Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 4704 | | Number of Logic Elements/Cells | 21168 | | Total RAM Bits | 114688 | | Number of I/O | 166 | | Number of Gates | 888439 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xcv800-6hq240c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ### **Virtex Architecture** Virtex devices feature a flexible, regular architecture that comprises an array of configurable logic blocks (CLBs) surrounded by programmable input/output blocks (IOBs), all interconnected by a rich hierarchy of fast, versatile routing resources. The abundance of routing resources permits the Virtex family to accommodate even the largest and most complex designs. Virtex FPGAs are SRAM-based, and are customized by loading configuration data into internal memory cells. In some modes, the FPGA reads its own configuration data from an external PROM (master serial mode). Otherwise, the configuration data is written into the FPGA (Select-MAPTM, slave serial, and JTAG modes). The standard Xilinx Foundation™ and Alliance Series™ Development systems deliver complete design support for Virtex, covering every aspect from behavioral and schematic entry, through simulation, automatic design translation and implementation, to the creation, downloading, and readback of a configuration bit stream. ### **Higher Performance** Virtex devices provide better performance than previous generations of FPGA. Designs can achieve synchronous system clock rates up to 200 MHz including I/O. Virtex inputs and outputs comply fully with PCI specifications, and interfaces can be implemented that operate at 33 MHz or 66 MHz. Additionally, Virtex supports the hot-swapping requirements of Compact PCI. Xilinx thoroughly benchmarked the Virtex family. While performance is design-dependent, many designs operated internally at speeds in excess of 100 MHz and can achieve 200 MHz. Table 2 shows performance data for representative circuits, using worst-case timing parameters. Table 2: Performance for Common Circuit Functions | Function | Bits | Virtex -6 | |-----------------------|---------|-----------| | Register-to-Register | | | | Adder | 16 | 5.0 ns | | Audei | 64 | 7.2 ns | | Pipelined Multiplier | 8 x 8 | 5.1 ns | | | 16 x 16 | 6.0 ns | | Address Decoder | 16 | 4.4 ns | | | 64 | 6.4 ns | | 16:1 Multiplexer | | 5.4 ns | | Parity Tree | 9 | 4.1 ns | | | 18 | 5.0 ns | | | 36 | 6.9 ns | | Chip-to-Chip | | | | HSTL Class IV | | 200 MHz | | LVTTL,16mA, fast slew | | 180 MHz | ### General Purpose Routing Most Virtex signals are routed on the general purpose routing, and consequently, the majority of interconnect resources are associated with this level of the routing hierarchy. The general routing resources are located in horizontal and vertical routing channels associated with the rows and columns CLBs. The general-purpose routing resources are listed below. - Adjacent to each CLB is a General Routing Matrix (GRM). The GRM is the switch matrix through which horizontal and vertical routing resources connect, and is also the means by which the CLB gains access to the general purpose routing. - 24 single-length lines route GRM signals to adjacent GRMs in each of the four directions. - 12 buffered Hex lines route GRM signals to another GRMs six-blocks away in each one of the four directions. Organized in a staggered pattern, Hex lines can be driven only at their endpoints. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source). One third of the Hex lines are bidirectional, while the remaining ones are uni-directional. 12 Longlines are buffered, bidirectional wires that distribute signals across the device quickly and efficiently. Vertical Longlines span the full height of the device, and horizontal ones span the full width of the device. ### I/O Routing Virtex devices have additional routing resources around their periphery that form an interface between the CLB array and the IOBs. This additional routing, called the VersaRing, facilitates pin-swapping and pin-locking, such that logic redesigns can adapt to existing PCB layouts. Time-to-market is reduced, since PCBs and other system components can be manufactured while the logic design is still in progress. ### **Dedicated Routing** Some classes of signal require dedicated routing resources to maximize performance. In the Virtex architecture, dedicated routing resources are provided for two classes of signal. - Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable bus lines are provided per CLB row, permitting multiple busses within a row, as shown in Figure 8. - Two dedicated nets per CLB propagate carry signals vertically to the adjacent CLB. Figure 8: BUFT Connections to Dedicated Horizontal Bus Lines #### Global Routing Global Routing resources distribute clocks and other signals with very high fanout throughout the device. Virtex devices include two tiers of global routing resources