values shown above. See Application Note XAPP133 on <u>www.xilinx.com</u> for appropriate terminations.
- I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it.

For other capacitive loads, use the formulas below to calculate the corresponding T_{ioop} .

$$T_{ioop} = T_{ioop} + T_{opadjust} + (C_{load} - C_{sl}) * fl$$

Where:

 $T_{opadjust}$ is reported above in the Output Delay Adjustment section.

C_{load} is the capacitive load for the design.

Table 3: Delay Measurement Methodology

Standard	ν _L (1)	(1) V _H (1)		V _{REF} Typ ⁽²⁾
LVTTL	0	3	1.4	-
LVCMOS2	0	2.5	1.125	-
PCI33_5	Pe	er PCI Spec		-
PCI33_3	Pe	er PCI Spec		-
PCI66_3	Pe	er PCI Spec		-
GTL	V _{REF} -0.2	V _{REF} +0.2	V _{REF}	0.80
GTL+	V _{REF} -0.2	V _{REF} +0.2	V _{REF}	1.0
HSTL Class I	V _{REF} -0.5	V _{REF} +0.5	V _{REF}	0.75
HSTL Class III	V _{REF} -0.5	V _{REF} +0.5	V _{REF}	0.90
HSTL Class IV	V _{REF} -0.5	V _{REF} +0.5	V _{REF}	0.90
SSTL3 I & II	V _{REF} -1.0	V _{REF} +1.0	V _{REF}	1.5
SSTL2 I & II	V _{REF} -0.75	V _{REF} +0.75	V_{REF}	1.25
CTT	V _{REF} -0.2	V _{REF} +0.2	V _{REF}	1.5
AGP	V _{REF} – (0.2xV _{CCO})	V _{REF} + (0.2xV _{CCO})	V _{REF}	Per AGP Spec

- Input waveform switches between V_Land V_H.
- 2. Measurements are made at VREF (Typ), Maximum, and Minimum. Worst-case values are reported.
- I/O parameter measurements are made with the capacitance values shown in Table 2. See Application Note XAPP133 on www.xilinx.com for appropriate terminations.
- 4. I/O standard measurements are reflected in the IBIS model information except where the IBIS format precludes it.

Clock Distribution Guidelines

			Speed Grade			
Description	Device	Symbol	-6	-5	-4	Units
Global Clock Skew ⁽¹⁾						
Global Clock Skew between IOB Flip-flops	XCV50	T _{GSKEWIOB}	0.10	0.12	0.14	ns, max
	XCV100		0.12	0.13	0.15	ns, max
	XCV150		0.12	0.13	0.15	ns, max
	XCV200		0.13	0.14	0.16	ns, max
	XCV300		0.14	0.16	0.18	ns, max
	XCV400		0.13	0.13	0.14	ns, max
	XCV600		0.14	0.15	0.17	ns, max
	XCV800		0.16	0.17	0.20	ns, max
	XCV1000		0.20	0.23	0.25	ns, max

Notes:

Clock Distribution Switching Characteristics

		Speed Grade				
Description	Symbol	Min	-6	- 5	-4	Units
GCLK IOB and Buffer						
Global Clock PAD to output.	T _{GPIO}	0.33	0.7	0.8	0.9	ns, max
Global Clock Buffer I input to O output	T _{GIO}	0.34	0.7	0.8	0.9	ns, max

^{1.} These clock-skew delays are provided for guidance only. They reflect the delays encountered in a typical design under worst-case conditions. Precise values for a particular design are provided by the timing analyzer.

CLB Arithmetic Switching Characteristics

Setup times not listed explicitly can be approximated by decreasing the combinatorial delays by the setup time adjustment listed. Precise values are provided by the timing analyzer.