referred to as primary global and secondary local clock routing resources. • The primary global routing resources are four dedicated global nets with dedicated input pins that are designed to distribute high-fanout clock signals with minimal skew. Each global clock net can drive all CLB, IOB, and block RAM clock pins. The primary global nets can only be driven by global buffers. There are four global buffers, one for each global net. The secondary local clock routing resources consist of 24 backbone lines, 12 across the top of the chip and 12 across bottom. From these lines, up to 12 unique signals per column can be distributed via the 12 longlines in the column. These secondary resources are more flexible than the primary resources since they are not restricted to routing only to clock pins. #### **Clock Distribution** Virtex provides high-speed, low-skew clock distribution through the primary global routing resources described above. A typical clock distribution net is shown in Figure 9. Four global buffers are provided, two at the top center of the device and two at the bottom center. These drive the four primary global nets that in turn drive any clock pin. # **Configuration** Virtex devices are configured by loading configuration data into the internal configuration memory. Some of the pins used for this are dedicated configuration pins, while others can be re-used as general purpose inputs and outputs once configuration is complete. The following are dedicated pins: - Mode pins (M2, M1, M0) - Configuration clock pin (CCLK) - PROGRAM pin - DONE pin - Boundary-scan pins (TDI, TDO, TMS, TCK) Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or it can be generated externally and provided to the FPGA as an input. The PROGRAM pin must be pulled High prior to reconfiguration. Note that some configuration pins can act as outputs. For correct operation, these pins can require a V_{CCO} of 3.3 V to permit LVTTL operation. All the pins affected are in banks 2 or 3. The configuration pins needed for SelectMap (CS, Write) are located in bank 1. After Virtex devices are configured, unused IOBs function as 3-state OBUFTs with weak pull downs. For a more detailed description than that given below, see the XAPP138, Virtex Configuration and Readback. ### **Configuration Modes** Virtex supports the following four configuration modes. - Slave-serial mode - Master-serial mode - SelectMAP mode - · Boundary-scan mode The Configuration mode pins (M2, M1, M0) select among these configuration modes with the option in each case of having the IOB pins either pulled up or left floating prior to configuration. The selection codes are listed in Table 7. Configuration through the boundary-scan port is always available, independent of the mode selection. Selecting the boundary-scan mode simply turns off the other modes. The three mode pins have internal pull-up resistors, and default to a logic High if left unconnected. However, it is recommended to drive the configuration mode pins externally. Table 7: Configuration Codes | Configuration Mode | M2 | M1 | МО | CCLK Direction | Data Width | Serial D _{out} | Configuration Pull-ups | |--------------------|----|----|----|-----------------------|------------|-------------------------|------------------------| | Master-serial mode | 0 | 0 | 0 | Out | 1 | Yes | No | | Boundary-scan mode | 1 | 0 | 1 | N/A | 1 | No | No | | SelectMAP mode | 1 | 1 | 0 | In | 8 | No | No | | Slave-serial mode | 1 | 1 | 1 | In | 1 | Yes | No | | Master-serial mode | 1 | 0 | 0 | Out | 1 | Yes | Yes | | Boundary-scan mode | 0 | 0 | 1 | N/A | 1 | No | Yes | | SelectMAP mode | 0 | 1 | 0 | In | 8 | No | Yes | | Slave-serial mode | 0 | 1 | 1 | In | 1 | Yes | Yes | ### Slave-Serial Mode In slave-serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other source of serial configuration data. The serial bitstream must be setup at the DIN input pin a short time before each rising edge of an externally generated CCLK. For more information on serial PROMs, see the PROM data sheet at: http://www.xilinx.com/bvdocs/publications/ds026.pdf. Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed to the DOUT pin. The data on the DOUT pin changes on the rising edge of CCLK. The change of DOUT on the rising edge of CCLK differs from previous families, but does not cause a problem for mixed configuration chains. This change was made to improve serial configuration rates for Virtex-only chains. Figure 12 shows a full master/slave system. A Virtex device in slave-serial mode should be connected as shown in the third device from the left. Slave-serial mode is selected by applying <111> or <011> to the mode pins (M2, M1, M0). A weak pull-up on the mode pins makes slave-serial the default mode if the pins are left unconnected. However, it is recommended to drive the configuration mode pins externally. Figure 13 shows slave-serial mode programming switching characteristics. Table 8 provides more detail about the characteristics shown in Figure 13. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. ### Master-Serial Mode In master-serial mode, the CCLK output of the FPGA drives a Xilinx Serial PROM that feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the rising CCLK edge. The interface is identical to slave-serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration. Switching to a lower frequency is prohibited. The CCLK frequency is set using the ConfigRate option in the bitstream generation software. The maximum CCLK frequency that can be selected is 60 MHz. When selecting a CCLK frequency, ensure that the serial PROM and any daisy-chained FPGAs are fast enough to support the clock rate. On power-up, the CCLK frequency is 2.5 MHz. This frequency is used until the ConfigRate bits have been loaded when the frequency changes to the selected ConfigRate. Unless a different frequency is specified in the design, the default ConfigRate is 4 MHz. Figure 12 shows a full master/slave system. In this system, the left-most device operates in master-serial mode. The remaining devices operate in slave-serial mode. The SPROM RESET pin is driven by $\overline{\text{INIT}}$, and the $\overline{\text{CE}}$ input is driven by DONE. There is the potential for contention on the DONE pin, depending on the start-up sequence options chosen. Figure 14 shows the timing of master-serial configuration. Master-serial mode is selected by a <000> or <100> on the mode pins (M2, M1, M0). Table 8 shows the timing information for Figure 14. Figure 14: Master-Serial Mode Programming Switching Characteristics At power-up, V_{CC} must rise from 1.0 V to V_{CC} min in less than 50 ms, otherwise delay configuration by pulling PROGRAM Low until V_{CC} is valid. The sequence of operations necessary to configure a Virtex FPGA serially appears in Figure 15. #### SelectMAP Mode The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the FPGA with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, a Chip Select (\overline{CS}) signal and a Write signal (\overline{WRITE}) . If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If WRITE is not asserted, configuration data is read out of the FPGA as part of a readback operation. In the SelectMAP mode, multiple Virtex devices can be chained in parallel. DATA pins (D7:D0), CCLK, WRITE, BUSY, PROGRAM, DONE, and INIT can be connected in parallel between all the FPGAs. Note that the data is organized with the MSB of each byte on pin DO and the LSB of each byte on D7. The CS pins are kept separate, insuring that each FPGA can be selected individually. WRITE should be Low before loading the first bitstream and returned High after the last device has been programmed. Use $\overline{\text{CS}}$ to select the appropriate FPGA for loading the bitstream and sending the configuration data. at the end of the bitstream, deselect the loaded device and select the next target FPGA by setting its $\overline{\text{CS}}$ pin High. A free-running oscillator or other externally generated signal can be used for CCLK. The BUSY signal can be ignored for frequencies below 50 MHz. For details about frequencies above 50 MHz, see XAPP138, Virtex Configuration and Readback. Once all the devices have been programmed, the DONE pin goes High. | Date | Version | Revision | |----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 01/00 | 1.9 | Updated DLL Jitter Parameter table and waveforms, added Delay Measurement Methodology table for different I/O standards, changed buffered Hex line info and Input/Output Timing measurement notes. | | 03/00 | 2.0 | New TBCKO values; corrected FG680 package connection drawing; new note about status of CCLK pin after configuration. | | 05/00 | 2.1 | Modified "Pins not listed" statement. Speed grade update to Final status. | | 05/00 | 2.2 | Modified Table 18. | | 09/00 | 2.3 | Added XCV400 values to table under Minimum Clock-to-Out for Virtex Devices. Corrected Units column in table under IOB Input Switching Characteristics. Added values to table under CLB SelectRAM Switching Characteristics. | | 10/00 | 2.4 | Corrected Pinout information for devices in the BG256, BG432, and BG560 packages in Table 18. Corrected BG256 Pin Function Diagram. | | 04/01 | 2.5 | Revised minimums for Global Clock Set-Up and Hold for LVTTL Standard, with DLL. Updated SelectMAP Write Timing Characteristics values in Table 9. Converted file to modularized format. See the Virtex Data Sheet section. | | 07/19/01 | 2.6 | Made minor edits to text under Configuration. | | 07/19/02 | 2.7 | Made minor edit to Figure 16 and Figure 18. | | 09/10/02 | 2.8 | Added clarifications in the Configuration, Boundary-Scan Mode, and Block SelectRAM sections. Revised Figure 17. | | 12/09/02 | 2.8.1 | Added clarification in the Boundary Scan section. Corrected number of buffered Hex lines