			Speed	Grade		
Description	Symbol	Min	-6	-5	-4	Units
Combinatorial Delays					•	•
F operand inputs to X via XOR	T _{OPX}	0.37	0.8	0.9	1.0	ns, max
F operand input to XB output	T _{OPXB}	0.54	1.1	1.3	1.4	ns, max
F operand input to Y via XOR	T _{OPY}	0.8	1.5	1.7	2.0	ns, max
F operand input to YB output	T _{OPYB}	0.8	1.5	1.7	2.0	ns, max
F operand input to COUT output	T _{OPCYF}	0.6	1.2	1.3	1.5	ns, max
G operand inputs to Y via XOR	T _{OPGY}	0.46	1.0	1.1	1.2	ns, max
G operand input to YB output	T _{OPGYB}	0.8	1.6	1.8	2.1	ns, max
G operand input to COUT output	T _{OPCYG}	0.7	1.3	1.4	1.6	ns, max
BX initialization input to COUT	T _{BXCY}	0.41	0.9	1.0	1.1	ns, max
CIN input to X output via XOR	T _{CINX}	0.21	0.41	0.46	0.53	ns, max
CIN input to XB	T _{CINXB}	0.02	0.04	0.05	0.06	ns, max
CIN input to Y via XOR	T _{CINY}	0.23	0.46	0.52	0.6	ns, max
CIN input to YB	T _{CINYB}	0.23	0.45	0.51	0.6	ns, max
CIN input to COUT output	T _{BYP}	0.05	0.09	0.10	0.11	ns, max
Multiplier Operation						•
F1/2 operand inputs to XB output via AND	T _{FANDXB}	0.18	0.36	0.40	0.46	ns, max
F1/2 operand inputs to YB output via AND	T _{FANDYB}	0.40	0.8	0.9	1.1	ns, max
F1/2 operand inputs to COUT output via AND	T _{FANDCY}	0.22	0.43	0.48	0.6	ns, max
G1/2 operand inputs to YB output via AND	T _{GANDYB}	0.25	0.50	0.6	0.7	ns, max
G1/2 operand inputs to COUT output via AND	T _{GANDCY}	0.07	0.13	0.15	0.17	ns, max
Setup and Hold Times before/after Clock CLK ⁽¹⁾	Setup Time / Hold Time					•
CIN input to FFX	T _{CCKX} /T _{CKCX}	0.50 / 0	1.0 / 0	1.2 / 0	1.3 / 0	ns, min
CIN input to FFY	T _{CCKY} /T _{CKCY}	0.53 / 0	1.1 / 0	1.2 / 0	1.4 / 0	ns, min

^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.

DLL Timing Parameters

All devices are 100 percent functionally tested. Because of the difficulty in directly measuring many internal timing parameters, those parameters are derived from benchmark timing patterns. The following guidelines reflect worst-case values across the recommended operating conditions.

		Speed Grade						
		-6 -5		5	-	4		
Description	Symbol	Min	Max	Min	Max	Min	Max	Units
Input Clock Frequency (CLKDLLHF)	FCLKINHF	60	200	60	180	60	180	MHz
Input Clock Frequency (CLKDLL)	FCLKINLF	25	100	25	90	25	90	MHz
Input Clock Pulse Width (CLKDLLHF)	T _{DLLPWHF}	2.0	-	2.4	-	2.4	-	ns
Input Clock Pulse Width (CLKDLL)	T _{DLLPWLF}	2.5	-	3.0		3.0	-	ns

Notes:

DLL Clock Tolerance, Jitter, and Phase Information

All DLL output jitter and phase specifications determined through statistical measurement at the package pins using a clock mirror configuration and matched drivers.

			CLKDLLHF		CLKDLL		
Description	Symbol	F _{CLKIN}	Min	Max	Min	Max	Units
Input Clock Period Tolerance	T _{IPTOL}		-	1.0	-	1.0	ns
Input Clock Jitter Tolerance (Cycle to Cycle)	T _{IJITCC}		-	± 150	-	± 300	ps
Time Required for DLL to Acquire Lock	T _{LOCK}	> 60 MHz	ı	20	-	20	μs
		50 - 60 MHz	ı	-	-	25	μs
		40 - 50 MHz	ı	-	-	50	μs
		30 - 40 MHz	ı	-	-	90	μs
		25 - 30 MHz	ı	-	-	120	μs
Output Jitter (cycle-to-cycle) for any DLL Clock Output (1)	T _{OJITCC}			± 60		± 60	ps
Phase Offset between CLKIN and CLKO ⁽²⁾	T _{PHIO}			± 100		± 100	ps
Phase Offset between Clock Outputs on the DLL ⁽³⁾	T _{PHOO}			± 140		± 140	ps
Maximum Phase Difference between CLKIN and CLKO ⁽⁴⁾	T _{PHIOM}			± 160		± 160	ps
Maximum Phase Difference between Clock Outputs on the DLL (5)	T _{PHOOM}			± 200		± 200	ps

- 1. Output Jitter is cycle-to-cycle jitter measured on the DLL output clock, excluding input clock jitter.
- Phase Offset between CLKIN and CLKO is the worst-case fixed time difference between rising edges of CLKIN and CLKO, excluding Output Jitter and input clock jitter.
- Phase Offset between Clock Outputs on the DLL is the worst-case fixed time difference between rising edges of any two DLL outputs, excluding Output Jitter and input clock jitter.
- 4. Maximum Phase Difference between CLKIN an CLKO is the sum of Output Jitter and Phase Offset between CLKIN and CLKO, or the greatest difference between CLKIN and CLKO rising edges due to DLL alone (excluding input clock jitter).
- Maximum Phase Difference between Clock Outputs on the DLL is the sum of Output Jitter and Phase Offset between any DLL
 clock outputs, or the greatest difference between any two DLL output rising edges sue to DLL alone (excluding input clock jitter).
- 6. All specifications correspond to Commercial Operating Temperatures (0°C to +85°C).

^{1.} All specifications correspond to Commercial Operating Temperatures (0°C to + 85°C).

Table 2: Virtex Pinout Tables (Chip-Scale and QFP Packages) (Continued)

Pin Name	Device	CS144	TQ144	PQ/HQ240
V _{CCO}	All	Banks 0 and 1: A2, A13, D7 Banks 2 and 3: B12, G11, M13 Banks 4 and 5:	No I/O Banks in this package: 1, 17, 37, 55, 73, 92, 109, 128	No I/O Banks in this package: 15, 30, 44, 61, 76, 90, 105, 121, 136, 150, 165, 180, 197, 212, 226, 240
		N1, N7, N13 Banks 6 and 7: B2, G2, M2		
V _{REF} , Bank 0	XCV50	C4, D6	5, 13	218, 232
(V _{REF} pins are listed	XCV100/150	+ B4	+ 7	+ 229
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 236
the required device	XCV400	N/A	N/A	+ 215
and all smaller devices listed in the same	XCV600	N/A	N/A	+ 230
package.)	XCV800	N/A	N/A	+ 222
Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.				
V _{REF} , Bank 1	XCV50	A10, B8	22, 30	191, 205
(V _{REF} pins are listed	XCV100/150	+ D9	+ 28	+ 194
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 187
the required device	XCV400	N/A	N/A	+ 208
and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV600	N/A	N/A	+ 193
	XCV800	N/A	N/A	+ 201
V _{REF} , Bank 2	XCV50	D11, F10	42, 50	157, 171
(V _{REF} pins are listed	XCV100/150	+ D13	+ 44	+ 168
incrementally. Connect all pins listed for both	XCV200/300	N/A	N/A	+ 175
the required device and all smaller devices listed in the same	XCV400	N/A	N/A	+ 154
	XCV600	N/A	N/A	+ 169
package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV800	N/A	N/A	+ 161

Table 3: Virtex Pinout Tables (BGA) (Continued)

Pin Name	Device	BG256	BG352	BG432	BG560
V _{REF} , Bank 7	XCV50	G3, H1	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ D1	D26, G26,	N/A	N/A
incrementally. Connect all pins listed for both the			L26		
required device and all	XCV200/300	+ B2	+ E24	F28, F31,	N/A
smaller devices listed in the same package.)				J30, N30	
Within each bank, if input reference voltage is not required, all V _{REF} pins are	XCV400	N/A	N/A	+ R31	E31, G31, K31, P31, T31
general I/O.	XCV600	N/A	N/A	+ J28	+ H32
	XCV800	N/A	N/A	+ M28	+ L33
	XCV1000	N/A	N/A	N/A	+ D31
GND	All	C3, C18, D4, D5, D9, D10, D11, D12, D16, D17, E4, E17, J4, J17, K4, K17, L4, L17, M4, M17, T4, T17, U4, U5, U9, U10, U11, U12, U16, U17, V3, V18	A1, A2, A5, A8, A14, A19, A22, A25, A26, B1, B26, E1, E26, H1, H26, N1, P26, W1, W26, AB1, AB26, AF1, AF2, AF5, AF8, AF13, AF19, AF22, AF25, AF26	A2, A3, A7, A9, A14, A18, A23, A25, A29, A30, B1, B2, B30, B31, C1, C31, D16, G1, G31, J1, J31, P1, P31, T4, T28, V1, V31, AC1, AC31, AE1, AE31, AH16, AJ1, AJ31, AK1, AK2, AK30, AK31, AL2, AL3, AL7, AL9 AL14, AL18 AL23, AL25, AL29, AL30	A1, A7, A12, A14, A18, A20, A24, A29, A32, A33, B1, B6, B9, B15, B23, B27, B31, C2, E1, F32, G2, G33, J32, K1, L2, M33, P1, P33, R32, T1, V33, W2, Y1, Y33, AB1, AC32, AD33, AE2, AG1, AG32, AH2, AJ33, AL32, AM3, AM7, AM11, AM19, AM25, AM28, AM33, AN1, AN2, AN5, AN10, AN14, AN16, AN20, AN22, AN27, AN33
GND ⁽¹⁾	All	J9, J10, J11, J12, K9, K10, K11, K12, L9, L10, L11, L12, M9, M10, M11, M12	N/A	N/A	N/A
No Connect	All	N/A	N/A	N/A	C31, AC2, AK4, AL3