listed in General Purpose Routing section. | | 03/01/13 | 4.0 | The products listed in this data sheet are obsolete. See XCN10016 for further information. | # **Virtex Data Sheet** The Virtex Data Sheet contains the following modules: - DS003-1, Virtex 2.5V FPGAs: Introduction and Ordering Information (Module 1) - DS003-2, Virtex 2.5V FPGAs: Functional Description (Module 2) - DS003-3, Virtex 2.5V FPGAs: DC and Switching Characteristics (Module 3) - DS003-4, Virtex 2.5V FPGAs: Pinout Tables (Module 4) ## **Virtex DC Characteristics** # **Absolute Maximum Ratings** | Symbol | Description ⁽¹⁾ | Description ⁽¹⁾ | | | | |--------------------|-------------------------------------------------|----------------------------|-------------|----|--| | V _{CCINT} | Supply voltage relative to GND ⁽²⁾ | | -0.5 to 3.0 | V | | | V _{CCO} | Supply voltage relative to GND ⁽²⁾ | | -0.5 to 4.0 | V | | | V _{REF} | Input Reference Voltage | put Reference Voltage | | | | | V | Input voltage relative to GND ⁽³⁾ | Using V _{REF} | -0.5 to 3.6 | V | | | V _{IN} | | Internal threshold | -0.5 to 5.5 | V | | | V _{TS} | Voltage applied to 3-state output | | -0.5 to 5.5 | V | | | V _{CC} | Longest Supply Voltage Rise Time from 1V-2.375V | | 50 | ms | | | T _{STG} | Storage temperature (ambient) | -65 to +150 | °C | | | | TJ | Junction temperature ⁽⁴⁾ | Plastic Packages | +125 | °C | | #### Notes: - Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time can affect device reliability. - 2. Power supplies can turn on in any order. - 3. For protracted periods (e.g., longer than a day), V_{IN} should not exceed V_{CCO} by more than 3.6 V. - 4. For soldering guidelines and thermal considerations, see the "Device Packaging" information on www.xilinx.com. # **Recommended Operating Conditions** | Symbol | Description | | Min | Max | Units | |-----------------------------------|---------------------------------------------------------------------------------------------|------------|----------|----------|-------| | V _{CCINT} ⁽¹⁾ | Input Supply voltage relative to GND, $T_J = 0$ °C to +85°C | Commercial | 2.5 – 5% | 2.5 + 5% | V | | VCCINT('') | Input Supply voltage relative to GND, $T_J = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$ | Industrial | 2.5 – 5% | 2.5 + 5% | V | | V _{CCO} ⁽⁴⁾ | Supply voltage relative to GND, T _J = 0 °C to +85°C | Commercial | 1.4 | 3.6 | V | | , CCO, | Supply voltage relative to GND, $T_J = -40^{\circ}C$ to $+100^{\circ}C$ | Industrial | 1.4 | 3.6 | V | | T _{IN} | Input signal transition time | | | 250 | ns | - Correct operation is guaranteed with a minimum V_{CCINT} of 2.375 V (Nominal V_{CCINT} -5%). Below the minimum value, all delay parameters increase by 3% for each 50-mV reduction in V_{CCINT} below the specified range. - 2. At junction temperatures above those listed as Operating Conditions, delay parameters do increase. Please refer to the TRCE report. - 3. Input and output measurement threshold is \sim 50% of V_{CC} . - Min and Max values for V_{CCO} are I/O Standard dependant. # **DC Characteristics Over Recommended Operating Conditions** | Symbol | Description | 1 | Device | Min | Max | Units | |---------------------|--------------------------------------------------------------------------------|-------------------------------------|---------|----------|------|-------| | V _{DRINT} | Data Retention V _{CCINT} Voltage | | All | 2.0 | | V | | 21 | (below which configuration data can be | e lost) | | | | | | V_{DRIO} | Data Retention V _{CCO} Voltage (below which configuration data can be | e lost) | All | 1.2 | | V | | I _{CCINTQ} | Quiescent V _{CCINT} supply current ^(1,3) | | XCV50 | | 50 | mA | | | | | XCV100 | | 50 | mA | | | | | XCV150 | | 50 | mA | | | | | XCV200 | | 75 | mA | | | | | XCV300 | | 75 | mA | | | | | XCV400 | | 75 | mA | | | | | XCV600 | | 100 | mA | | | | | XCV800 | | 100 | mA | | | | | XCV1000 | | 100 | mA | | Iccoq | Quiescent V _{CCO} supply current ⁽¹⁾ | | XCV50 | | 2 | mA | | | | | XCV100 | | 2 | mA | | | | | XCV150 | | 2 | mA | | | | | XCV200 | | 2 | mA | | | | | XCV300 | | 2 | mA | | | | | XCV400 | | 2 | mA | | | | | XCV600 | | 2 | mA | | | | | XCV800 | | 2 | mA | | | | | XCV1000 | | 2 | mA | | I _{REF} | V _{REF} current per V _{REF} pin | | All | | 20 | μΑ | | ΙL | Input or output leakage current | | All | -10 | +10 | μΑ | | C _{IN} | Input capacitance (sample tested) | BGA, PQ, HQ, packages | All | | 8 | pF | | I _{RPU} | Pad pull-up (when selected) @ V _{in} = 0 tested) | V, V _{CCO} = 3.3 V (sample | All | Note (2) | 0.25 | mA | | I _{RPD} | Pad pull-down (when selected) @ V _{in} = | = 3.6 V (sample tested) | | Note (2) | 0.15 | mA | - 1. With no output current loads, no active input pull-up resistors, all I/O pins 3-stated and floating. - 2. Internal pull-up and pull-down resistors guarantee valid logic levels at unconnected input pins. These pull-up and pull-down resistors do