Notes:

1. 16 extra balls (grounded) at package center.

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{CCINT}	All	C3, C14, D4, D13, E5, E12, M5, M12, N4, N13, P3, P14	E5, E18, F6, F17, G7, G8, G9, G14, G15, G16, H7, H16, J7, J16, P7, P16, R7, R16, T7, T8, T9, T14, T15, T16, U6, U17, V5, V18	G7, G20, H8, H19, J9, J10, J11, J16, J17, J18, K9, K18, L9, L18, T9, T18, U9, U18, V9, V10, V11, V16, V17, V18, W8, W19, Y7, Y20	AD5, AD35, AE5, AE35, AL5, AL35, AM5, AM35, AR8, AR9, AR15, AR16, AR24, AR25, AR31, AR32, E8, E9, E15, E16, E24, E25, E31, E32, H5, H35, J5, J35, R5, R35, T5, T35
V _{CCO} , Bank 0	All	E8, F8	F7, F8, F9, F10 G10, G11	H9, H10, H11, H12, J12, J13	E26, E27, E29, E30, E33, E34
V _{CCO} , Bank 1	All	E9, F9	F13, F14, F15, F16, G12, G13	H15, H16, H17, H18, J14, J15	E6, E7, E10, E11, E13, E14
V _{CCO} , Bank 2	All	H11, H12	G17, H17, J17, K16, K17, L16	J19, K19, L19, M18, M19, N18	F5, G5, K5, L5, N5, P5
V _{CCO} , Bank 3	All	J11, J12	M16, N16, N17, P17, R17, T17	P18, R18, R19, T19, U19, V19	AF5, AG5, AN5, AK5, AJ5, AP5
V _{CCO} , Bank 4	All	L9. M9	T12, T13, U13, U14, U15, U16,	V14, V15, W15, W16, W17, W18	AR6, AR7, AR10, AR11, AR13, AR14
V _{CCO} , Bank 5	All	L8, M8	T10, T11, U7, U8, U9, U10	V12, V13, W9,W10, W11, W12	AR26, AR27, AR29, AR30, AR33, AR34
V _{CCO} , Bank 6	All	J5, J6	M7, N6, N7, P6, R6, T6	P9, R8, R9, T8, U8, V8	AF35, AG35, AJ35, AK35, AN35, AP35
V _{CCO} , Bank 7	All	H5, H6	G6, H6, J6, K6, K7, L7	J8, K8, L8, M8, M9, N9	F35, G35, K35, L35, N35, P35
V _{REF} Bank 0	XCV50	B4, B7	N/A	N/A	N/A
(VREF pins are listed	XCV100/150	+ C6	A9, C6, E8	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ A3	+ B4	N/A	N/A
the required device and all smaller devices	XCV400	N/A	N/A	A12, C11, D6, E8, G10	
listed in the same package.) Within each bank, if	XCV600	N/A	N/A	+ B7	A33, B28, B30, C23, C24, D33
input reference voltage	XCV800	N/A	N/A	+ B10	+ A26
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ D34

Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued)

Pin Name	Device	FG256	FG456	FG676	FG680
V _{REF} Bank 1	XCV50	B9, C11	N/A	N/A	N/A
(VREF pins are listed	XCV100/150	+ E11	A18, B13, E14	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ A14	+ A19	N/A	N/A
the required device and all smaller devices	XCV400	N/A	N/A	A14, C20, C21, D15, G16	N/A
listed in the same package.) Within each bank, if	XCV600	N/A	N/A	+ B19	B6, B8, B18, D11, D13, D17
input reference voltage	XCV800	N/A	N/A	+ A17	+ B14
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ B5
V _{REF} , Bank 2	XCV50	F13, H13	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ F14	F21, H18, K21	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ E13	+ D22	N/A	N/A
the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O.	XCV400	N/A	N/A	F24, H23, K20, M23, M26	N/A
	XCV600	N/A	N/A	+ G26	G1, H4, J1, L2, V5, W3
	XCV800	N/A	N/A	+ K25	+ N1
	XCV1000	N/A	N/A	N/A	+ D2
V _{REF} , Bank 3	XCV50	K16, L14	N/A	N/A	N/A
(V _{REF} pins are listed	XCV100/150	+ L13	N21, R19, U21	N/A	N/A
incrementally. Connect all pins listed for both	XCV200/300	+ M13	+ U20	N/A	N/A
the required device and all smaller devices listed in the same package.) Within each bank, if	XCV400	N/A	N/A	R23, R25, U21, W22, W23	N/A
	XCV600	N/A	N/A	+ W26	AC1, AJ2, AK3, AL4, AR1, Y1
input reference voltage	XCV800	N/A	N/A	+ U25	+ AF3
is not required, all V _{REF} pins are general I/O.	XCV1000	N/A	N/A	N/A	+ AP4

TQ144 Pin Function Diagram

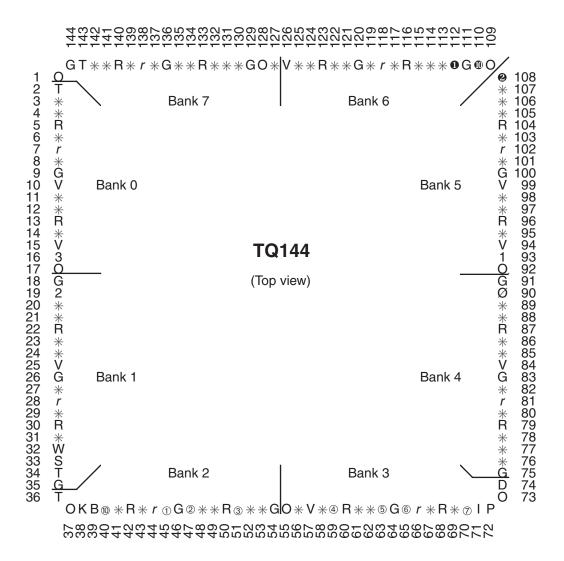


Figure 2: TQ144 Pin Function Diagram

BG256 Pin Function Diagram

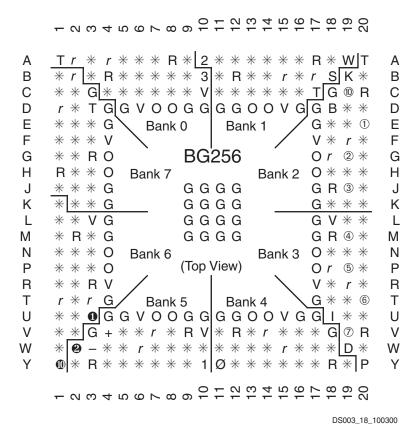
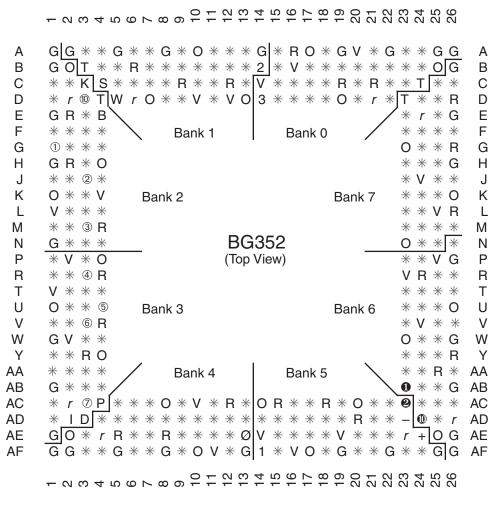