not guarantee valid logic levels when input pins are connected to other circuits. - 3. Multiply I_{CCINTQ} limit by two for industrial grade. | | | | | Speed | Grade | | | |--------------------------------------------------------|----------------|--------------------------------------------|---------|---------|------------|---------|---------| | Description | Device | Symbol | Min | -6 | -5 | -4 | Units | | Setup and Hold Times with resp register ⁽¹⁾ | ect to Clock (| CLK at IOB input | | Setup | Time / Hol | d Time | | | Pad, no delay | All | T _{IOPICK} /T _{IOICKP} | 0.8 / 0 | 1.6 / 0 | 1.8 / 0 | 2.0 / 0 | ns, min | | Pad, with delay | XCV50 | T _{IOPICKD} /T _{IOICKPD} | 1.9 / 0 | 3.7 / 0 | 4.1 / 0 | 4.7 / 0 | ns, min | | | XCV100 | | 1.9 / 0 | 3.7 / 0 | 4.1 / 0 | 4.7 / 0 | ns, min | | | XCV150 | | 1.9 / 0 | 3.8 / 0 | 4.3 / 0 | 4.9 / 0 | ns, min | | | XCV200 | | 2.0 / 0 | 3.9 / 0 | 4.4 / 0 | 5.0 / 0 | ns, min | | | XCV300 | | 2.0 / 0 | 3.9 / 0 | 4.4 / 0 | 5.0 / 0 | ns, min | | | XCV400 | | 2.1 / 0 | 4.1 / 0 | 4.6 / 0 | 5.3 / 0 | ns, min | | | XCV600 | | 2.1 / 0 | 4.2 / 0 | 4.7 / 0 | 5.4 / 0 | ns, min | | | XCV800 | | 2.2 / 0 | 4.4 / 0 | 4.9 / 0 | 5.6 / 0 | ns, min | | | XCV1000 | | 2.3 / 0 | 4.5 / 0 | 5.0 / 0 | 5.8 / 0 | ns, min | | ICE input | All | T _{IOICECK} /T _{IOCKICE} | 0.37/ 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, max | | Set/Reset Delays | | | | | | | | | SR input (IFF, synchronous) | All | T _{IOSRCKI} | 0.49 | 1.0 | 1.1 | 1.3 | ns, max | | SR input to IQ (asynchronous) | All | T _{IOSRIQ} | 0.70 | 1.4 | 1.6 | 1.8 | ns, max | | GSR to output IQ | All | T _{GSRQ} | 4.9 | 9.7 | 10.9 | 12.5 | ns, max | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. ^{2.} Input timing for LVTTL is measured at 1.4 V. For other I/O standards, see Table 3. # **IOB Output Switching Characteristics Standard Adjustments** Output delays terminating at a pad are specified for LVTTL with 12 mA drive and fast slew rate. For other standards, adjust the delays by the values shown. | | | | | Speed | Grade | | Unit | |-----------------------------------------------------------------------|-------------------------|-------------------------|-------|-------|-------|-------|------| | Description | Symbol | Standard ⁽¹⁾ | Min | -6 | -5 | -4 | s | | Output Delay Adjustments | | | | | | | | | Standard-specific adjustments for | T _{OLVTTL_S2} | LVTTL, Slow, 2 mA | 4.2 | 14.7 | 15.8 | 17.0 | ns | | output delays terminating at pads (based on standard capacitive load, | T _{OLVTTL_S4} | 4 mA | 2.5 | 7.5 | 8.0 | 8.6 | ns | | Csl) | T _{OLVTTL_S6} | 6 mA | 1.8 | 4.8 | 5.1 | 5.6 | ns | | | T _{OLVTTL_S8} | 8 mA | 1.2 | 3.0 | 3.3 | 3.5 | ns | | | T _{OLVTTL_S12} | 12 mA | 1.0 | 1.9 | 2.1 | 2.2 | ns | | | T _{OLVTTL_S16} | 16 mA | 0.9 | 1.7 | 1.9 | 2.0 | ns | | | T _{OLVTTL_S24} | 24 mA | 0.8 | 1.3 | 1.4 | 1.6 | ns | | | T _{OLVTTL_F2} | LVTTL, Fast, 2mA | 1.9 | 13.1 | 14.0 | 15.1 | ns | | | T _{OLVTTL_F4} | 4 mA | 0.7 | 5.3 | 5.7 | 6.1 | ns | | | T _{OLVTTL_F6} | 6 mA | 0.2 | 3.1 | 3.3 | 3.6 | ns | | | T _{OLVTTL_F8} | 8 mA | 0.1 | 1.0 | 1.1 | 1.2 | ns | | | T _{OLVTTL_F12} | 12 mA | 0 | 0 | 0 | 0 | ns | | | T _{OLVTTL_F16} | 16 mA | -0.10 | -0.05 | -0.05 | -0.05 | ns | | | T _{OLVTTL_F24} | 24 mA | -0.10 | -0.20 | -0.21 | -0.23 | ns | | | T _{OLVCMOS2} | LVCMOS2 | 0.10 | 0.10 | 0.11 | 0.12 | ns | | | T _{OPCl33_3} | PCI, 33 MHz, 3.3 V | 0.50 | 2.3 | 2.5 | 2.7 | ns | | | T _{OPCl33_5} | PCI, 33 MHz, 5.0 V | 0.40 | 2.8 | 3.0 | 3.3 | ns | | | T _{OPCI66_3} | PCI, 66 MHz, 3.3 V | 0.10 | -0.40 | -0.42 | -0.46 | ns | | | T _{OGTL} | GTL | 0.6 | 0.50 | 0.54 | 0.6 | ns | | | T _{OGTLP} | GTL+ | 0.7 | 0.8 | 0.9 | 1.0 | ns | | | T _{OHSTL_I} | HSTL I | 0.10 | -0.50 | -0.53 | -0.5 | ns | | | T _{OHSTL_III} | HSTL III | -0.10 | -0.9 | -0.9 | -1.0 | ns | | | T _{OHSTL_IV} | HSTL IV | -0.20 | -1.0 | -1.0 | -1.1 | ns | | | T _{OSSTL2_I} | SSTL2 I | -0.10 | -0.50 | -0.53 | -0.5 | ns | | | T _{OSSLT2_II} | SSTL2 II | -0.20 | -0.9 | -0.9 | -1.0 | ns | | | T _{OSSTL3_I} | SSTL3 I | -0.20 | -0.50 | -0.53 | -0.5 | ns | | | T _{OSSTL3_II} | SSTL3 II | -0.30 | -1.0 | -1.0 | -1.1 | ns | | | T _{OCTT} | CTT | 0 | -0.6 | -0.6 | -0.6 | ns | | | T _{OAGP} | AGP | 0 | -0.9 | -0.9 | -1.0 | ns | ^{1.} Output timing is measured at 1.4 V with 35 pF external capacitive load for LVTTL. For other I/O standards and different loads, see Table 2 and Table 3. ### **Clock Distribution Guidelines** | | | | Speed Grade | | | | |------------------------------------------|---------|-----------------------|-------------|------|------|---------| | Description | Device | Symbol | -6 | -5 | -4 | Units | | Global Clock Skew ⁽¹⁾ | | | | | | | | Global Clock Skew between IOB Flip-flops | XCV50 | T _{GSKEWIOB} | 0.10 | 0.12 | 0.14 | ns, max | | | XCV100 | | 0.12 | 0.13 | 0.15 | ns, max | | | XCV150 | | 0.12 | 0.13 | 0.15 | ns, max | | | XCV200 | | 0.13 | 0.14 | 0.16 | ns, max | | | XCV300 | | 0.14 | 0.16 | 0.18 | ns, max | | | XCV400 | | 0.13 | 0.13 | 0.14 | ns, max | | | XCV600 | | 0.14 | 0.15 | 0.17 | ns, max | | | XCV800 | | 0.16 | 0.17 | 0.20 | ns, max | | | XCV1000 | | 0.20 | 0.23 | 0.25 | ns, max | #### Notes: # **Clock Distribution Switching Characteristics** | | | | Speed Grade | | | | |-----------------------------------------|-------------------|------|-------------|------------|-----|---------| | Description | Symbol | Min | -6 | - 5 | -4 | Units | | GCLK IOB and Buffer | | | | | | | | Global Clock PAD to output. | T _{GPIO} | 0.33 | 0.7 | 0.8 | 0.9 | ns, max | | Global Clock Buffer I input to O output | T _{GIO} | 0.34 | 0.7 | 0.8 | 0.9 | ns, max | ^{1.} These clock-skew delays are provided for guidance only. They reflect the delays encountered in a typical design under worst-case conditions. Precise values for a particular design are provided by the timing analyzer. # **CLB SelectRAM Switching Characteristics** | | | Speed Grade | | | | | |------------------------------------------------------------|----------------------------------|-------------|------------|-----------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Sequential Delays | | | | | | | | Clock CLK to X/Y outputs (WE active) 16 x 1 mode | T _{SHCKO16} | 1.2 | 2.3 | 2.6 | 3.0 | ns, max | | Clock CLK to X/Y outputs (WE active) 32 x 1 mode | T _{SHCKO32} | 1.2 | 2.7 | 3.1 | 3.5 | ns, max | | Shift-Register Mode | | | | | | | | Clock CLK to X/Y outputs | T _{REG} | 1.2 | 3.7 | 4.1 | 4.7 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Se | tup Time / | Hold Time | T. | · | | F/G address inputs | T _{AS} /T _{AH} | 0.25 / 0 | 0.5 / 0 | 0.6 / 0 | 0.7 / 0 | ns, min | | BX/BY data inputs (DIN) | T _{DS} /T _{DH} | 0.34 / 0 | 0.7 / 0 | 0.8 / 0 | 0.9 / 0 | ns, min | | CE input (WE) | T _{WS} /T _{WH} | 0.38 / 0 | 0.8 / 0 | 0.9 / 0 | 1.0 / 0 | ns, min | | Shift-Register Mode | | 1 | | , | · | 1 | | BX/BY data inputs (DIN) | T _{SHDICK} | 0.34 | 0.7 | 0.8 | 0.9 | ns, min | | CE input (WS) | T _{SHCECK} | 0.38 | 0.8 | 0.9 | 1.0 | ns, min | | Clock CLK | | - | | | 1 | 1 | | Minimum Pulse Width, High | T _{WPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T _{WPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum clock period to meet address write cycle time | T _{WC} | 2.4 | 4.8 | 5.4 | 6.2 | ns, min | | Shift-Register Mode | | | | | | | | Minimum Pulse Width, High | T _{SRPH} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | | Minimum Pulse Width, Low | T _{SRPL} | 1.2 | 2.4 | 2.7 | 3.1 | ns, min | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. # **Block RAM Switching Characteristics** | | Speed Grade | | | | | | |------------------------------------------------------------|--------------------------------------|---------|------------|----------|---------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Sequential Delays | | | | | | | | Clock CLK to DOUT output | T _{BCKO} | 1.7 | 3.4 | 3.8 | 4.3 | ns, max | | Setup and Hold Times before/after Clock CLK ⁽¹⁾ | | Setu | p Time / H | old Time | | | | ADDR inputs | T _{BACK} /T _{BCKA} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | DIN inputs | T _{BDCK} /T _{BCKD} | 0.6 / 0 | 1.2 / 0 | 1.3 / 0 | 1.5 / 0 | ns, min | | EN input | T _{BECK} /T _{BCKE} | 1.3 / 0 | 2.6 / 0 | 3.0 / 0 | 3.4 / 0 | ns, min | | RST input | T _{BRCK} /T _{BCKR} | 1.3 / 0 | 2.5 / 0 | 2.7 / 0 | 3.2 / 0 | ns, min | | WEN input | T _{BWCK} /T _{BCKW} | 1.2 / 0 | 2.3 / 0 | 2.6 / 0 | 3.0 / 0 | ns, min | | Clock CLK | | | | | | | | Minimum Pulse Width, High | T _{BPWH} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | Minimum Pulse Width, Low | T _{BPWL} | 0.8 | 1.5 | 1.7 | 2.0 | ns, min | | CLKA -> CLKB setup time for different ports | T _{BCCS} | | 3.0 | 3.5 | 4.0 | ns, min | #### Notes: # **TBUF Switching Characteristics** | | | Speed Grade | | | | | |----------------------------------------|------------------|-------------|------|------|------|---------| | Description | Symbol | Min | -6 | -5 | -4 | Units | | Combinatorial Delays | | | | | | | | IN input to OUT output | T _{IO} | 0 | 0 | 0 | 0 | ns, max | | TRI input to OUT output high-impedance | T _{OFF} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | | TRI input to valid data on OUT output | T _{ON} | 0.05 | 0.09 | 0.10 | 0.11 | ns, max | # **JTAG Test Access Port Switching Characteristics** | | | Speed Grade | | | | |-------------------------------------------|---------------------|-------------|------|------|----------| | Description | Symbol | -6 | -5 | -4 | Units | | TMS and TDI Setup times before TCK | T _{TAPTCK} | 4.0 | 4.0 | 4.0 | ns, min | | TMS and TDI Hold times after TCK | T _{TCKTAP} | 2.0 | 2.0 | 2.0 | ns, min | | Output delay from clock TCK to output TDO | T _{TCKTDO} | 11.0 | 11.0 | 11.0 | ns, max | | Maximum TCK clock frequency | F _{TCK} | 33 | 33 | 33 | MHz, max | ^{1.