Figure 4: BG256 Pin Function Diagram

BG352 Pin Function Diagram

DS003_19_100600

Figure 5: BG352 Pin Function Diagram

FG256 Pin Function Diagram

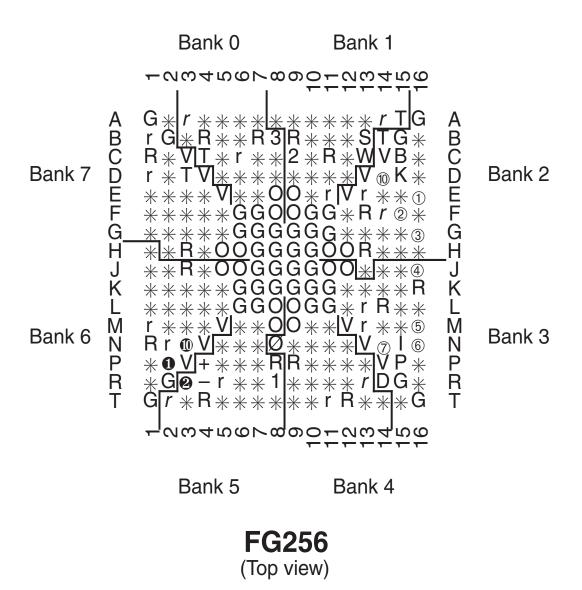


Figure 8: FG256 Pin Function Diagram

FG680 Pin Function Diagram

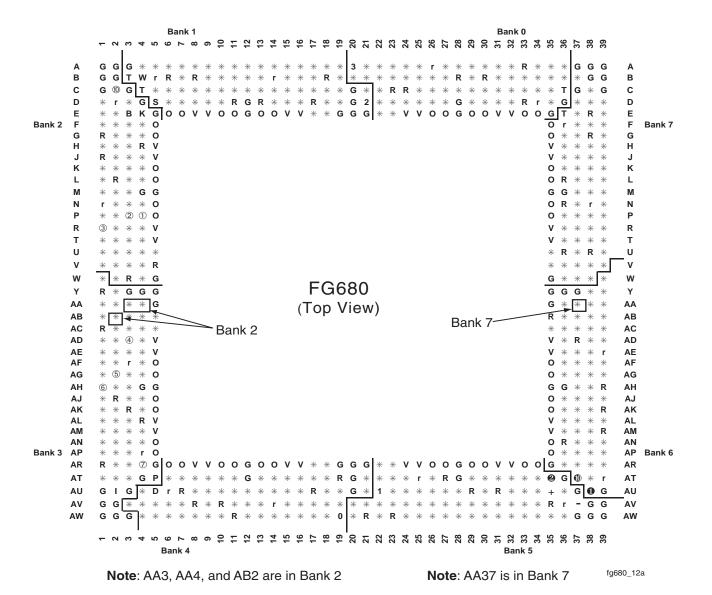


Figure 11: FG680 Pin Function Diagram

Revision History

Date	Version	Revision
11/98	1.0	Initial Xilinx release.
01/99-02/99	1.2-1.3	Both versions updated package drawings and specs.
05/99	1.4	Addition of package drawings and specifications.
05/99	1.5	Replaced FG 676 & FG680 package drawings.
07/99	1.6	Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments.
09/99	1.7	Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} .
01/00	1.8	Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43.
01/00	1.9	Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes.
03/00	2.0	New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration.
05/00	2.1	Modified "Pins not listed" statement. Speed grade update to Final status.
05/00	2.2	Modified Table 18.
09/00	2.3	 Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics.
10/00	2.4	 Corrected pinout info for devices in the BG256, BG432, and BG560 pkgs in Table 18. Corrected BG256 Pin Function Diagram.
04/02/01	2.5	 Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Converted file to modularized format. See section Virtex Data Sheet, below.
04/19/01	2.6	Corrected pinout information for FG676 device in Table 4. (Added AB22 pin.)
07/19/01	2.7	 Clarified V_{CCINT} pinout information and added AE19 pin for BG352 devices in Table 3. Changed pinouts listed for BG352 XCV400 devices in banks 0 thru 7.
07/19/02	2.8	Changed pinouts listed for GND in TQ144 devices (see Table 2).
03/01/13	4.0	The products listed in this data sheet are obsolete. See XCN10016 for further information.

Virtex Data Sheet

The Virtex Data Sheet contains the following modules:

- DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1)
- DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2)

- DS003-3, Virtex 2.5V FPGAs:
 DC and Switching Characteristics (Module 3)
- DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4)