} A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. Period Tolerance: the allowed input clock period change in nanoseconds. Figure 1: Frequency Tolerance and Clock Jitter # **Revision History** | Date | Version | Revision | |-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 11/98 | 1.0 | Initial Xilinx release. | | 01/99 | 1.2 | Updated package drawings and specs. | | 02/99 | 1.3 | Update of package drawings, updated specifications. | | 05/99 | 1.4 | Addition of package drawings and specifications. | | 05/99 | 1.5 | Replaced FG 676 & FG680 package drawings. | | 07/99 | 1.6 | Changed Boundary Scan Information and changed Figure 11, Boundary Scan Bit Sequence. Updated IOB Input & Output delays. Added Capacitance info for different I/O Standards. Added 5 V tolerant information. Added DLL Parameters and waveforms and new Pin-to-pin Input and Output Parameter tables for Global Clock Input to Output and Setup and Hold. Changed Configuration Information including Figures 12, 14, 17 & 19. Added device-dependent listings for quiescent currents ICCINTQ and ICCOQ. Updated IOB Input and Output Delays based on default standard of LVTTL, 12 mA, Fast Slew Rate. Added IOB Input Switching Characteristics Standard Adjustments. | | 09/99 | 1.7 | Speed grade update to preliminary status, Power-on specification and Clock-to-Out Minimums additions, "0" hold time listing explanation, quiescent current listing update, and Figure 6 ADDRA input label correction. Added T _{IJITCC} parameter, changed T _{OJIT} to T _{OPHASE} . | | 01/00 | 1.8 | Update to speed.txt file 1.96. Corrections for CRs 111036,111137, 112697, 115479, 117153, 117154, and 117612. Modified notes for Recommended Operating Conditions (voltage and temperature). Changed Bank information for V _{CCO} in CS144 package on p.43. | Table 3: Virtex Pinout Tables (BGA) (Continued) | Pin Name | Device | BG256 | BG352 | BG432 | BG560 | |---------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | V _{REF} , Bank 7 | XCV50 | G3, H1 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + D1 | D26, G26, | N/A | N/A | | incrementally. Connect all pins listed for both the | | | L26 | | | | required device and all | XCV200/300 | + B2 | + E24 | F28, F31, | N/A | | smaller devices listed in the same package.) | | | | J30, N30 | | | Within each bank, if input reference voltage is not required, all V _{REF} pins are | XCV400 | N/A | N/A | + R31 | E31, G31, K31,
P31, T31 | | general I/O. | XCV600 | N/A | N/A | + J28 | + H32 | | | XCV800 | N/A | N/A | + M28 | + L33 | | | XCV1000 | N/A | N/A | N/A | + D31 | | GND | All | C3, C18, D4, D5, D9, D10, D11, D12, D16, D17, E4, E17, J4, J17, K4, K17, L4, L17, M4, M17, T4, T17, U4, U5, U9, U10, U11, U12, U16, U17, V3, V18 | A1, A2, A5,
A8, A14,
A19, A22,
A25, A26,
B1, B26, E1,
E26, H1,
H26, N1,
P26, W1,
W26, AB1,
AB26, AF1,
AF2, AF5,
AF8, AF13,
AF19, AF22,
AF25, AF26 | A2, A3, A7, A9, A14, A18, A23, A25, A29, A30, B1, B2, B30, B31, C1, C31, D16, G1, G31, J1, J31, P1, P31, T4, T28, V1, V31, AC1, AC31, AE1, AE31, AH16, AJ1, AJ31, AK1, AK2, AK30, AK31, AL2, AL3, AL7, AL9 AL14, AL18 AL23, AL25, AL29, AL30 | A1, A7, A12, A14, A18, A20, A24, A29, A32, A33, B1, B6, B9, B15, B23, B27, B31, C2, E1, F32, G2, G33, J32, K1, L2, M33, P1, P33, R32, T1, V33, W2, Y1, Y33, AB1, AC32, AD33, AE2, AG1, AG32, AH2, AJ33, AL32, AM3, AM7, AM11, AM19, AM25, AM28, AM33, AN1, AN2, AN5, AN10, AN14, AN16, AN20, AN22, AN27, AN33 | | GND ⁽¹⁾ | All | J9, J10,
J11, J12,
K9, K10,
K11, K12,
L9, L10,
L11, L12,
M9, M10,
M11, M12 | N/A | N/A | N/A | | No Connect | All | N/A | N/A | N/A | C31, AC2, AK4,
AL3 | ### Notes: 1. 16 extra balls (grounded) at package center. Table 4: Virtex Pinout Tables (Fine-Pitch BGA) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |-----------|--------|-------|-------|-------|-------| | GCK0 | All | N8 | W12 | AA14 | AW19 | | GCK1 | All | R8 | Y11 | AB13 | AU22 | | GCK2 | All | C9 | A11 | C13 | D21 | | GCK3 | All | B8 | C11 | E13 | A20 | | MO | All | N3 | AB2 | AD4 | AT37 | | M1 | All | P2 | U5 | W7 | AU38 | | M2 | All | R3 | Y4 | AB6 | AT35 | | CCLK | All | D15 | B22 | D24 | E4 | | PROGRAM | All | P15 | W20 | AA22 | AT5 | | DONE | All | R14 | Y19 | AB21 | AU5 | | INIT | All | N15 | V19 | Y21 | AU2 | | BUSY/DOUT | All | C15 | C21 | E23 | E3 | | D0/DIN | All | D14 | D20 | F22 | C2 | | D1 | All | E16 | H22 | K24 | P4 | | D2 | All | F15 | H20 | K22 | P3 | | D3 | All | G16 | K20 | M22 | R1 | | D4 | All | J16 | N22 | R24 | AD3 | | D5 | All | M16 | R21 | U23 | AG2 | | D6 | All | N16 | T22 | V24 | AH1 | | D7 | All | N14 | Y21 | AB23 | AR4 | | WRITE | All | C13 | A20 | C22 | B4 | | CS | All | B13 | C19 | E21 | D5 | | TDI | All | A15 | B20 | D22 | В3 | | TDO | All | B14 | A21 | C23 | C4 | | TMS | All | D3 | D3 | F5 | E36 | | TCK | All | C4 | C4 | E6 | C36 | | DXN | All | R4 | Y5 | AB7 | AV37 | | DXP | All | P4 | V6 | Y8 | AU35 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|------------|----------|---------------|----------------------------|--------------------------------| | V _{REF} Bank 1 | XCV50 | B9, C11 | N/A | N/A | N/A | | (VREF pins are listed | XCV100/150 | + E11 | A18, B13, E14 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + A14 | + A19 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | A14, C20, C21,
D15, G16 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + B19 | B6, B8, B18,
D11, D13, D17 | | input reference voltage | XCV800 | N/A | N/A | + A17 | + B14 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + B5 | | V _{REF} , Bank 2 | XCV50 | F13, H13 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + F14 | F21, H18, K21 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + E13 | + D22 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | F24, H23, K20,
M23, M26 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + G26 | G1, H4, J1, L2,
V5, W3 | | input reference voltage | XCV800 | N/A | N/A | + K25 | + N1 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + D2 | | V _{REF} , Bank 3 | XCV50 | K16, L14 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + L13 | N21, R19, U21 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + M13 | + U20 | N/A | N/A | | the required device and all smaller devices listed in the same package.) | XCV400 | N/A | N/A | R23, R25, U21,
W22, W23 | N/A | | | XCV600 | N/A | N/A | + W26 | AC1, AJ2, AK3,
AL4, AR1, Y1 | | Within each bank, if input reference voltage | XCV800 | N/A | N/A | + U25 | + AF3 | | is not required, all V _{REF} pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AP4 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |---|------------|---------|---------------------|------------------------------------|--| | V _{REF} Bank 4 | XCV50 | P9, T12 | N/A | N/A | N/A | | (V _{REF} pins are listed incrementally. Connect | XCV100/150 | + T11 | AA13, AB16,
AB19 | N/A | N/A | | all pins listed for both the required device and | XCV200/300 | + R13 | + AB20 | N/A | N/A | | all smaller devices
listed in the same
package.) | XCV400 | N/A | N/A | AC15, AD18,
AD21, AD22,
AF15 | N/A | | Within each bank, if input reference voltage is not required, all V _{REF} pins are general I/O. | XCV600 | N/A | N/A | + AF20 | AT19, AU7,
AU17, AV8,
AV10, AW11 | | pins are general i/o. | XCV800 | N/A | N/A | + AF17 | + AV14 | | | XCV1000 | N/A | N/A | N/A | + AU6 | | V _{REF} Bank 5 | XCV50 | T4, P8 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + R5 | W8, Y10, AA5 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + T2 | + Y6 | N/A | N/A | | the required device and all smaller devices | XCV400 | N/A | N/A | AA10, AB8, AB12,
AC7, AF12 | N/A | | listed in the same package.) Within each bank, if | XCV600 | N/A | N/A | + AF8 | AT27, AU29,
AU31, AV35,
AW21, AW23 | | input reference voltage is not required, all V _{REF} | XCV800 | N/A | N/A | + AE10 | + AT25 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AV36 | | V _{REF} Bank 6 | XCV50 | J3, N1 | N/A | N/A | N/A | | (V _{REF} pins are listed | XCV100/150 | + M1 | N2, R4, T3 | N/A | N/A | | incrementally. Connect all pins listed for both | XCV200/300 | + N2 | + Y1 | N/A | N/A | | the required device and all smaller devices listed in the same package.) Within each bank, if input reference voltage | XCV400 | N/A | N/A | AB3, R1, R4, U6,
V5 | N/A | | | XCV600 | N/A | N/A | + Y1 | AB35, AD37,
AH39, AK39,
AM39, AN36 | | is not required, all V _{REF} | XCV800 | N/A | N/A | + U2 | + AE39 | | pins are general I/O. | XCV1000 | N/A | N/A | N/A | + AT39 | Table 4: Virtex Pinout Tables (Fine-Pitch BGA) (Continued) | Pin Name | Device | FG256 | FG456 | FG676 | FG680 | |--|--------|-------|---|---|-------| | No Connect (No-connect pins are listed incrementally. All pins listed for both the required device and all larger devices listed in the same package are no connects.) | XCV800 | N/A | N/A | A2, A3, A15, A25,
B1, B6, B11, B16,
B21, B24, B26,
C1, C2, C25, C26,
F2, F6, F21, F25,
L2, L25, N25, P2,
T2, T25, AA2,
AA6, AA21, AA25,
AD1, AD2, AD25,
AE1, AE3, AE6,
AE11, AE14,
AE16, AE21,
AE24, AE26, AF2,
AF24, AF25 | N/A | | | XCV600 | N/A | N/A | same as above | N/A | | | XCV400 | N/A | N/A | + A9, A10, A13,
A16, A24, AC1,
AC25, AE12,
AE15, AF3, AF10,
AF11, AF13,
AF14, AF16,
AF18, AF23, B4,
B12, B13, B15,
B17, D1, D25,
H26, J1, K26, L1,
M1, M25, N1, N26,
P1, P26, R2, R26,
T1, T26, U26, V1 | N/A | | | XCV300 | N/A | D4, D19, W4,
W19 | N/A | N/A | | | XCV200 | N/A | + A2, A6, A12,
B11, B16, C2,
D1, D18, E17,
E19, G2, G22,
L2, L19, M2,
M21, R3, R20,
U3, U18, Y22,
AA1, AA3, AA11,
AA16, AB7,
AB12, AB21, | N/A | N/A | | | XCV150 | N/A | + A13, A14,
C8, C9, E13,
F11, H21, J1, J4,
K2, K18, K19,
M17, N1, P1, P5,
P22, R22, W13,
W15, AA9,
AA10, AB8,
AB14 | N/A | N/A | ## **BG352 Pin Function Diagram** DS003_19_100600 Figure 5: BG352 Pin Function Diagram ### **FG680 Pin Function Diagram** Figure 11: FG680 Pin Function Diagram